
Groundwater Report APN 142-051-031, PLP02-0085 4200 Stage Gulch Road, Sonoma Prepared per Sonoma County Policy & Procedure 8-1-14

Prepared for: Carneros Vintners Winery 4200 Stage Gulch Road Sonoma, CA 95476

Prepared by:

O'Connor Environmental, Inc. P.O. Box 794, 447 Hudson Street Healdsburg, CA 95448 www.oe-i.com

Michael Sherwood, PG #8839 Exp. 6/30/2019 Geologist/Hydrologist

March 7, 2019

Contents

Introduction
Limitations1
Hydrogeologic Conditions
Overview
Well Data4
Geologic Cross-Section7
Project Aquifer
Groundwater Storage Volume
Water Demand9
Existing Condition
Proposed Condition15
Full Build-Out Condition16
Groundwater Recharge Analysis17
Comparison of Water Demand and Groundwater Recharge
Potential Impacts to Streams and Neighboring Wells 19
Summary 19
References 20

Well Completion Reports
Well 3 E-Log Survey
Steve Martin and Associates Wastewater Plan
Sonoma County Groundwater Recharge Analysis

Introduction

Carneros Vintners Winery is applying for a Use Permit Modification to increase production at their winery facility from 250,000 cases (PLP02-0085) to 2,500,000 cases along with the elimination of public tasting, tours and events. The winery is located at 4200 Stage Gulch Road (Sonoma County APN 142-051-031) approximately 3.6 miles southwest of the City of Sonoma (Figure 1). Water for the winery is supplied by a well located on a neighboring parcel approximately 2,000 feet to the east. The western portion of the project parcel is in the Class 3 groundwater area defined by Sonoma County to be an area with "marginal groundwater". The eastern portion of the project parcel and the main water supply well parcel are located in the Class 1 groundwater area defined as a "major groundwater basin" (Figure 1).

This hydrogeologic report was prepared as required by Sonoma County Permit and Resource Management Division (PRMD) pursuant to General Plan Policy WR-2e, Procedure and Policy 8-1-14, and section 10d of Exhibit A-2 of County Ordinance No. 6189 regarding water availability in Zone 3 and 4 areas where groundwater is believed to be of limited supply. This report only evaluates potential impacts of the proposed project to the hydrogeologic system. All other plans and documents related to permitting the project are being prepared by other professionals.

This hydrogeologic report includes the following elements: estimates of existing and proposed water use within the project recharge area, compilation of well completion reports (drillers' logs) from the area and characterization of local hydrogeologic conditions, estimates of annual groundwater recharge relative to existing and proposed groundwater use, and the potential for well interference between the project well and neighboring wells and streams.

Limitations

Groundwater systems of Sonoma County and the Coast Range are typically complex, and available data rarely allows for more than general assessment of groundwater conditions and delineation of aquifers. Hydrogeologic interpretations are based on the drillers' reports made available to us through the California Department of Water Resources, available geologic maps and hydrogeologic studies, discussion with others knowledgeable about site conditions, and professional judgment. This analysis is based on limited available data and relies significantly on interpretation of data from disparate sources of disparate quality.

Given the confined aquifer conditions found within the project water supply well and neighboring well and apparently significant depths to water in the project water supply well (300 plus feet), the relationship between groundwater recharge generated within the project vicinity and groundwater availability at the project well is not expected to be tightly coupled. Substantial uncertainty exists regarding the source area for groundwater flowing to the project wells.

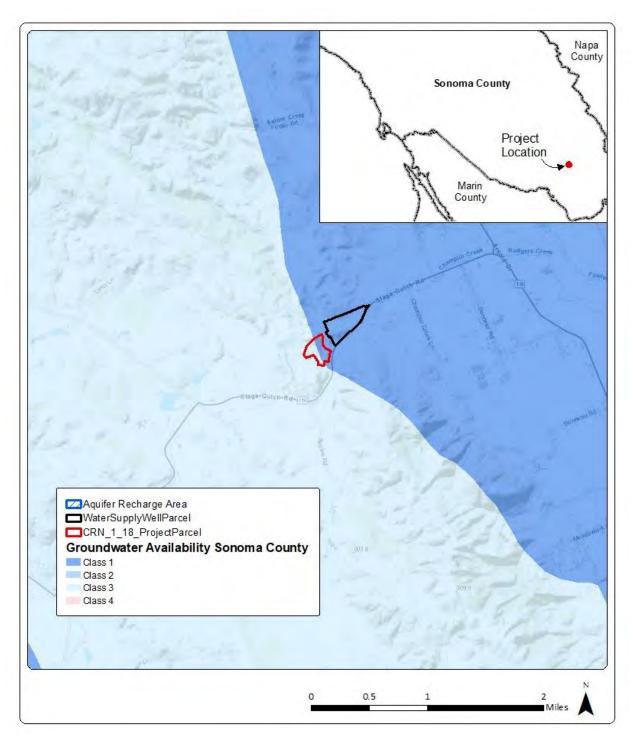


Figure 1: Project location map.

Hydrogeologic Conditions

Overview

The project parcel is located on a topographic divide between the Petaluma and Sonoma Valleys near the southern-most extent of Sonoma Mountain. The site is in the Champlin Creek watershed along the southeastern limits of the Rodgers Creek Fault Zone (Figures 1 and 2). Recent geologic mapping by Wagner and Gutierrez (2017), shows Quaternary alluvium (map unit Qha) is mapped on the project parcel along the eastern edge near the valley bottom where Champlin Creek flows through the parcel. This unit fills the valley bottom with a shallow layer of alluvium including poorly sorted sand, gravel, silt, and clay, and follows Champlin Creek as it cuts through the divide draining east towards the Sonoma Valley.

The bedrock geology mapped within the project parcel is part of the Sonoma Volcanics Formation and includes mafic flows and breccia on (map unit Tsvm) in fault contact with the Miocene-aged Rhyodacite to dacite flows (map unit Msvr) in the western lobe of the parcel. The Msvr unit located on the project parcel is a relatively small 0.1 square mile sliver bound by two approximately located fault contacts to the east and west and lies between two blocks of the Tsvm. The mafic flows and breccia underlie the alluvium on the project parcel. The Tsvm unit is associated with an approximately 5 square mile block mapped to the south and is most likely connected to the Tsvm outcropping to the north.

The main winery water supply well (Well 3) is located on APN 142-051-029 to the east (Figures 1 and 2). Most of this parcel is mapped as the Sonoma Volcanics mafic flows and breccias (map unit Tsvm). Quaternary alluvium (Qha) and Quaternary channel deposits fill the valley bottoms of the two reaches of Champlin Creek running along the north central portion and the southern corner of the project parcel. Along the northern edge of the parcel tuffaceous, gravelly sediments, presumably originating from the Sonoma Volcanics are mapped as Plio-Pleistocene sediments are up to 200 ft in thickness as noted in some local well completion reports. The mafic flows and breccia of the Sonoma Volcanics (map unit Tsvm) are mapped on the remainder of the parcel and are presumed to be a part of the larger unit mapped nearby underlying the shallow sedimentary units nearby.

In general, wells drilled in the Sonoma Volcanics tend to be low-yielding. Typical yields range from 16 to 50 gallons per minute (gpm) with reported yields as high as several hundred gpm (LSCE 2013). Unwelded sections of tuff are considered to be good water producers (DWR 1982). Bedrock units such as the Andesite to Basalt Lava Flows (map unit Tsa) typically have low primary porosity and are not water yielding except where fractured (DWR 1982).

In the project vicinity the Sonoma Volcanics are significantly sheared by faults associated with the Rodgers Creek Fault Zone. The Rodgers Creek Fault is active and trends northwest to southeast extending from the southern end of the Healdsburg Fault down into San Pablo Bay. This fault zone has numerous mapped traces associated with it causing complex local structures

and geologic relationships. Faults can be either barriers or conduits for groundwater flow. Based on the number of documented dry holes and abandoned wells in the project area, the faulting in this area appears to have had a significant impact on groundwater resources likely due to the restricted groundwater flow to and across areas within the RCFZ.

Well Data

Well Completion Reports for several wells within the vicinity of the project parcel were obtained through the California Department of Water Resources (DWR) Well Completion Report Map Application. Well Completion Reports for the wells on the project parcel and neighboring parcels including the water supply well parcel were provided by the project applicant along with details for other local wells described in a Geology and Groundwater Potential report prepared by Eugene Boudreau (Boudreau, 2009). A subset of all logs obtained was compiled (Appendix A) and georeferenced based on parcel and location sketch information (Figure 2). Two wells serve the project parcel: Well 1 is on the project parcel and Well 3 is on a neighboring parcel to the east.

Well 1 is a productive well near the southeastern edge of the project parcel. Two other dry holes are also located on the project parcel according to Boudreau (2009). Well 1 was completed to a depth of 710 feet in 2003. At the time of completion, the well had an estimated yield of 15 gpm and had a static water level of 20 ft (Table 1). The Geologic Log from the Well Completion Report indicates that the upper 260 feet of the well is completed in strata of gray clay. At depths below 260 feet, the well intersects "Reddish Brown Rock" consistent with the underlying Sonoma Volcanics (Tsvm). This well is screened from 510 to 710 feet wholly within the rocks of the Sonoma Volcanics. Since development Well 1's production has diminished significantly since it was drilled (as reported by the applicant), and the winery has relied on water from the water supply well parcel to the east. For approximately 10 years the project parcel winery has obtained water from Well 2 on APN 142-051-029. In the summer of 2018 Carneros Vintners Winery switched to using water from Well 3. Currently Well 1 only serves the residence located on the project parcel.

Well 2 was developed under the oversight of Jim Verhey, who owns the rights to drill on the parcel, and is located near the northeastern property line on APN 142-051-029 and as previously mentioned served as the main water source for the Carneros Vintners Winery up until the summer of 2018. Well 2 was drilled in 2004 to an initial depth of 900 ft and completed to depth of 860 ft. The geologic log reports 40 ft of clay and clay embedded with gravel of the Alluvium (Qal) followed by 200 ft of green and brown sand & gravel with clays (presumably part of the QPu unit). The remaining 660 ft of the boring intersected mostly red and black volcanic rock with some green ash interlayered. The well was constructed with three screened intervals of casing from 230 to 390 ft, 410 to 590 ft and 610 to 840 ft with each screened interval separated by 20 ft of blank casing. Water was first encountered at 100 ft but following development (which was reported to be difficult due to the large amount of water flowing into the well) the static water level was reported to be 0 ft (at the surface) with an estimated yield of 500 gpm. The artesian nature of the well indicates that the water entering the well is under pressure and is therefore

emerging from a confined aquifer system. Since development, the production has been reported to be greater than initially reported, up to 800 gpm. Presently this well serves as an irrigation water source for several nearby vineyards.

Well 3 is located on APN 142-051-029 about 2,350 feet to the east of Well 1 and was also developed by Jim Verhey. According to an agreement with Mr. Verhey, beginning in 2018 rights to use water from Well 3 belong solely to the Carneros Vintners Winery and the Soils Plus rock quarry located on the adjacent parcel to the north of the project parcel (APN 142-051-041). Well 3 was drilled in 2016 to a total depth of 740 feet and completed to 715 feet. The geologic log reports 17 feet of brown and green clay with sand and gravel of the Quaternary alluvium (Qal) before penetrating over 700 feet of various types and colors of volcanic rock and ash of the Msvr unit of the Sonoma Volcanics. The reported static water level after development was 20 feet with an estimated yield of 500 gallons per minute. A permanent pumping rate of 250 gpm was selected for Well 3 following a step drawdown pumping test performed in June 2016 where the well was pumped at rates of 200, 350 and 500 gpm for three hours each. Appendix B is a memorandum authored by Richard Slade summarizing the pumping test results and well development details. During development of the well the borehole was subjected to electric log surveying by West Coast Well Logging Services (Attachment C) to further characterize the aquifer. Results of the electric log survey show four distinct zones of water bearing material starting at 300 ft and extending to the base of the well at 750 ft. It was understood based on experience with Well 2 that the lowest zone of water was under the most pressure; consequently, according to Jim Verhey, Well 3 was screened only down to 695 ft approximately 20 ft above the fourth zone of water specifically to avoid intersecting this zone (Verhey, 2019). The well is screened between 255 and 695 ft with 20 ft of blank casing between 475 and 495 ft. The depth of static water (20 ft) is significantly higher (235 ft) than the top of the screened interval indicating that the project aquifer is confined and similar to Well 2.

Well Completion Reports for five dry holes and ten other completed wells could be accurately georeferenced in the vicinity of the project parcel and project water supply parcel (Well 2, 4 - 13, Figure 2). Depths of the completed wells are typically greater than 500 ft. Well 6 is only 138 feet deep and is the outlier of this group of wells. The deepest is Well 2 which was completed to 860 feet; the average well depth is 620 feet. Yield appears to be correlated with proximity to the Rodgers Creek Fault Zone (RCFZ). A number of documented dry holes (black dots in Figure 2) are located in the area nearest the RCFZ in addition to several wells (Wells 1, 6, 7, 8 and 13) reported to have had decreased production or gone dry since development (Boudreau, 2009). Estimated yields reported at the time of development for these wells ranged between 15 and 200 gpm with an average of 65 gpm; however, the wells with the highest estimated production of 100 and 200 gpm (Well 13 and 8 respectively) have both been abandoned. The numerous dry holes and trend of declining and abandoned wells in this area suggest that faulting associated with the RCFZ has a significant impact on groundwater availability. This is likely because the faults are acting as barriers to groundwater flow. Geologic logs for the majority of these wells report layers of clay and volcanic ash and rock consistent with the mapped geology of the area.

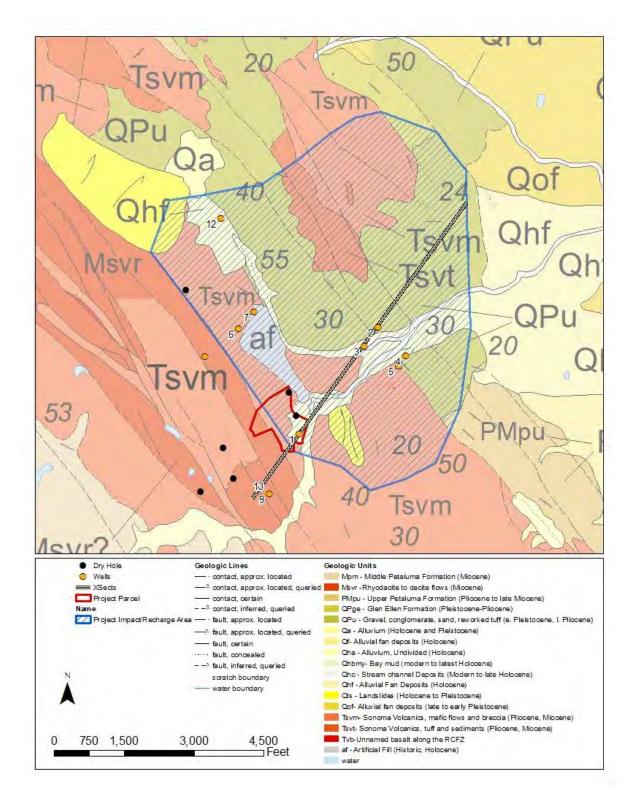
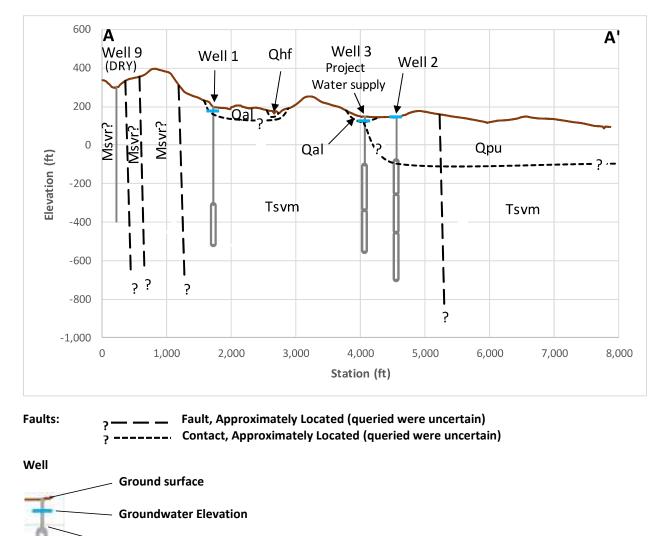


Figure 2: Surficial geology and locations of wells in the vicinity of the project parcel. Surficial geology based on data from the Geologic Map of the Napa and Bodega Bay 30' x 60' Quadrangle, California (Wagner and Gutierrez, 2017).

Wells further east of the RCFZ and closer to the project water supply well parcel (Wells 2-5) including the project water supply well are far more productive with estimated yields ranging from 300 to 500 gpm with an average of 450 gpm. These wells are all completed in the Tsvm of the Sonoma Volcanics with screened intervals extending deeper than 600 ft. All wells exhibit characteristics of a confined aquifer with two of the four reporting artesian conditions and two reporting static water levels much higher than the upper limit of screening.

Well ID	1	2	3	4	5	6	7
Year Completed	2003	2004	2016	2005	2018	NA	2003
Depth (ft)	710	860	715	661	700	138	550
Estimated Yield (gpm)	15	500	500	300	500	15	18
Static Water Level (ft)	20	0	20	0	50	NA	275
Top of Screen (ft)	510	230	255	71	160	NA	210
Bottom of Screen (ft)	710	840	695	641	700	NA	520
Geologic Map Unit	Qha/Tsvm	Qpu/Tsvm	Qha/Tsvm	Qha/Tsvt	Tsvm	Tsvm	Tsvm


Table 1: Well com	pletion details for	wells on and	near the pro	piect parcel
	piction actano ioi	mente on ana	near the pro	,

Well ID	8	9	10	11	12	13
Year Completed	NA	NA	1996	1998	1999	1999
Depth (ft)	510	770	520	712	700	780
Estimated Yield (gpm)	30	DRY	12	375	40	100
Static Water Level (ft)	80	NA	NA	76	28	100
Top of Screen (ft)	NA	NA	200	65	80	240
Bottom of Screen (ft)	NA	NA	520	430	400	780
Geologic Map Unit	Msvr	Msvr	Mtvr	Qhf	Qhf	Qhf

Geologic Cross-Section

A geologic cross-section oriented southwest to northeast through the project recharge area is shown in Figure 3 (see Figure 2 for location). The cross-section intersects several faults dividing members of the Sonoma Volcanics (Msvr and Tsvm) and crosses two branches of Champlin Creek. The block the project well is completed in is at least 900 feet thick and likely contains a confining layer or layers resulting in artesian or near artesian conditions in Wells 2 and 3. Due to the nature of the QPu unit its thickness is likely to be highly variable but for the purposes of this interpretation we are taking the thickness from the Geologic log for Well 2 which indicates the presence of the sand and clays associated with the unit to a depth of 240 ft. Information regarding the subsurface alignment and depth of faulting in the area is scarce and although a slight dip to the east is indicated in the cross-section faults may intersect or have a much different configuration than what is shown.

Screened Section of Well

Figure 3: Hydrogeologic cross section A - A' through the vicinity of the project parcel (see Figure 2 for location).

Project Aquifer

The project impact area and estimated project recharge area is conceptualized as nearby portions of the block of the Sonoma Volcanics Formation that the project water supply well (Well 3) is completed in. Typically we are able to estimate the extent of the project aquifer however, due to the complex nature of the local geology including faulting associated with the RCFZ and confined conditions in the project well and surrounding wells, the project aquifer itself is difficult, if not impossible, to accurately delineate. In place of defining the aquifer extent we have defined a project impact area conceptualized as the potential project recharge area. The recharge area is bounded to the west by a fault contact between the Tsvm and Msvr units of the Sonoma

OE

Volcanics while the remaining northern, southern and eastern boundaries follow surface drainage divides.

The estimated recharge area is approximately 846 acres. Although a small portion of the project recharge area is covered by a surficial layer of the gravel, conglomerate, sand and reworked tuff (map unit QPu), alluvium (Qal) and channel deposits (Qch), these do not extend to the depths the project well is screened within and so the aquifer materials are assumed to consist wholly of the rocks of the Sonoma Volcanics, mainly the Tsvm and Tsvt units. Because static water levels at the project water supply well (Well 3) are elevated above the screened interval and artesian conditions are reported at the nearby Well 2, the project aquifer is interpreted to be confined.

Groundwater Storage Volume

An estimate of the total available groundwater storage within the aquifer recharge area can be obtained as the product of the recharge area (impact area) in units of acres, the saturated aquifer thickness in units of feet, and the aquifer specific yield. This method may not be valid for confined aquifers, but it can be used for general interpretative and comparative purposes. The saturated aquifer thickness is typically estimated as the difference between the depth at which water was first encountered and the bottom of the screened interval of the project well however this information was not available and therefore the total screened interval of the well has been used instead.

The project well is screened from 255 to a depth of 695 feet yielding an estimated saturated aquifer thickness of 440 feet. This provides a minimum estimate of the saturated thickness; the Sonoma Volcanics Formation may extend to much greater depths beneath the project recharge area.

The porosity of fractured bedrock such as the Tsvm and Tsvt units of the Sonoma Volcanics is expected to lie between <1 and 10% (Freeze and Cherry, 1979; Weight and Sonderegger, 2000). To be conservative, we have used low-end estimates of specific yield of 1% for the project aquifer. This results in an estimate of the available groundwater storage of 3,722 acre-ft (846 acres x 440 feet x 0.01).

Water Demand

Within the project recharge area, water demand was estimated for both existing and proposed conditions. Water uses on the project parcel were determined using site details provided by the project applicants and from available satellite imagery. Water use rates on the project parcel were estimated using data provided by the project applicants and from wastewater data provided by Steve Martin and Associates. Water uses on other parcels in the project recharge area were determined from interviews with neighbors and available satellite imagery and water use was estimated using rates obtained from the Napa County Water Availability Analysis Guidance Document (2015).

Existing Condition

In the current condition, the project parcel contains a single primary residence, the winery facility, and four small blocks (totaling to 0.45 acres) of olive trees. Although Well 1 supplies some water to the parcel, it is unreliable and so water from Well 3 is used as the main source. Portions of vineyard shown on the west and south edges of the parcel are not managed by the project applicant; irrigation water for these is obtained from winery process wastewater stored in an on-site, off-stream reservoir and Well 2.

Well 3 supplies water to the Carneros Vintners Winery parcel (APN 142-051-031) and the Soils Plus quarry parcel (APN 142-051-041). Currently the Carneros Vintners Winery produces 250,000 cases of wine annually. According to Steve Martin and Associates (SMA) process wastewater estimates (which are assumed to be equivalent to production demand) for full production of wine requires two gallons of water per gallon of wine which results in a water demand of 1,200,000 gallons or 3.68 acre-ft (Table 4, Appendix C). The SMA report states the winery septic system is currently sized to serve 20 full-time workers and a daily maximum of five office visitors; these uses are included in the totals listed in Table 5. The current use permit lists that the winery will host tastings and events; however, the winery has not exercised their right to host any tastings or events.

The project well (Well 3) and Well 2 are on the project water supply well parcel (APN 142-051-029). Irrigation of approximately 15.8 acres of vineyard is the only water use on this parcel. Well 2 supplies all water to these vines along with an additional 85.4 acres on parcels located to the west and northwest outside of the project recharge/impact area. All vineyard areas irrigated with water from Well 2 are shown as beige polygons in Figure 4. An estimate of water demand for the irrigation of these vines was provided by the owner of the project water supply well parcel. On average for the years 2013 and 2014 the vines required 0.4 acre-ft per acre of vineyard. Applying this rate to the 101.2 acres of vines results in an estimated demand of 40.5 acre-ft annually (Table 6).

An additional 394.1 acres of vineyards (shown as light purple polygons in Figure 4) are located on seven parcels within the project recharge/impact area. Although wells were not located for every parcel, it is assumed that these vineyards are irrigated with groundwater. Assuming that the irrigation demand is similar to that of the vines located on the project water supply well parcel (0.4 acre-ft/acre), an annual irrigation demand of 157.7 acre-ft is estimated for the remaining 394.1 acres (Table 6).

Industrial use within the project impact area includes the Soils Plus quarry and the Sonoma County refuse transfer station. Water use is not expected to be large at the County transfer station; as such we defer to Boudreau (2009) who states an assumed demand for the dump of 1 acre-foot. We also will assume the dump has 10 full time employees. Soils Plus uses a significant amount of water, mostly for dust control. According to the foreman at Soils Plus, water use for dust control occurs mostly during the summer months. The two main water uses are by a water truck that sprays roads and other areas with loose sediment and the dust control system for the

large rock crushing plant. The water truck holds 4,000 gallons and makes a maximum of five runs a day five days a week over the six months of the spring and summer dry season. The rock crushing plant uses a maximum of 12,000 gallons a day and runs three days a week over the six months of the spring and summer dry season. The quarry also has a maximum of nine employees working five days a week. Table 7 summarizes industrial use within the project impact area. Table 5 summarizes employee use within the project impact area.

To the south of the project site, parcel APN 142-052-022 contains a single main residence and a dairy. The total head of cattle was estimated based on available pasture located on the parcel. A rule of thumb stated by the USDA assumes a cow-calf pair requires approximately 2 acres of pasture. The parcel contains about 80 acres of herbaceous landcover according to the Sonoma County Ag and Open Space District finescale vegetation map (SCAOSD Veg map, 2015) a count of 40 milch cattle was assumed. Water use per milch cow was estimated from rates given in the Small user water report estimator (DWR, 2019) which states a daily use per cow of 30 gallons and a washout use rate of 35 gallons per day per dairy cow totaling to 65 gallons per day per cow (Table 8). A total of two full time employees are assumed to work at the dairy.

One additional primary residence was identified on parcel APN 142-052-017 just east of the dairy parcel.

Based on these uses, existing water demand within the project recharge area is estimated at 219.6 acre-ft/yr (Table 2). Of this, the majority (199.9 acre-ft/yr) comes from irrigation of vineyards on neighboring parcels. Winery, industrial, residential, livestock/dairy and employee use make up the remainder (Tables 3 - 8). Of the total use, the project parcel uses approximately 6.3 acre-ft/yr or 62% of the total.

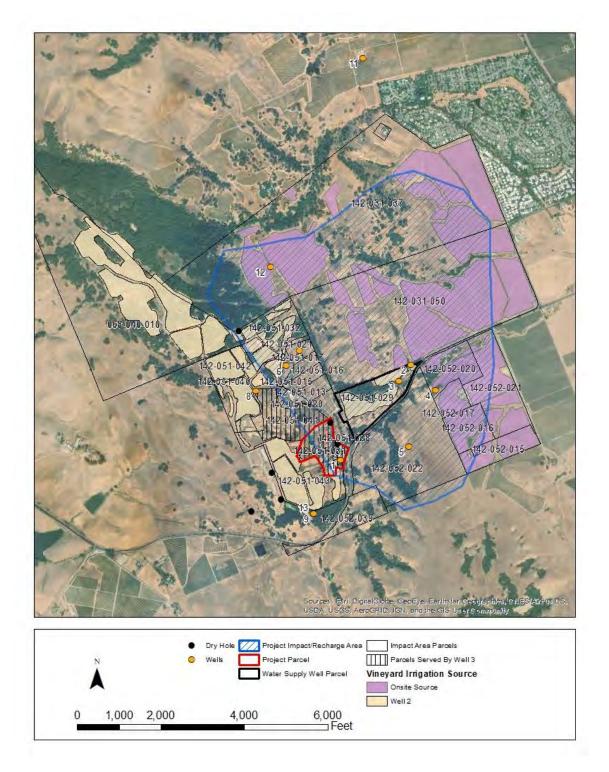


Figure 4: Satellite imagery of land uses within the project recharge area.

	Residential Use (acre-ft/yr)	Irrigation Use (acre-ft/yr)	Industrial Use (acre-ft/yr)	Livestock Use (acre-ft/yr)	Winery Use (acre-ft/yr)	Employee Use (acre-ft/yr)	Total Use (acre-ft/yr)
Existing Use	1.5	199.9	11.0	2.9	3.7	0.4	219.5
Proposed Use	1.5	199.9	11.0	2.9	19.2	0.4	235.0
Full Buildout Use	14.9	289.1	11.0	2.9	19.2	0.4	337.5

Table 2: Estimated existing, proposed and full buildout water demand for the project recharge area.

Table 3: Estimated existing and proposed residential water use within the project recharge area.

	# of Units	Use per Unit (ac- Annual Water		
Use Category	# 01 011113	ft/yr)	(ac-ft/yr)	
Main Residence	3	0.50	1.50	
TOTAL			1.50	

Table 4 Estimated existing winery water use within the project recharge area.

Use Category	Count Cases	Count (gallons of wine)	PW estimate (gallons/yr)	PW estimate (acre-ft/yr)
Full Production	250,000	600,000	1,200,000	3.68
TOTAL				3.7

Table 5: Estimated existing and proposed employee use within the project recharge area.

Work Category	Count	Days per Year	Use per Person (gal/day)	Annual Water Use (ac-ft/yr)
Full-time Employee	41	260	15	0.49
Max Daily Office Visitors	5	260	15	0.060
TOTAL				0.55

Use Category	Number of Acres	Use per Acre (ac-ft/yr)	Annual Water Use (ac-ft/yr)
	404.0	0.40	40.40
Vineyard Irrigation (Well 2)	101.2	0.40	40.48
Orchard Irrigation (Well 3)	0.45	4.00	1.80
Vineyard Irrigation all other sites	394.13	0.40	157.65
TOTAL			199.9

Table 6: Estimated existing irrigation use within the project recharge area.

Table 7: Estimated existing and proposed industrial water use within the project recharge area.

Use Category	Annual Water Use (ac-ft/yr)
Sonoma County Dump Quarry	1.00 10.0
TOTAL	11.0

Table 8: Estimated existing and proposed stock water use within the project recharge area.

Use Category	Estimated Head Count*	Use per Head** (gal/day)	Annual Water Use (ac-ft/yr)
Dairy Cattle	40	65	2.9
TOTAL			2.9

*Assuming 40 head of milch cattle ~2 acres pasture per cow calf pair **65 gallons per day is 30/ milch cow plus 35 washout

From: Small user suctor report estimator (A DM/D

From: Small user water report estimator, CA DWR

Proposed Condition

In the proposed condition, the Carneros Vintner's Winery water use will increase significantly from the current annual total of 250,000 cases to 2,500,000 cases. The number of employees (20) and office visitors (five max daily) will remain the same. Table 9 summarizes the five distinct use categories and the estimated water use for each use category. Water use rates are taken from the SMA process wastewater report (Appendix C) which presents the process wastewater for each use. The increased winery production will have an estimated annual use of 19.2 acre-ft (Table 9); this is an increase of 15.5 acre-ft from the current 3.7 acre-ft total.

No other changes in demand are expected as a result of the proposed project. The project does propose the reuse of process wastewater to irrigate 30 acres of vineyard on the property adjacent to the project parcel. This reuse of the wastewater will offset the estimated irrigation demand in the project impact area by 12 acre-ft/yr reducing the irrigation water demand to 188.1 acre-ft/yr (Table 10).

Total water demand in the project recharge area is estimated to increase by 3.7 acre-ft/yr. This increase, all associated with the increased winery production, has been significantly offset from 15.5 acre-ft/yr to only 3.7 acre-ft/yr by the reuse of the process wastewater. In the proposed condition, the project parcel, will use 21.8 acre-ft/yr. This is equivalent to 6% of total use within the project recharge area.

Use Category	Count	Count	PW estimate	PW estimate
	Cases	(gallons of wine)	(gallons/yr)	(acre-ft/yr)
Full Production	55,000	132,000	264,000	0.81
Crush and Bulk Haul Offsite	289,000	693,600	693,600	2.13
Crush, Ferment Bulk haul offsite	1,056,000	2,534,400	3,801,600	11.67
Lees Wine	300,000	720,000	1,260,000	3.87
Bottling	800,000	-	240,000	0.74
TOTAL				19.2

Table 9: Estimated proposed winery water use within the project recharge area.

Use Category	Number of	Use per Acre	Annual Water		
	Acres	(ac-ft/yr)	Use (ac-ft/yr)		
Vineyard Irrigation	495.78	0.40	198.31		
Orchard Irrigation	0.45	4.00	1.80		
<i>Process Wastewater used as irrigation</i>	30	0.4	12.00		
TOTAL			188.1		

Table 10: Estimated proposed irrigation water use within the project recharge area.

Full Build-Out Condition

The full build-out condition reflects the full development of parcels consistent with their current zoning. Uses in the full build-out condition were estimated using the following assumptions:

- All parcels will have primary dwellings and half will have secondary dwellings
- For parcels with existing vineyards, orchards, or other established agricultural uses, 50% of open land was considered to be developed. Open land was considered to be areas classified as non-riparian shrubs or as herbaceous by Vegetation and Habitat Map Key accompanying the Sonoma County Fine Scale Vegetation Map (SCAOSD, 2015). Limitations on maximum slope, riparian setbacks, and feasibility were not considered (except as noted below).
- Parcels without vineyard, orchard, or other established agricultural uses were not considered to have agriculture in the future
- Subdivisions and other discretionary projects were not considered

Additionally, the future build-out was only analyzed for parcels where development or wells would be within the project recharge area. If only a small portion of a parcel was included within the project recharge area or if all portions of a parcel within the project recharge area have prohibitively steep slopes, potential development on a parcel was not included.

Of the 24 parcels which would use water from the project recharge area, three have existing primary residences (the project parcel has one); 19 would be added to reach a full build-out total of 22. Two of the 24 parcels were not given main residences because they were associated with the Soils Plus quarry at APN 142-051-041 and the County transfer station at APN 142-051-020. Assuming that half of the 22 parcels will have secondary residences in the full build-out condition yields a total of 11 secondary residences in the full build-out condition.

The parcels within the project recharge area with existing vineyard (including those irrigated with water from Well 2) contain a total of 445 acres of land designated as herbaceous in addition to the vineyard areas. Applying the assumption that half of this area would be developed into additional vineyard would add 222.5 acres of vines for a full buildout total of 718.8 acres of vines which would require an annual total of 287.5 acre-ft of irrigation. Including the demand of the

existing 0.45 acres of orchard (1.8 acre-ft) and applying the offset for the 30 acres irrigated by process wastewater (12 acre-ft) brings the total full buildout irrigation demand to 277.3 acre-ft.

17

Based on these developments, water use in the full-build out condition is estimated to be as high as 325.7 acre-ft/yr (Table 2.) This increase comes from additional residences, and an increase in vineyard acreage (Tables 12 and 13).

	# of Units	Use per Unit (ac Annual Water Use						
Use Category	# OF OTHES	ft/yr)	(ac-ft/yr)					
Main Residence	22	0.50	11.00					
Secondary Residences	11	0.35	3.85					
TOTAL			14.85					

Table 12: Estimated full build-out residential water use within the project recharge area.

Table 13: Estimated full build-out irrigation water use within the project recharge area.

Use Category	Number of	Use per Acre	Annual Water
	Acres	(ac-ft/yr)	Use (ac-ft/yr)
Vineyard Irrigation	718.8	0.40	287.5
Orchard Irrigation Well 2	0.45	4.00	1.80
Process Wastewater used as irrigation	30	0.4	12.0 277.3

Groundwater Recharge Analysis

Groundwater recharge within the project recharge area was estimated using a Soil Water Balance (SWB) model developed for Sonoma County and portions of Marin County. The SWB model was developed by the U.S. Geological Survey (Westenbroek at al., 2010) and produces a spatially distributed estimate of annual recharge. This model operates on a daily timestep and calculates runoff based on the Natural Resources Conservation Service (NRCS) curve number approach and Actual Evapotranspiration (AET) and recharge based on a modified Thornthwaite-Mather soil-water-balance approach (Westenbroek et al., 2010). Details of this model are included in Appendix D.

Groundwater recharge was simulated for Water Year 2010 which was selected as precipitation was close to the 30-year average for much of Sonoma County. During the simulated water year, precipitation averaged 26.4 inches across the project recharge area and actual evapotranspiration (AET) averaged 18.7 inches. Groundwater recharge varied across the project recharge area from 0 to 18.1 inches with a spatially averaged recharge of 4.9 inches (Table 14).

Groundwater recharge estimates can also be expressed as a total volume by multiplying the calculated recharge by the project aquifer impact/recharge area of 846.5 acres. This calculation yields an estimated mean annual recharge of 345.6 acre-ft/yr.

Water budget estimates are available for several larger watershed areas nearby including the Santa Rosa Plain, the Green Valley Creek watershed, and the Sonoma Valley. Comparisons to these water budgets are useful for determining the overall reasonableness of the results although one would not expect precise agreement owing to significant variations in climate, land cover, soil types, and underlying hydrogeologic conditions. These regional analyses estimated that mean annual recharge was equivalent to between 7% and 28% of mean annual precipitation (Farrar et. al., 2006; Flint and Flint 2014, Kobor and O'Connor, 2016; Woolfenden and Hevesi, 2014). The simulated water year 2010 groundwater recharge for the project recharge area represents approximately 19% (Table 14) of the precipitation, within the range of these regional estimates.

	2010 Nor	mal Year
		% of
	inches	precip
Precipitation	26.4	-
AET	18.7	71%
Runoff	2.8	11%
Recharge	4.9	19%

Table 14: Summary of water balance results from the SWB model for Water Year 2010.

Comparison of Water Demand and Groundwater Recharge

The total proposed groundwater use for the project recharge area is estimated to be 223.3 acreft/yr, 21.8 acre-ft/yr of which is for the project parcel. Groundwater use in the project recharge area is equivalent to 65% of the estimated mean annual groundwater recharge of 345.6 acreft/yr, indicating that there is a surplus of groundwater resources (Table 15). Given the magnitude of the surpluses, the proposed project is unlikely to result in significant reductions in groundwater levels or depletion of groundwater resources over time.

		Avera	age Water Year	· (2010)	
Scenario	Total Proposed Demand (ac-ft/yr)	Recharge (ac-ft/yr)	Recharge Surplus (ac-ft/yr)	Demand as % of Recharge	
Proposed Full Buildout	223.3 325.8	345.6 345.6	122.3 19.8	65% 94%	

Potential Impacts to Streams and Neighboring Wells

The project well (Well 3) is in the valley adjacent to Champlin Creek. The creek is located approximately 75 feet to the south and less than 1 ft lower in elevation. The project well is screened from 255 ft to 475 ft and from 495 ft to 695 ft these intervals are located at a significant depth such that given the substantial vertical separation and confined nature of the aquifer, increased pumping from the project well is unlikely to have negative impacts on this stream.

The nearest neighboring well (Well 2) is located approximately 500 feet northeast of the project well and screened from 230 ft to 390 ft, 410 ft to 590 ft and from 610 ft to 840 ft. Although these elevations do overlap with a large portion of the screened intervals of the project well, it has been reported that the lowest section of the aquifer intersected by Well 2 which is not intersected by the Project well (Well 3) has the greatest production and is the primary layer causing the artesian conditions at the well. Due to the pressurized nature of this groundwater development of the well was difficult for the driller. This highly productive layer was identified in the e-log survey of the project well beginning at a depth of 700 ft and to avoid development difficulties, the lowest water-bearing stratum was left unscreened. This configuration is likely to reduce potential well interference between Wells 2 and 3.

The next nearest wells located with certainty are Wells 4 and 5 which are located approximately 915 ft and 840 ft respectively to the southeast and of the project well. Given the substantial horizontal separation, increased pumping from the project well is unlikely to have significant negative impacts at these locations.

Summary

Application of the Soil Water Balance (SWB) model to the project recharge area revealed that average water year recharge was approximately 4.9 inches/yr or 345.6 acre-ft/yr. The total proposed water use for the project aquifer recharge area is estimated to be 223.3 acre-ft/yr. This represents 65% of the estimated mean annual recharge within the project impact area, suggesting that the project is unlikely to result in cause a gross imbalance between recharge and groundwater utilization.

References

Blake, M.C., Jones, R.W., Graymer, R.W., 2000. Geologic Map and Database of Parts of Marin, San Francisco, Alameda, Contra Costa, and Sonoma Counties, California. Pamphlet to accompany Miscellaneous Field Studies Map 2337. U.S. Department of the Interior U.S. Geological Survey

Cardwell, G.T., 1958. Geology and Groundwater in the Santa Rosa and Petaluma Areas, Sonoma County, California. U.S. Geologic Survey Water Supply Paper 1427.

Flint, L.E. and Flint, A.L., 2014, <u>California Basin Characterization Model: A Dataset of Historical</u> <u>and Future Hydrologic Response to Climate Change</u>, (ver. 1.1, May 2017): U.S. Geological Survey Data Release, https://doi.org/10.5066/F76T0JPB.

Freeze, R., and Cherry, J., 1979. Groundwater. Prentice-Hall, New Jersey, 604 pgs.

Graymer, R.W., Brabb, E.E., Jones, D.L., Barnes, J., Nicholson, R.S., and Stamski, R.E., 2007. Geologic Map and Database of Eastern Sonoma and Western Napa Counties, California. Pamphlet to accompany Scientific Investigations Map 2956. U.S. Department of the Interior U.S. Geological Survey

Luhdorff and Scalmanini Consulting Engineers (LSCE) and MBK Engineers, 2013. Updated hydrogeologic conceptualization and characterization of conditions. Prepared for Napa County.

Mitchell, L.R., Hauge, C.J., Ford, R.D., 1982. Evaluation of Ground Water Resources in Sonoma County, Volume 2: Santa Rosa Plain. Department of Water Resources in cooperation with the Sonoma County Water Agency.

Napa County, 2015. Water Availability analysis Guidance Document. County of Napa.

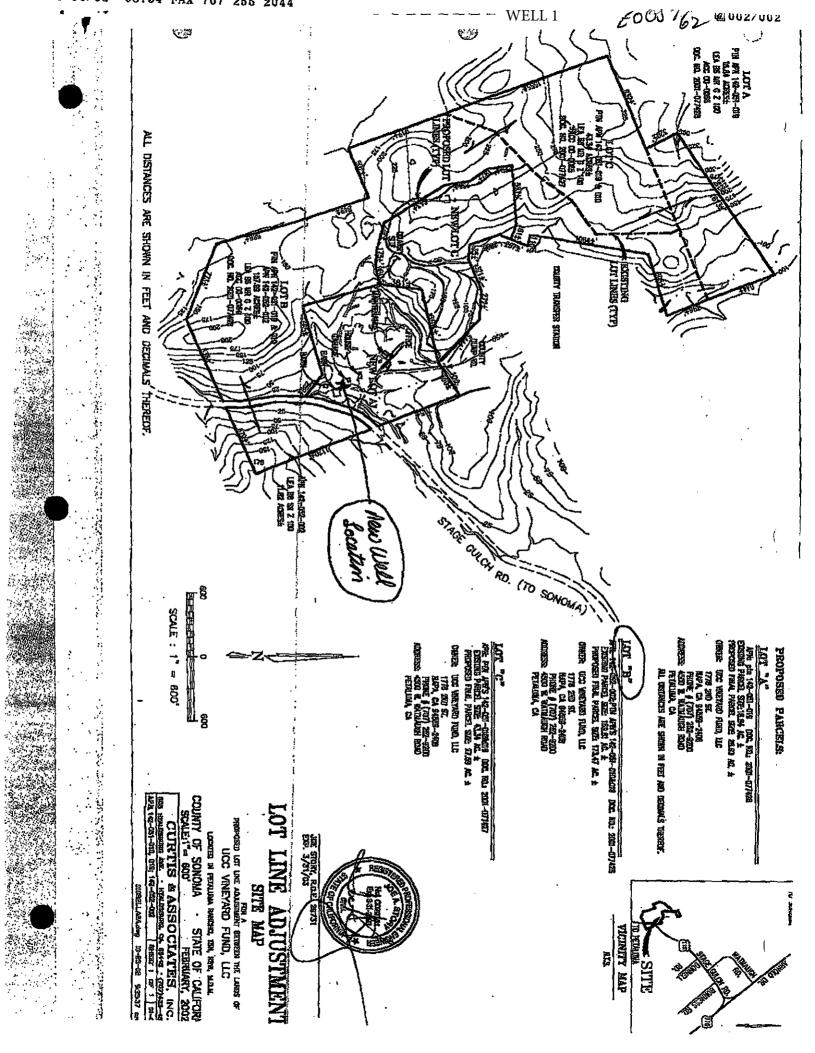
Nishikawa, T. et al., 2013. Hydrologic and Geochemical Characterization of the Santa Rosa Plain Watershed, Sonoma County, California. Scientific Investigations Report 2013 – 5118 U.S. Department of the Interior U.S. Geological Survey.

Sonoma County Agriculture and Open Space District (SCAOSD), 2015. Sonoma County Vegetation Mapping and LiDAR Program. <u>http://sonomavegmap.org</u>, accessed 2018 and 2019.

Wagner, D.L., and Gutierrez, C.I., 2010. Preliminary Geologic Map of the Napa and Bodega Bay 30' x 60' Quadrangles, California. California Geologic Survey.

Weight, W. and Sonderegger, J. 2000. Manual of Applied Field Hydrogeology. McGraw-Hill. 608p.

Westenbroek, S.M., Kelson, V.A., Dripps, W.R., Hunt R.J., and Bradbury, K.R., 2010. SWB - A Modified Thornthwaite-Mather Soil-Water-Balance Code for Estimating Groundwater Recharge, U.S. Geological Survey Techniques and Methods 6-A31, 60 pgs.


APPENDIX A

WELL COMPLETION REPORTS

NO REPORTS FOR WELLS 6, 8 OR 9

										WELL 1						
File with							*****		OF CALIFO		vT		-			NOT FILL IN
-							WELL	COMP Refer to Ins		N REPOR	(1					
Page 1 of 1 Owner's	Well No.							No	• E00						1.	
Dete Wor	k Began 🕹	2/4/2003	\$		_	<u> </u>	Ended 6/11/2	003	<u>_</u>					1 1		NGITUDE
Local F	Permit Ag	gency C	OUI	aty_	of3	Son	oma	- 12	24/2002		-		API	NTRSA	DTHER	
Penni	it No. W		GE	<u>ol</u>	$\overline{\mathbf{n}}$	HC.	LOG	Date	24/2002							
							RIZONTAL									
ORIENTA	TRON (⊻.)	DRILLING	, D(ΩΤ <i>ι</i>	عر	- HOI V	FL	ANGLE	nito							
	I FROM FACE	METHOD	- 63	211	<u>*1</u>		ESCRIPTION	UID Danic								
	5 Ft			ribe	: n		ial, grain, size	e, color, etc	c				CATT	``\\.		· · ·
0		Top Sci							·	Address 4200	Sta	ige Guich Rd.	CAIR			
20		Olive G	_	Cla	<u>ay</u>					City Petaluma,		<u>A CA 94559</u>				
30		Gray Cl		0						County Sonom						
100		Gray Cl Rock w										Page 051 1				
200		Gray Ci				ay						_ Range 8	Section	1	÷	
230		Hard G			av					Latitude	MIN.	. SEC.		ī	DEG.	MIN. SEC.
260		Reddist	_		_	Raci	<u> </u>				ЮĂ	ATION SKETCH-				πνιτγ 🕐 —
320	!	Reddish										- NORTH				
340		Reddist														CATION/REPAIR
460							eddish Brow	n Rock	.						-	- Other (Specify)
490		Reddist														ESTROY (Describe
i																ESTROY (Describe rocedures and Materials Inder "GEOLOGIC LOG"
																NED USES(∠)
										L					WATER	RSUPPLY
		4 4 4						-		WEST				AST	l ⊥ lr	omestic Public rigation Industrial
										5				ш		MONITORING
	;															TEST WELL
															• •	LEAT EXCHANGE
																INJECTION
		1													VAPC	OR EXTRACTION
							<u> </u>					- SOUTH				SPARGING REMEDIATION
												tence of Well from Roads, it tech a map. Use additions			c	THER (SPECIFY)
										necessary. PLEASE	BE /	ACCURATE & COMP	LETE.	•		
		-						i <u> </u>		WATI	ER I	LEVEL & YIELD	of Co	MPL	ETED	WELL
		i								DEPTH TO FIRST	WA	ATER 4 (FL) BEI	low si	JRFACI	ŧ	
										DEPTH OF STATIC WATER LEVEL.					7/1/2	003
												(FL) & DATE 15 (GPM) & T	MEASU	RED)	<u> </u>
TOTAL D	EPTH OF 1	BORING	72(0		· (Fee	 21)					<u> </u>				
	EPTH OF				ELI							entative of a well's li				
					_	_				11114) 1101 OU 100						
DEP	TH	BORE -	L				C	ASING (S)			11	DEPTH FROM SURFACE		ANNL		MATERIAL
FROM SU	RPACE	HOLE		YPE	<u>.</u> d	÷ T	MATERIAL/	INTERNAL	GAUGE	SLOT SIZE		PROM SURFACE	CE-	BEN-	19	<u>PE</u>
Fit to	EL	(Inches)	BLANK	SCREEN	DUCTOR	191	GRADE	DIAMETER (Inches)		L IF ANY		Fit to Fit	MENT	TONIT		FILTER PACK (TYPE/SIZE)
				S	<u>_</u> 8								(\mathbf{X})	(<u>/</u>)	(\mathcal{A})	
+2	510	15	 ✓ 				PVC	8		25	╢┝	0 120				
510	710	15		✓	\dashv	 -	PVC	8	*	.050	╢╴	120 710				GRAVEL
			-	\vdash	_						╢╴					
			\vdash	┝╍╍┼	-	+					╢╴					.
			\vdash	\vdash		+					$\left \right $					
	ATTACH	MENTS	 {	}			 		I	CERTIFIC	IL AT	ION STATEMENT				
	_ Geologic	Log	• •				I, the undersi	igned, certify th	nat this report	is complete and accur		to the best of my knowled		belief.		
		nstruction Di ical Log(s)	lagra	1111			NAME	DC Explor	R CORPOR	eils Ation) (typed or p	RIN	TED)				•
_	_ SotiWate	r Chemical	Ane	alysis	i		9580 Co	unty Road				Zamora			CA	95698 ZIP
	∠ Other M	•					ADDRESS Signed						7/23/0		STATE	283326
	DITIONAL II	N-ORMATIC	JN, 11				WE			REPRESENTATIVE	NH		TE SIGN	(ED		C-67 LICENSE NUMBER
DWR 188 REV	7. 11 -97			IF	·AE	יודוסי	ONAL SPACE IS	S NEEDED, (USE NEXT	CONSECUTIVELY	NUI	MREKED FORM				

. . . .

ORIGINA File with I							WELL (STATE C	F CALIFO	RNI	WELL 2		- owr 15N1					NOT FILL IN	
								Refer to Ins	a c iton P	2amj	phlet							ION NO.	┵┵╽
Page 1 of 2 Owner's	Noll No.	Well #1	0'1	4				•	·e01	-	•		- 1 1	1 1			t I		
Deta Work	Becon	7/1/2004		-		E	nded8/9/200						LATTIU	DE	L I		ro	NGITUDE	· •
Liane WUIK			000		Co	., C. untv	Environme	ntal Mrr	•					1	1		1 1	111	T
Local P	ermit Ag	FI 04-03	138		C ALLA	uny	Permit I		1/2004						APN	VTRS/	OTHER		++
Permi			<u>G</u> E	010	GI	C L					·····		- WELL	NW	NER				
ORIENTAT	ION (⊻)	DRILLING		AL	1 mv	HORL	zontal A		(SPECIFT)										
DEPTH	rikow [METHOD	R				CRIPTION	ND BEINI	UNITE										
Ft. to		L	Desc	ribe			i, grain, size,	color, eu	2										
		DARK E									ddress 4270 St	ade Gu	WELL Ich Roa	LOC	ATIC)N			
10	40	BROW	ROWN CLAY WITH EMBEDDED GRAVEL								ity Sonoma CA	1							
40			_				/EL WITH C				County SONOM								
140		BROW			÷						PN Book 142				mal	002			
160		GREEN									ownship								
180	200	GREEN	I CI	AY							atitude	_				•	I	1	
200	240	SAND 8	3 G	RAV	ÆL					יו	deg. M	N. 8	EC.			ī	DEG.		
240	250	VOLCA	NIC) MC	X						1.00	ATION — NORT		1				CTIVITY (⊻) NEW WELL	, —
250	290	RED VO	DLC	ANI	CS	;												ICATION/REPAIR	
290	330	BLACK	VC)LC/	NI	CS '	WITH ASH 8	STRINGE	RS									- Deepen	л
330	420	BLACK	VC)LC/	NI	CS			j				-			_	, -	— Other (Speci	tîy)
420	445	BLACK	& F	RED	VC)LC	ANICS	-					\sim	_		71			
445	495	BLACK	VC)L.C.F	NI	CS						15				\mathbf{X}	, — ř	DESTROY (Descri Procedures and M Inder *GEOLOGIC	
495	520	BLACK	& I	RED	VC)LC	ANICS	-		1	T	WELL	3.0			110		NNED USES	
520	550	BLACK	LACK VOLCANICS							l. '	1		141	\langle / \rangle	Hils .	•		R SUPPLY	(-)
650	580	BLACK	LACK & RED VOLCANICS							WEST	1		¥.	Λ		EAST		Domestic Pui regation Ind	iblic dustrial
580	620	BLACK	BLACK VOLCANICS							3						四	<u></u> "		
620	630	RED AS	SHE	EYV	OL	CAI	NICS				1			3				TEST WELL	
630	640	BLACK	VC)LC/	NI	ĊS					1		//\?				CATHO	DIC PROTECTION	N
640	655	GREEN	I A	SHE	ΥV	OL	CANICS		,			GE GU	CH .				F	HEAT EXCHANGE	E
655	750	HARD I	₿LĂ	\CK	VO	LC/	ANICS					<u> </u>	×					DIRECT PUS	
750	760	SOFTE	RE	JLAC	Ж	8 R	ED VOLCAN	lics				<u>se</u>					VAP	INJECTION OR EXTRACTION	
760	870	HARD	BLA	\CK	VC	LC/	ANICS				51	•						SPARGING	
870	900	GREEN	A	SHE	YC	'LA'	Y			SOUTH REMEDIATION						N			
	•									, "	Rences, Rivers, etc. and a recessary. PLEASE BE	attach a m	an June addit	ional p	aper d	7	C	OTHER (SPECIFY	n
		CONT.	CA	SIN	GL	AY	TUC			_			•				,	<u> </u>	
610	840	SCREE	N	STE	EL	10	".050 LOU	VER		WATER LEVEL & YIELD OF COMPLETED WELL									
840	860	BLANK		STE	EL	10	.250 WAL	L		DEPTH TO FIRST WATER 100 (FL) BELOW SURFACE									
											DEPTH OF STATIC		_ (FL) & D/				8/9/2	:004	
											ESTIMATED YIELD *	500	(F1)&D/ (GPM)		EASUI	neu		IFT	
TOTAL DI	APTH OF	BORING	90	0	(Feet)						TOTAL DF						
TOTAL D										1'	May not be repre								
	·				_					L	nady not be repre								
DEP	тн	BORE -					CA	SING (S)	<u> </u>			D	epth Surface			ANNI	JLAR	MATERIAL	
FROM SU	RFACE	BORE -	Т	YPE	쯗	u l						FROM	SURFACE				<u></u> TY	(PE	
		DIA. (Inches)	BLANK	SCREEN	រដ្ឋីរ		MATERIAL / GRADE	INTERNAL DIAMETER	Gauge Or Wai	L.	SLOT SIZE				XE- ENTI	BEN- TONITI	E FILL	FILTER PA	
FL to	FL.		긆	ខ្លួ	習言	2		(inches)	THICKNE	68	(Inches)	FL.	to FL	1	2)	(⊻)	(\mathcal{D})	(TYPE/SIZE	E)
0	880	18										C		75	1			CONCRET	E
0	230		<			5	STEEL	10		50	1	75	88	30			√	#6 SAND	
230	390		STEEL 10						1	250		860	90	00			~	CUTTINGS	3
390	410		STEEL 10							250	-				\square			ļ	
410	590				\perp		STEEL	10	1	250		<u> </u>	-				 _	<u> </u>	
590	610		✓	ĹĹ		18	STEEL	10	.2	250							L	<u> </u>	
	ATTACHMENTS (<) CERTIFICATION STATEMENT Geologic Log I, the undersigned, certify that this report is complete and accurate to the best of my knowledge and belief.																		
	Weil Construction Diagram HUCKFELDT WELL DRILLING																		
—	_ Geophysi						(PERS 2110 Pen	SON, FIRM, C	RCORPOR	ATIO	ON) (TYPED OR PRI	NTED)	Napa				CA	94559	
ľ .	- Soti-Wate - Other -	r Chemical	Ante	nysis			ADDRESS		In H	H.4	do M		CITY				STATE	ZIP	<u>_</u>
		NFORMATIC	DN, I	FITB	INST	S	Signed WEL			· (약) - 이야 - 이야	EPRESENTATIVE			DATE	12/0 SIGN	4 ED		439-746 C-57 LICENSE NI	UMBER
DWR 188 REV	. 11-97			IF.	ADI						ONSECUTIVELY N	UMBERE	D FORM						

		R:08/09	9/16 WELL 3		
ORIGINAL		STATE OF CALIFO	JRNIA		DO NOT FILL IN
File with DV	VR		ON REPORT	05N06W2	
Page 1 of 1		Refer to Instruction		STATE WELL NO	
Owner's We			1403/	381452N	123004W
		5/3/2016 , Ended 5/31/2016		LATITUDE	LONGITUDE
		cency Sonoma County PRMD EL15-0224 Permit Date 8/6/2015		APN/TRS	OTHER
remark r	NO	EL15-0224 Permit Date 8/6/2015 GEOLOGIC LOG		WELLOWNED	
ORIENTATION	N (<u></u>)	VERTICAL HORIZONTAL ANGLE (SPECIFY)]
DEPTH FRO		DRILLING ROTARY FLUID BENTONITE			
SURFACE Ft. to		DESCRIPTION Describe material, grain, size, color, etc.			
0		BROWN CLAY	A 44 4270 Stage	Gulch Road	
10	17	GREEN CLAY WITH SAND & GRAVEL	City Sonoma CA	Guicii Ruad	
17	30	BROWN VOLCANIC ROCK	County SONOMA		
30	145	BLACK VOLCANIC ROCK	1 -	051 - 000	
145	170	BLACK, GREEN, BROWN, RED VOLCANICS	APN BOOK 142 P	Page 051 Parcel 029 Range Section	
170	251	BLACK, GREEN VOLCANICS			
251	259	GREEN VOLCANIC ASH	DEG. MIN.		DEG. MIN. SEC.
259	300	BLACK VOLCANIC ROCK		ON SKETCH	ACTIVITY (2)
300	305	MIXED VOLCANICS			NEW WELL
305	337	BLACK VOLCANIC ROCK			MODIFICATION/REPAIR
337	345	MIXED VOLCANICS		~ ~ ~	Other (Specify)
345		BLACK, BROWN VOLCANICS			
410	**********************	HARD BLACK VOLCANICS		110	DESTROY (Describe Procedures and Materials
482	·····	MIXED VOLCANICS	300'		Under "GEOLOGIC LOG"
494		GREEN VOLCANIC ASH		HWY	PLANNED USES (∠) WATER SUPPLY
500		SANDY GREEN ASH	LS MELL		Domestic Public
538		GRAY VOLCANIC SANDS	MELL-		Imigation Industrial
545		HARD GRAY VOLCANIC ROCK	13	5 Your	MONITORING
690		BROWN VOLCANIC ROCK		// `	CATHODIC PROTECTION
700		HARD DARK GRAY VOLCANIC ROCK		GULCH	HEAT EXCHANGE
713	and the second se	BROWN VOLCANIC ROCK	STABE	Gr.	DIRECT PUSH
717		GREEN VOLCANIC ASH	STADU		INJECTION
730		GRAY, BROWN VOLCANICS			SPARGING
734	740	GRAY VOLCANIC ROCK	Si Illustrate or Describe Distance	OUTH	REMEDIATION
		CONTINUED CASING LAYOUT	Fences, Rivers, etc. and attach necessary. PLEASE BE ACC	a map. Use additional paper if	OTHER (SPECIFY)
		SCREEN PVC 10" SDR-17 .032 SLOT		VEL & YIELD OF COMPL	
695	715	BLANK PVC 10" SDR-17		N/A (Ft.) BELOW SURFACE	
			DEPTH OF STATIC WATER LEVEL 20	(Ft.) & DATE MEASURED	5/31/2016
		740	ESTIMATED YIELD . 500) (GPM) & TEST TYPE	
TOTAL DEPTI		(1001)		IS.) TOTAL DRAWDOWN N/A	
TOTAL DEPTI	H OF C	COMPLETED WELL 715 (Feet)		tive of a well's long-term yield	
	1				

DEP		BORE -					C	ASING (S)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ртн		ANNULAR MATERIAL			
FROM SU	RFACE	HOLE DIA	<u> </u>	YPI	<u>(</u>	<u>с)</u> Гш					FROM SURFACE				T	(PE	
Ft. to	Ft.	(Inches)	BLANK	SCREEN	DI CON-	FILL PIP	MATERIAL / GRADE	INTERNAL DIAMETER (Inches)	GAUGE OR WALL THICKNESS	SLOT SIZE IF ANY (Iriches)	Ft. t	o Ft.	CE- MENT (∡)	BEN- TONIT		FILTER PACK (TYPE/SIZE)	
0	60	18									0	60	1-1	12.1	()	10 SK SAND	
60	740	15									60	110		1	******	TABLETS	
0	255		~				PVC F480	10	SDR-17		110	715			~	#6 SAND	
255 475	475 495		-	~			PVC F480 PVC F480	10 10	SDR-17 SDR-17	.032							
ATTACH AD	Geologic Well Cou Geophysi Soil/Wate Other	Log nstruction D cal Log(s) r Chemical	Ana	em Blysis		STS.	NAME HI (PER: 2110 Pen ADDRESS Signed	JCKFELDI SON, FIRM, O Iny Lane	WELL DRIL	N) (TYPED OR PRI	e to the best o	of my knowle apa CITY (dge and)7/07/'	16		439-746	
DWR 188 REV.	11-97			1	FAL	חמ	IONAL SPACE IS			and the second se	HADEDED		TE SIG	INCU		C-57 LICENSE NUMBER	

/R	188	REV.	11-97	

IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM

		W.		1	*				WEL	L 4					
RIGINAL								OF CALIFO			DWR US	SE ON	Y -	- 00	NOT FILL I
age 1 of 1					÷	WELL	Refer to h	instruction P	waphlet		S-MI	TATE V	MELL NO	1.6	TION NO.
Owner's W			-	_				• e02	5620					1	
Date Work						Ended 7/22/2					LATITUDE		1	u	ONGITUDE
Permit	No. M	gency S /EL05-0	315	ma	a.Co	Environment	al Mgmt Date7/1	/2005		- Ľ		4	PN/TRS/	OTHER	
			GE	OL	OGI	C LOG			110 0	-0	- WELL C	WNF	R —	-	<u> </u>
ORIENTATE	ON (⊻)	~~ ~	ERTIC	AL .		HORIZONTAL	ANGLE	(SPECIPY)	142-0	52-	-02	20) =	A	PN
DEPTH F	ROM	METHO	R	DT/	ARY			TONITE	2.700-110 C 10						
FL 10			Den	Tibe	-	DESCRIPTION terial, grain, si;		IC.						21	
0		BROW				arran Second an			Address 5045	Stone Cul	WELLLO	OCAT	ION	-	104
5	55	TAN C	LAY	1					City Sonoma C	A	CITINOAU				
55	100	VOLCA	ANI	M	IX				County Sonoma		Vor		00	1	
100	320	GREE	N S	ANE	DY C	LAY	1.5.55	1	APN Book 142		952	Parce		1	
320	340	VOLC	ANI	M	IX			1	Township	Rang		Section	-	1	
340	420	RED V	OL	CAN	ICS	1			Latitude	- Kang	c	accu	an	-	
420	490	BLACK	(V(LC	ANI	CS			DEG.		EC.				MIN. SEC
490				-	in the second	LCANICS				CATION					CTIVITY (∠ NEW WELL
605		RED V								4 114 -	PETAL	MA I	ROAD	120.04	NEW WELL FIGATION/REPAI
635	680	BLACK	8	GR	EEN	VOLCANICS			\$LN	14 110	10.11				- Deepen
1	in the				-				1				7		- Other (Spec
				-	_	ING LAYOUT			11-		-		+		DESTROY (Desc
541		and in the second second second	-	بشقيعهم	and shares	.032 SLOT				CRE	EK	/			Procedures and A Under "GEOLOGI
641	661	BLANK	(PV	C 6'				F /						NNED USES
					_				1					WATE	R SUPPLY
				_	_				Stin' WEI	-L			EAST	-*	Domestic Ph Imigation In
4									= 160 ~				a		MONITORIN
			_	_	_				129 -12	0		2			TEST WEL
		(15		1	1	1	CATHO	DIC PROTECTIO
)	-		_	_					L			1	-		HEAT EXCHANG
5		<u></u>		_									- 3		DIRECT PUS
				-		~							- 19	VAP	INJECTION OR EXTRACTION
				2.1									- 10	1.000	SPARGIN
					_	00.000000000000000000000000000000000000			Bannat: or Describe.	BOUTH	I Source Royals	Building			REMEDIATIO
			_		-				Fences, Rivers, etc. and necessary, FLEASE 1	attach a map	Use addition	al poper	8		OTHER (SPECIFY
														eren	WELL
			_						DEPTH TO FIRST		& YIELD				I NELL
1															
			-	-					DEPTH OF STATIC		(FL) & DATE	E MEAS	URED	7/22	/2005
				_	-				ESTIMATED YIELD		GPMI &	TEST T	YPE	AIR L	IFT
OTAL DEP	TH OF I	BORING	680	<u> </u>	-0	rect)			TEST LENGTH_2						
TOTAL DEP	TH OF	COMPLE	TED	WE	LL. <u>6</u>	61 (Feet)			May not be repr	esentative	of a well's l	long-te	rm viel	d.	
			1	_								1		1	
DEPTH FROM SURF		BORE -	T	PE	111		CASING (S)				URFACE	<u> </u>	ANNU	-	MATERIAL
		HOLE DIA.			G H	MATERIAL /	INTERNAL	GAUGE	SLOT SIZE	PROMIS	URPAGE	CE-	BEN-		PE
	FL	(inches)	BLUNK		DUCTOR.	GRADE	DIAMETER	OR WALL THICKNES	IF ANY	R	10 Ft.	MENT		FILL	FILTER PA (TVPE/SIZ)
Ft. to			m	8	3 4		(inches)	monnea	s (necessar		~ ~	(2)	(1)	(∠)	(IT DOL
		12		+	-					0_	51	1			CONCRET
0	680		1	-		PVC F480	6	SDR-2	max	51_	661			1	#6_SAND_
0	71			-	_	PVC F480	6		and a second sec			-		-	
0 0 71	71 101		1	1		PVC F480	6	SDR-2	A discussion of the second sec						
0 0 71 101	71 101 321		1	V.		PVC F480	6		and an other statements of the statement					-	
0 71 101 321	71 101 321 521		1	1	-	DVC E490	0		· · · · · · · · · · · · · · · · · · ·		1				
0 71 101 321 521	71 101 321 521 541		-	1	1	PVC F480	6	UDIT-2	(DE) CONTRACTOR	Table officers' states	- COLUMN A PROPERTY.				
0 71 101 321 521	71 101 321 521 541	MENTS	-	1	1	1			- CERTIFIC				Indiat		
0 71 101 321 521	71 101 321 521 541 Geologic		1	1	1	t, the underst	oned, cently if	this report a	s complete and occurat RILLING, INC.	e to the besi			belief.		
0 71 101 321 521	71 101 321 521 541 Geologic Wall Con Geophysic	Log struction Di 8 Log(5)	∠) agrar	-		I, the unders	UCKFELD	this report a	s complete and occurat	e to the besi INTED)	of my knowles			CA.	04560
0 71 101 321 521 	71 101 321 521 541 Geologic Wall Con- Geophysic Sol/Water	Log struction D	∠) agrar	-	1	I, the unders	oned, cently if	this report a	s complete and occurat RILLING, INC.	e to the besi INTED)				CA	
0 71 101 321 521 	71 101 321 521 541 Geologic Woll Con- Geophysic Soi/Worler Other	Log struction D & Log(5) Chemical	l ≤ 1 Anal	n yaia	4578	t, the unders NAME H (PER 2010 Per ADDRESS Signed	UCKFELD SON, FIRM, C ngy_Lane_	WELL OF	s complete and occurat RILLING, INC.	e to the besi INTED)	of my knowles lapa CITY		15	STATE	

WELL 5

State of California Well Completion Report Form DWR 188 Auto-Completed 7/23/2018 WCR2018-003998

Owner's	Well Numb	er 10109		Date Work	Began	04/26/2018	Date Work Ended 05/17/2018
Local Per	mit Agency	Sonoma County Pe	rmit & Resource	Management [Departr	ment	
Seconda	ry Permit A	gency		Permit I	Numbe	wEL17-0246	Permit Date 02/22/2018
Well (Owner (must remain con	fidential p	ursuant to	Wate	er Code 1375	2) Planned Use and Activity
Name	XXXXXXX	xxxxxxxxxxxxx					Activity New Well
Mailing A	Address	*****	XXXX				Planned Use Water Supply Irrigation -
		*****	(XXXX				Agriculture
City X	XXXXXXXX	****		State	XX	Zip XXXXX	_
				Wel	l Loc	ation	
Address	4653 S	TAGE GULCH RD					APN 142-052-022
City S	SONOMA		Zip 95476	County	Sono	oma	Township
Latitude	38	14 45.83	N Longitu		29	56.66 W	Range
	Deg.	Min. Sec.	-	Deg.	Min.	Sec.	Section
Dec. Lat	•		Dec. Lo	-			Baseline Meridian
Vertical I	Datum		Horizontal	°	34		Ground Surface Elevation
Location	Accuracy	L	 .ocation Determ	ination Method			Elevation Determination Method
		Borehole Info	rmation			Water	_evel and Yield of Completed Well
Orientati	on Vertio	cal	5	Specify		Depth to first wate	er (Feet below surface)
Drilling N	lethod D	irect Rotary D	Drilling Fluid Be	entonite	-	Depth to Static Water Level	50 (Feet) Date Measured 05/17/2018
					=	Estimated Yield*	500 (GPM) Test Type Air Lift
	pth of Borir		Fe	eet		Test Length	2 (Hours) Total Drawdown (feet)
Total De	pth of Com	pleted Well 700	Fe	eet		*Mov not he rent	<u> </u>
						way not be repro	sentative of a well's long term yield.
Depth				Geologic	l og -	· · ·	sentative of a well's long term yield.
	from			Geologic	Log ·	- Free Form	sentative of a well's long term yield.
Sur				Geologic	Log ·	· · ·	sentative of a well's long term yield.
Sur Feet t	face o Feet			Geologic	Log ·	- Free Form	sentative of a well's long term yield.
Sur Feet to 0	face o Feet 1	TOP SOIL		Geologic	Log ·	- Free Form	sentative of a well's long term yield.
Sur Feet to 0	face o Feet 1 2	BROWN CLAY		Geologic	Log ·	- Free Form	sentative of a well's long term yield.
Sur Feet to 0 1 2	face o Feet 1 2 50	BROWN CLAY HARD BROWN VOLCA	NIC ROCK	Geologic	Log ·	- Free Form	sentative of a well's long term yield.
Suri Feet to 0 1 2 50	face o Feet 1 2 50 375	BROWN CLAY HARD BROWN VOLCA BASALT			Log	- Free Form	sentative of a well's long term yield.
Sur Feet to 0 1 2 50 375	face o Feet 1 2 50 375 385	BROWN CLAY HARD BROWN VOLCA BASALT BASALT WITH RED VC	DLCANIC ROCH	{		- Free Form Description	sentative of a well's long term yield.
Surf Feet to 0 1 2 50 375 385	face o Feet 1 2 50 375 385 450	BROWN CLAY HARD BROWN VOLCA BASALT BASALT WITH RED VC BLUE/BROWN VOLCA	DLCANIC ROCH	{		- Free Form Description	sentative of a well's long term yield.
Sur Feet to 0 1 2 50 375	face o Feet 1 2 50 375 385	BROWN CLAY HARD BROWN VOLCA BASALT BASALT WITH RED VC	DLCANIC ROCK NIC ROCK WIT BLUE ASH	{		- Free Form Description	sentative of a well's long term yield.
Surf Feet to 0 1 2 50 375 385 450	face o Feet 1 2 50 375 385 450 580	BROWN CLAY HARD BROWN VOLCA BASALT BASALT WITH RED VC BLUE/BROWN VOLCA BASALT WITH SOME E	DLCANIC ROCK NIC ROCK WIT BLUE ASH	{		- Free Form Description	sentative of a well's long term yield.
Surf Feet to 0 1 2 50 375 385 450 580	face o Feet 1 2 50 375 385 450 580 618	BROWN CLAY HARD BROWN VOLCA BASALT BASALT WITH RED VC BLUE/BROWN VOLCA BASALT WITH SOME E BASALT WITH MORE E	DLCANIC ROCH NIC ROCK WIT BLUE ASH BLUE CLAY	< Y WITH SOME		- Free Form Description	sentative of a well's long term yield.

							<u> </u>			WELL 5	5	
	1		1			-	Casing	S		•	T	1
Casing #	Depth from Feet to		Casir	ng Type	Material	Casings	Specificatons	Wall Thicknes (inches		Screen Type	Slot Size if any (inches)	Description
1	0	160	Blank		PVC		25 in. SDR: kness: 0.508	0.508	8.625			
1	160	360	Scree	en	PVC	OD: 8.62 17 Thick	25 in. SDR: kness: 0.508	0.508	8 8.625	Milled Slots	32	.032
1	360	380	Blank		PVC	OD: 8.62	25 in. SDR: kness: 0.508	0.508	8 8.625			
1	380	480	Scree	en	PVC	OD: 8.62	25 in. SDR: kness: 0.508	0.508	8.625	Milled Slots	32	.032
1	480	520	Blank	(PVC		25 in. SDR: kness: 0.508	0.508	8.625			
1	520	580	Scree	en	PVC	OD: 8.62	25 in. SDR: kness: 0.508	0.508	8.625	Milled Slots	32	.032
1	580	620	Blank		PVC	OD: 8.62	25 in. SDR: kness: 0.508	0.508	8.625			
1	620	700	Scree	en	PVC		25 in. SDR: kness: 0.508	0.508	8.625	Milled Slots	32	.032
			•			Ar	nnular Ma	terial				•
Śur	n from face to Feet	Fill			Fill	Type Detail	s		Filter Pack	Size		Description
0	25	Bento	nite	High Sc	olids							
25	700	Other	Fill	See des	scription.						#6 SAND	, 18 YDS.
RECO	MMENDE	D PUMP			FOR 400 GPM SEHER							
	E	Boreho	le Sp	ecific	ations				Certific	cation S	Stateme	nt
Śu	h from rface to Feet				ameter (inches))	Name		F	SCH BRO	curate to the bes	st of my knowledge and belief IG
0	700	15							irm or Corpora			
							5001	GRAVEN Add	STEIN HWY N ress		EBASTOP(City	OL CA 95472 State Zip
									c <i>signature re</i> sed Water Well C		05/18/20 Date Sign	
		A	ttach	ments	5				DV	VR Use	Only	
				Location	Man		CSG #	State V	/ell Number	S	ite Code	Local Well Numb
STAGE	GULCH F	ROAD 468	53.jpg -	LUCATION	ТМар							
STAGE	E GULCH F	ROAD 465	53.jpg -	Location	Тмар				<u> </u>			
STAGE	E GULCH F	ROAD 465	53.jpg -	Location	ТМар					N		
STAGE	E GULCH F	ROAD 465	53.jpg -	Location	ТМар			tude De	eg/Min/Sec	N	Longit	ude Deg/Min/Sec
STAGE	E GULCH F	ROAD 465	53.jpg -	Localio	ТМар		Lati	tude De	eg/Min/Sec	N	Longit	

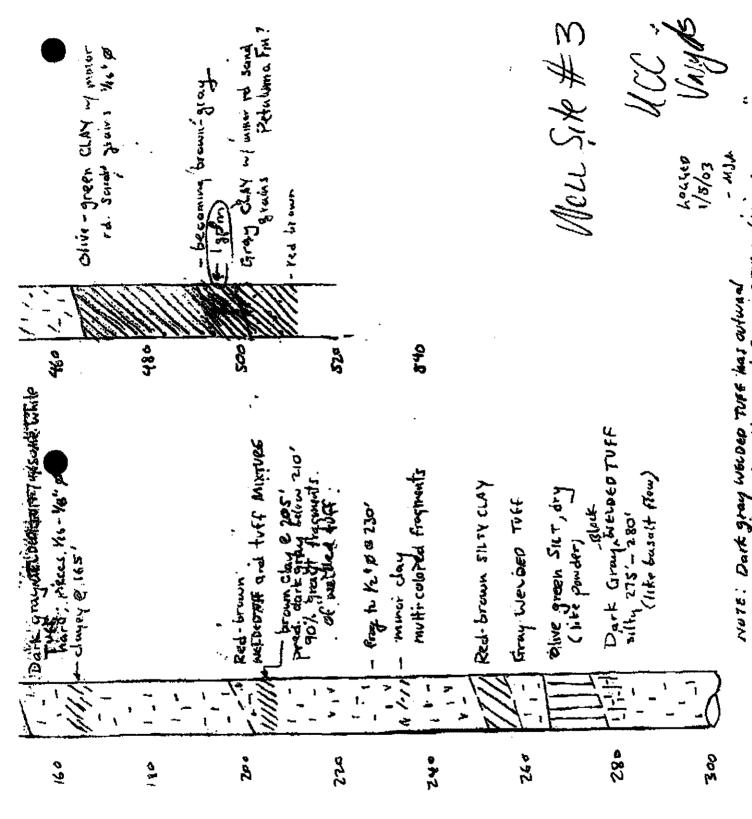
WELL 7 ÓRIGINAL DWR USE ONLY STATE OF CALIFORNIA DO NOT FILL IN File with DWR OISN OBWAR WELL COMPLETION REPORT STATE WELL NO /STATION NO. **Refer to Instruction Pamphlet** Page ____ of ____ № 802189 **Owner's Well No.** LATITUDE LONGITUDE Date Work Began 21/03 , Ended 3/10/03 Sonoma Enviro Healt ocal Permit Agency Permit No. Weld 2 - 0682 APN/TRS/OTHER Permit Date_ 12-24-02 GEOLOGIC LOG wainan w ORIENTATION (≤) VERTICAL HOBIZONTAL ANGLE (SPECIFY) METHOD AIR Rotany . FLUID . DEPTH EROM DESCRIPTION SURFACE Describe material, grain size, color, etc. Ð Fł L LOCATION too soil ٥ 10 Address 4200 Black Basalt City Detaluma 10 18 vellow Ben Silt County Sanoma 18 40 - 9D Gray Silt APN Book 142 Page 057 40 DI Parcel tufe up Basalt chips 90 135 Grau Township _ Range . Section Latitude____ 135 140 SiH NORTH Longitude. WEST T MIN SEC. DEG MIN SEC. 40 200 Gray Black Tuff · LOCATION SKETCH ACTIVITY (2) BROWN & Gray clay NORTH Clay Red & BROWN. 70 <u>5.1</u> MODIFICATION/REPAIR Green dry Silt 270 280 i _ Deepen ___ Other (Specify) 280 370 Tuff w/ Ba 370 380 Green Clay Tuff wi Basalt Lavers New Well Site DESTROY (Describe Procedures and Materials Under "GEOLOGIC LOG") 380 400 Basalt 400 420 Gray clay to Tuff PLANNED USES (∠) S. It stone WATER SUPPLY 420 430 -green 1734 . Domestic .__ . . Public 430 462 Gray Silty Clan Irrigation ____ Industrial 5 ESE V 462 490 Gree ESS: n Cléu MONITORING 490 520 Gray clay 4 <u>Strngrs</u> TEST WELL 520 600 Red BR <u>cla</u>u CATHODIC PROTECTION Petuluma them HEAT EXCHANGE - Clay BAL 660 - Red -B DIRECT PUSH LOADDEE R.d. Ô INJECTION VAPOR EXTRACTION HIST Jate SPARGING SOUTH Illustrate or Describe Distance of Well from Roads, Buildings, Fences, Rivers, etc. and attach a map. Use additional paper if necessary. PLEASE BE ACCURATE & COMPLETE. REMEDIATION OTHER (SPECIEY) WATER LEVEL & YIELD OF COMPLETED WELL DEPTH TO FIRST WATER 280. (Ft.) BELOW SURFACE DEPTH OF STATIC (FL) & DATE MEASURED 18 __ (GPM) & TEST TYPE _____ e ESTIMATED YIELD * ... TOTAL DEPTH OF BORING 660 (Feet TEST LENGTH 24 (Hrs.) TOTAL DRAWDOWN 456 (FL) TOTAL DEPTH OF COMPLETED WELL 550 (Feet) * May not be representative of a well's long-term yield. CASING (S) ANNULAR MATERIAL DEPTH FROM SURFACE DEPTH FROM SURFACE BORE-TYPE (스) HOLE TYPE DIA. SCREEN DUCTOR FILL PUPE INTERNAL GAUGE OR WALL THICKNESS SLOT SIZE MATERIAL / CE-BEN-BLANK FILTER PACK DIAMETER IF ANY (Inches) MENT TONITE (inches) GRADE FILL Ð. FÉ (TYPE/SIZE) to Ft. to Ēt (inches) (上) (上) (스) +2 V v : ରାଠ 15 Я ふひ Ð :50 aio - <u>370</u> 040 550 50 PST v 370 390 <u>8x7(</u> 390 520 040 570 540 ATTACHMENTS (∠) CERTIFICATION STATEMENT I, the undersigned, certify that this report is complete and accurate to the best of my knowledge and belief. Geologic Log oloration Wells Well Construction Diagram NAME Geophysical Log(s) . Soll/Water Chemical Analyses . Other Signed ATTACH ADDITIONAL INFORMATION, IF IT EXISTS.

DWR 188 REV. 11-97

IF ADDITIONAL SPACE IS NEEDED. USE NEXT CONSECUTIVELY NUMBERED FORM

10:26

, tor numerous metulans


war base A exce

appearance, at baser an

WELL 7

FROM

MAGE:01 2001-70-5

ਟ 'ਰ

0%/13/2003 10:26 8185061343 RC SLADE & ASSOC LLC PAGE 80289 02 WELL 7 harder raft year Gray-brown Sliry Tuff P SULFSTONG 510 ; precess to - be cominy clayer ? 30-40 30 352 Gray-brown CLAY Ø - abundant BASAN7 Iray CLAY ASALT ; ! Tary water a w/ pucces to M. pieces to Yerd - becames clayey - pueces dise p - humina i H - INIMOL SI T Dark Gray لاق محادده - H1971 Slack E 5)) -1 1 400 52 م 2 346 360 365 320 S aminter 040 that the we sould what Dark gray Wilder MUFF Gray WELDED TURT hard J. Chips Rea. 180 \$ occ. basait たいる。 Vellow brown TUFF 4e, 9/ -abundant silt -Block Leliev brown Sicty TUFF slack Balaut gray e 70' When a stranges Peter Topsoil - // ** SILT > ء کر اب E òFi <u>8</u> 2 **Å** ĝ, ຊ 3 Ð

8-01-1995 10:31AM FROM

€`d

ORIGIN/ File with							WEL	L COMP	of Calif	ON	REPO	ORT		E,F BWRUS 241N1	06	W	0./STAT	E
Page								Refer to In: • No			_						1	
Owner's V		9.8.0	6				 Ended <u>8–</u>		• 44	4(000						LO	NGITUDE
Local F	Permit Ag	enev S	Son	om	a (Coi	unty						. [[Lι		
) Pern	nit No	WEL96-	02	34			Perm	it Date <u>7</u>	<u>-2-96</u>	0	_		. –				S/OTHE	3
		(GEC	DLC)GI	C	LOG				1.00		~	WELL C	WNE	R —		
ORIENTAT	ΊΟΝ (∠)						ZONTAL			N								-
	FROM	DEPTH	то	FIR			ER(F)		FACE	_N ⊂								_
	FACE			Desc			SCRIPTIO erial, grain size,			<u>c</u> l	~ <u>.</u>	N. 1	W	ELLLO	CATI	U N		
	20	Volca							1.27	Add		<u>1590</u>	Stage	<u>= Gulc</u>	h Roa	ad		
		I . I .				_			<u>, , , , , , , , , , , , , , , , , , , </u>	City	/ ×	<u> </u>	lumá	14.23 - 242	<u>.</u>			
20	26	<u> Ash -</u>	f	au.	lt	13	ine cavi	ng 🧹		Cou		Sono		050		12		
		Valaa			1-2-2	1	<u>Ny Ny</u>		North Contraction of the second se	API	N Book _	<u>וע שירי</u>	_ Page _	050 1000		- 7	4-A	*.#¥
26	250	Volca	<u></u>	<u>c</u> .	114	<u>sui</u>		i de la	al office of the second se	Tow	vnship	1.21	_ Kange		Section Longit	n		
250	460	Hard	ba	รล	<u>.</u> 1t	r	ock - bla	ack	62	Lat.	itude				-		DEG.	MIN. SE CTIVITI
<u> </u>	1					<u></u> \	<u> </u>			, 		LUCA		KETCH			- <u>-</u>	EW WELL
460	520	Black	a	sh	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				1					Tur	μP			ICATION/RE
	I I	2011-1-1-1 2010-1-1-1 2010-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	· /		5. 5. 75	9 J				l				Day			ļ	Deepei
	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 <u>1 1</u>			<u>.</u>		<u>() ()</u>	· · · · ·		ł								Other (
·		1 <u> </u>	<u>) </u> 	5	<u></u>	<u></u>	er en				<u>_</u> S/	ag _o	\mathbf{C}	<u>lch</u>	0			ESTROY (De
		1		1.5	· / / ·		<u></u>			1				Ich_	Ka	1	I F	Procedures a Inder "GEOL
			<u> </u>	da i		(r				 -		لے	6	C	165	≁ ∕	PLA	NNED
	· ····									VEST		ģ	Ň		5	E	<u> </u>	(<u>스</u>) MONITOF
	1	1]		3	1				WATE	R SUPPLY
	1	!										475						<u>X</u> Dor
	1 1	1 						<u></u>				Ĺ	s]					Put
)	1 1	 							·			ŕ	1		1			Irrig
 		i						•••••		1		Ā		لىش ھ	,			Ind
		; ;					<u> </u>			ł					Da	<u>m</u>		"TEST W CATHOD!
	<u>t.</u> !	!										Josovih		of Well fro	m Land	marks		
	1	1								l Stu	ch as Road	s, Build	ings, Fenc	es, Rivers, e COMPLEI	tc.			
	t	,																
·	<u> </u>	1 									THOD .	<u>Mud</u>	EXEL	VIEID		FLUID	wate u E T E	<u>er</u> d wel:
	<u>.</u>	<u> </u>						1.00		DEP	TH OF ST	ATIC						
	<u></u>		1.0 m			4	s not a	tost			TER LEVE			_(Ft.)& [_(GPM)&				<u> </u>
	DEPTH OF							LEGL.		1	TMATED Y		3 (Hro.)	TOTAL DR		N	tota	÷)
TOTAL	DEPTH OF DEPTH OF	BORING _	<u> </u>	<u>ve</u>	, I T	(re 5	<u>20 </u>	-)		* M	fav not he	represe	mtative of	a well's lo	ng-term	vield.	*Dev	elopme
TOTAL			1	•••••••	- LA -	_	(1000	· · · · · · · · · · · · · · · · · · ·		1	,,							
	EPTH	BORE-				<u>,</u> ,	1.1.18 (p):	CASING(S))		1	<u> </u>	DE FROM	EPTH SURFACE		a in N I		MATER
FROM	SURFACE	HOLE DIA.		YPE Tz			MATERIAL/	INTERNAL	GAUC		SLOT S				CE-		1	FILTER
Ft.	to Ft.	(inches)	BLANK	CREE	CON- DUCTOR	L PF	GRADE	DIAMETER (Inches)	OR W		IF AN (Inche:		Ft.	to Ft.		TONITI (二)	E FILL (<u></u> 」)	
				1°	-	_	DUC		200				0	23	<u>x</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	<u>+ - /</u>	Seal
0	200	9	X	\vdash	$\left \right $		PVC	<u></u>					<u>v</u>	<u>- 23</u>		<u>† </u>		- Dear
200	520	9m	+	x	\vdash	-	PVC	5	200)	.03	2	23	520			X	Birds
200	1020	/111	+	f		_		1						((gra
	1										_			: 	_			ļ
	l 1													1			<u> </u>	
	- ATTAC	HMENTS	S (.	۷) (ATEME		ot <u>of</u>		viedoe on
1	Geologi	ic Log					11	dersigned, ce					ite and a	courate to	the De	อเบเท	IY KIIOV	neuge all
ì	Well Co	Instruction Di	agra	m			NAME T	A & K D1 Erson, firm, or	CORPORATION	LE, (TYP	LIIC ED OR PRIN	TED)						
7	Gaaph	sical Log(s)						P.O. Boz				etal	uma	CA 9	4975			
1	Geophy										T .			/				
	Soil/W	ater Chemica	l Ana	alyse	8		ADDRESS	~		1		~		CITY			STATE	ZI
							-	Dul	ie -	L	line	U	w		4-1 Date sign		STATE	ZI 72053 C-57 LICENS

AL	STATE OF CALIF	ORNIA WELL 11 DWR USE ONLY - DO NOT FILL IN
File with DWR Page of	WELL COMPLETI Refer to Instruction	UN REPORT CIPM - COPPANIE
Own r's Well No.	No. 70	
Det West Denne L	$\frac{12}{17}$	e Mgt. Dept.
Local Permit Agency Permit No. <u>WEI</u>	Sonoma Co. Permit & Resource 198-0542	98 APN/TRS/OTHER
Permit No.	_98-0542 Permit Date11/25/	WELL OWNER
	K VERTICAL HORIZONTAL ANGLE (SPECIFY)	
	RILLING ETHOD <u>MUD ROTARY</u> FWID Bentonite	
SURFACE Ft. to Ft.	DESCRIPTION Describe material, grain size, color, etc.	
0 4 A	Adobe	Address 20698 Arnold Drive
	Brown clay and multi-colored	City Sonoma
	rock Hard gray rock & brown clay	County SONOMA APN Book 142 Page 031 Parcel 15
	Multi-colored rock and brown	
	clay	Latitude <u>1 MEST</u> Longitude <u>1 WEST</u> DEG. MIN. SEC. DEG. MIN. SEC.
	<u>Blue clay & multi-colored</u>	LOCATION SKETCH
	Blue clays & sand & gravels	
	Clays	Deepen Other (Specify)
		DESTROY (Describe Procedures and Materials
		Under "GEOLOGIC LOG") PLANNED USES (\leq)
		WATER SUPPLY
		Trigation Industrial
	· · · · · · · · · · · · · · · · · · ·	
1 1		
	· · · · · ·	HEAT EXCHANGE
i i r	NOTE: Lower test hole was	VAPOR EXTRACTION
	grouted with NEAT CEMENT	SOUTH
i i	from 470' to 510'	Illustrate or Describe Distance of Well from Roads, Buildings, Fences, Rivers, etc. and attach a map. Use additional paper if necessary. PLEASE BE ACCURATE & COMPLETE.
	·····	WATER LEVEL & YIELD OF COMPLETED WELL
i *']	TEST PUMPED BY GROUND WATER	DEPTH TO FIRST WATER (FL) BELOW SURFACE
1 1	DEVELOPMENT IN SONOMA	WATER LEVEL
TOTAL DEPTH OF BOR	aing <u>712 (Feet</u>)	ESTIMATED VIELD · <u>375</u> (GPM) & TEST TYPE <u>PUMP</u> <u>TEST</u> TEST LENGTH <u>2</u> (Hrs.) TOTAL DRAWDOWN <u>239</u> (FL)
TOTAL DEPTH OF COM		* May not be representative of a well's long-term yield.
	CASING (8)	
DEPTH FROM SURFACE	ORE- IQLE TYPE (∠)	FROM SURFACE TYPE
ם נות	DIA. 공 또 씨 MATERIAL / INTERNAL GAUC	ALL IF ANY MENT TONITE FILL FILTER PACK
Fi. to Fi		$(\underline{\nabla})(\underline{\nabla})(\underline{\nabla})$
	7/8	0 50 X 50 X 50 Δ δx16 M.
ii	18 X STEEL 8 1/8 .250	
	18 X STEEL 8 1/8: .25	
	18 X STEEL 8 1/8".25	
ATTACHM	18 X STEEL 8 1/8 ⁴ .250	CERTIFICATION STATEMENT
SEE NEXT	PAGE* I, the undersigned, certify that	fnis report is complete and accurate to the best of my knowledge and belief.
	iction Diagram WEEKS DRILL	LING AND PUMP COMPANY by WARD THOMPSON
Geophysical	$Log(\theta)$ P.O. Box 1	
Soll/Water Ch	hemical Analyses	CITY STATE ZIP
ATTACH ADDITIONAL INFO	Signed	SEMATIVE DATE SIGNED 177681 C-57 LICENSE NUMBER
	IF ADDITIONAL SPACE IS NEEDED, USE NE	· · · · · · · · · · · · · · · · · · ·

AP# 142-031-15 .

WELL COMPLETION REPORT # \$200420

Page 2 of 2

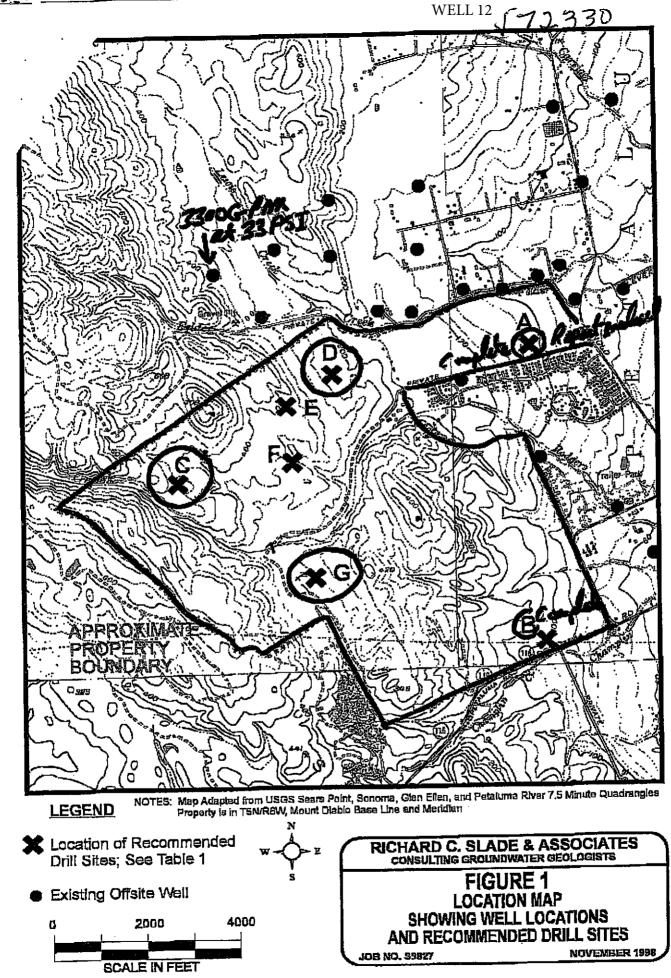
÷

700420

	DEPTH						C4	CASING(S)		
FROM	SURFACE	HOLE	F	YPE	L					
. . .	to Ft.	DIA. (Inches)	BLANK	SCREEN	CON- DUCTOR	FILL PIPE	MATERIAL/ GRADE	DIAMETER (Inches)	GAUGE OR WALL HICKNESS	SLOT SIZE IF ANY (Inches)
430	450	, 18'"	х				STEEL	"8/L 8	.250	
65	1 210			×.			STEEL.	"8/1 8	-250	.055 Full Flo Lower
250	1 285			×		10	STEEL	"8/T 8	•250	.055 Full Flo Louver
320	1 340			×.		10	STEEL .	"8 1/8	.250	-6
380	1 430			×		10	STEEL		.250	-055 Full Flo Louver
				 	 	┣				

. •

,


:

WELL 11

ିଲାପ୍ରାNA File with									OF CALL								<u>OT FILLI</u>	N
Page 1							WELL	Refer to It	FLEI	UON n Pat	N REPOR			STATE	WELL N	OF C	TION NO.	
Owner's V		Well	#G	Ļ				•			330			- ,				
Date Wor	k Berron						Ended 5/2	20/99	- 5	12	330		LATITUDE			<u>י ו</u> ע	ÓNGITLIDE	
	k Degan.	ency S	$\frac{2}{\text{or}}$, OM	8	Co							1		1.			, 1
Dorm	ermit Ag	WEL 99	-0	112	2			Date	/20/9	g		- [L L	11	APN/TR	S/011	33 131	
	III 110					IC			<i>i ⇔ v i z</i>			. •	WELL O	WNE	R			
OPIENTAT							120NTAL AP					,			-			
ORIENTATI							EE											
DEPTH			10		144		SCRIPTION	DELIUM JU	RFACE.									
Ft. to				Des	crib		terial, grain size, ci	olor, etc.			- X X	1. 9 % 10	VELL LO	<u> ሰ</u> ለ ጥ ነ	ON			
	20	Med. I					y sand		<u>}</u>	Å	Idress 1700) Watma	ugh Re	ed	VA			
20	40	Fine g	ζr	e.v	el	&	sand 🔄		si h		ty Sonome		NO 2					
40	60	Gray s	38.	nđ	&	s1	lty clay			\mathbf{C}	unty Sonor	1e 🔆 🔅						
60	80	Pumice	•	gr	e.v	el		الم المحدثان			'N Book	Page	·	Parcel	14	2031	-37	,
80	160	Gray,	w.	hi	tė	&	brn. sand	lstone.		1	wnship	-	,					
		with c	sh	ĺр	5	of .	baselt		heren xer] r.,	tinde i		NORTH		- الدوما	1	t	WEST
160	260	Gray 8	<u>،</u> ک	<u>wh</u>	1t	e গ	olcanic	1 Strategy	(0		ja deg.	MINL SEC	SKETCH	-			MIN. SEC.	
	۲	congl	m	er	ať	è Ì	A. And	1	e_{i}		FOC						CTIVITY (NEW WELL	(<u>*</u> .)—
200	220	Brn. (Ŀ	øy	ey	່ງອະ	undy pebbl	Leven	~							· · · ·	FICATION/REPA	1B
		congle					1 - ((-11/22]							Deepen	
220							onglomera			ļ	See Attac	hed Ma	ap.					eciiv)
240							dy pebble			1			÷			 		
							basalt pe	bbles		1							DESTROY (Desc	ribe
320	<u> </u>	Brn. s	12,	nđ	ý.	ċΪε	vstone										Procedures and I Under "GEOLOG	Materials ICLOG"
340	400	Brn . n	<u>du</u>	ds	to	ne	w/fine gr	ain sa	nđ	L.					5	-PL/	NNED US	SE(S)
400	420	Brn e	18	nđ	<u>y</u>	<u>als</u>	vey inter	<u>rbedded</u>	•	WEST					Ę		(⊥) MONITORIN	G
		w/sand														WATE	R SUPPLY	
420	460	Brn. c	1	e.y	st	one	w/medium	1.									Domes	stic
1		grain	5	an	đ													
460	480	Brn. 8		<u>gr</u>	ay.	SE	<u>undy elay</u>										X Irrigati	on
480	T						dy clay	,									industr	
500		Green															_, "TEST WELI	L**
520							fragments	3					_			L _	_ CATHODIC F	ROTEC-
540		Mudsto								14	lustrate or Describ	SOUTH be Distance	of Wall from	Landr	narks	1 _	TION OTHER (Spe	city)
580			_				soft clay	<u>r · · · · · · · · · · · · · · · · · · ·</u>		St. P	ich as Roads, Build LEASE BE ACC	dings, Fence URATE &	s, Rivers, etc COMPLET	Ì		—		
660		Soft 1																
680 ¦		t i i i i i i i i i i i i i i i i i i i					nale fragm	lent			THOD	Rotary			Fluid		tonite	
ii		🗞 Mini	L_	<u>si</u>	lt	sta	one				WATER I		YIELD	OF C	OMPI			
		1 1								WA	PTH OF STATIC	28	_ (Ft.) & DA	TE ME	ASURE	D	<u>6/15/99</u>	۱
		I									TIMATED YIELD	40	. (GPM) &					,
TOTAL D	EPTH OF	BORING	ľ	00		(Fę	#t)			TE	ат Length <u>8</u>	(Hrs.) 1	TOTAL DRAY	WDOW	N1	<u>(0</u>	F1.)	
TOTAL D	EPTH OF	COMPLETE	D	WE	LL		30 (Feet)			* /	May not be repres	entative of	a well's lon	g-term	yield.			
							C	ASING(S)	•		i			<u> </u>	NNT	TAR	MATERIA	T.
DEF FROM S		BORE- HOLE	т	YPE	11	1			, 		r		PTH SURFACE				/PE	
		DIA.					MATERIAL/	INTERNAL DIAMETER	GAUG OR·W/	E	SLOT SIZE			CE-	BEN-			
Ft. te	o Ft.	(inches)	BLANK	SCREEN	85	불	GRADE	(inches)	THICKN		(Inches)	Ft.	to Ft.				FILTER P	IZE)
0	80	14	X	F,		╞═┤	MS	8	.25	<u>.</u>	<u>⊹</u> ┦	0	50	X	(⊻) X	(-)		
80		<u> </u>	<u>A</u>	x		\vdash	MS MS	8		. <u> </u>	,050		470	**	**	x	Med. Aq	1179.7*
260			X			┝─┼	MB				+		: 500	X	X			¹
290	14 1		43.	x		\vdash	 MB	8	.25	:0	.050	500	685			X	Pea Gra	vel
400			X	<u>⊢</u>		\vdash	 MS	8	·····		+•• <i>•</i> •							
	004		<u>.</u>	+		┝╾┼		+ ~ -			+	· · · · ·	:					
	ATTACI	IMENTS	0	ـــــــــــــــــــــــــــــــــــــ				<u> </u>	L	_	CERTIFICAT	TION ST	ATEMEN	т —	L	· · · ·	L	
				-1			I, the unde	orsigned, ce	rtify that		report is comple				t of my	r know	ledge and b	ellef.
	Geologic	-		_			11		•		• •				-		-	
7 ⁴	_ ,	struction Diag	4181	10			NAME	ON, FIRM, OR (SORPORATION) (111	opment Co: PED OR PRINTED)			·				,·
-	• •	itaal Log(s) ter Chemical .	6	1.herer	0		1 1	202 E.	Kentu	ick	y Avenue		Woodla	ıd		CA	95776	5
1 7	C Other 1	a chemical. Map	~u8	1988	4		ADDRESS			1	11	·	GITY			STATE	ZIP	
				<i>n</i>			- Signed	5/4	M P	12			· · · · · · · · ·	7/6/	99		283326	
DWR 188 BEV							. WELL	DRILLER AUTH				AU 43 45		TE SIGN	ED		C-57 LICENSE N	UMBER

.

D, USE NEXT CONSECUTIVELY NUMBEREI

THE RESOURCES AGENCY DEPARTMENT OF WATER RESOURCES No. 235259 & Notice of Intent No			DR	Y HOLES		
Idea with DWR DEPARTMENT OF WATER RESOURCES No. 235259 % State Walk With DWR LL DRILLERS REPORT State Walk No. 235259 % State Walk M. C. State M. C. State Walk M. C	ORIGINAL					Do not fill in
WATER WELL DRILLERS REPORT Now Date BLAND REPORT Now Date Colspan="2">Colspan="2" Colspan="2" Colspan="2" Section 330 Colspan="2" Dimeer from dilat, fact, main out, fact, m	File with DWR				No	235259 \$
No. or Date #183=84 A. P. #068=050-12 Outer Wall X: Control to Call with X: Control to Call					NO.	2002002
(1) (12) (12) WELL LOG: Test dept. f. Depth of completed vell Add (12) WELL LOG: Test dept. f. Depth of completed vell Crue 0 - 48 Direct Director by work, chances, rise or metorial) Cruet 0 - 48 Director Clary/grave1 Well addes if direct from dom 2300 - 100 eclary/rock ledges Tornahip Reage	Notice of Intent No			TOUL		10/102/1
Add City City City City City City City City	AG. or Date # 10.3-04	A.F. #000-000 I			Other Well No.	N06W34
Add City City City City City City City City	(1)		(12) WELL	LOG: Total	depth ft Depth of	completed well ft
0 -48 Drown Clay/gravel1 Contry Sonoma Down's Well Number 0 -48 Diue clay				t. Formation (D	escribe by color, characte	
(2) DUCATION OF WELL (See instructions): 0.0med with Number (2) DUCATION OF WELL (See instructions): 0.0med with Number (2) OUR (INC OF Comparison (Income to the comparison (City					<u>A</u>
Counts SOIDORMA	(2) LOCATION OF WELL (See instru-	ctions):				
Well address I discret from show Bance 330 390	County SONOMA Owner's					_
100% minip Same 390 470 Cify/rock ledges with Disace from cities, read, mileads, faces, etc. - - Fine gravel. - Dry Hole - - Dry Hole - - Dry Hole - - Dry Hole - - - - - - - - - Dry Hole - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -					· · · -	
The graver. The graver. Dry Hole Dry Hole gadobe clay gadobe clay	· · ·			^		
(3) TIPE OF WORK: Nelli #2 T New WeikK Despense	Distance from cides, roads, failroads, fences, etc			11	fine grav	rel
(3) TIPE OF WORK: Nelli #2 T New WeikK Despense		· · · · · · · · · · · · · · · · · · ·			Dry Hole	
New Well #3 Despensing [] 0 14 addobe clay Reconstruction 14 - 0 21ay/soft rock ledges Reconstruction 14 - 0 21ay/soft rock ledges Horizontal Well 0 - 10 21ay/soft rock ledges Derivation instants 0 - 10 21ay/soft rock ledges Derivation instants 0 - 10 21ay/soft rock Derivation instants 0 - 10 21ay/soft rock Derivation instants 0 - 10 21ay/soft rock Denexits 0 - 10 21ay/soft rock Denexits 0 - 10 21ay/soft rock Not Start 0 - 21ay/soft rock 10 Well 0 - 20ay 10 10 Well 0 - - 10 10 10 Well - - - 10 10 10 Well - - - - - -						
Reconstruction I			<i>K</i>	Wel:		<u> </u>
Recoditioning - <				4		
Horizonal Well - Net20 #3 C Dottaction materials of procedures in term in the process in term in term in the process in term in the process in term in ter					· · · · · · · · · · · · · · · · · · ·	LOCK LEUGES
definition network 13 -76 brown brown brown brown brown fill 13 -76 brown br			- 167	₩ec		C
Proceedures in ker it 13 - B Drown EZAY/DEOKEN FOCK (4) PROPOSED De 70 Daule lay/soft rock Domestic Irigation Development Irigation Development Development (5) EQUIPMENT: (6) GRAYB PACK: - (7) CASING INSTALLED: (6) GRAYB PACK: - (7) CASING INSTALLED: (6) GRAYB PACK: - (7) CASING INSTALLED: (7) CASING INSTALLED: (8) GRAYB PACK: (9) WELL SEAL: No	· · ·	Destruction 🗆 (Describe	0 - 1	3	clay (loose	boulders
Domestic Irrightion Irrightion	•	procedures in Item 12	13 - 7	R .	brown clay	/broken rock
Irrigation Irrigation Industrial Industrial Tow Well Score WELL LOCATION SKETCH Other (5) EQUIPMENT: (6) GRAVE PLACK: Cable Air Cable Air Air No Size			70 - 2	<u>40</u>		soft rock
Industrial Industrial Ter Well Stock WELL LOCATION SKETCH Other (5) EQUIPMENT: (6) GRAVE FACK: Rotary Reverse (7) CASING INSTALLED: (6) GRAVE FACK: (7) CASING INSTALLED: (6) FERFORATION: Steel Plastic Point To From To Form To Mate cased From (8) WELL SEAL: No Was surface sanitary seal provided? Yet No (9) WELL SEAL: No Was surface sanitary seal provided? Yet No (10) WATER LEVELS: No Depth of first water, if known ft Standing Level After Well completion ft Method of sealing No (11) WELL TESTS: No Wast water at stard is test of test ft Att end of test ft Att end of test ft Att end of test ft Mate: ft Method of sealing ft Method of sealing ft			<u> </u>	$\overline{}$		
WELL LOCATION SKETCH Other WELL LOCATION SKETCH Other (5) EQUIPMENT: (6) GRAVE yack: Cable Air X3 Cable Comparison From To Fom To Fom To Fig. From ft ft ft ft starle Plastic Construct To Steel Plastic To Steel To Steel Not Cased Fom ft ft ft					Div noire	
Stock - WELL LOCATION SKETCH Other (5) EQUIPMENT: (6) GRAVE PACK: Cable Air Cable Air Air Max Cable Air Air Max (7) CASING INSTALLED: (8) FERFORATIONS: (7) CASING INSTALLED: (8) FERFORATIONS: From To From To Atr ft Max From Vere strata sealed against pollution? Yes No Interval ft Were strata sealed against pollution? Yes No Interval ft (10) WATER LEVELS: ft Depth of first water, if known ft (11) WELL TESTS: ft Vas well exert at start of test ft Type of test Pump Bailer Air Hft Depth to water at start of test ft Type of test Pump Bailer Air Hft Depth of first water of hours ft Obschage gainal glevalafor well completion <td></td> <td></td> <td>- (Ý 17 18</td> <td></td> <td></td> <td></td>			- (Ý 17 18			
WELL LOCATION SKETCH Other - (5) EQUIPMENT: (6) GRAVE PACK: - Rotary Reverse No Size Cable Air X23 - Cable Deat Mon. - - (7) CASING INSTALLED: (8) FERFORATION: - Steel Plastic Convert To (7) CASING INSTALLED: To Size - From To Dia Cabeer From The Wall ft - - Was surface sanitary seal provided? Yes No If yes, to depth. ft. - (9) WELL SEAL: Were strata sealed against pollution? Yes No Interval ft. - Were strata sealed against pollution? Yes No Interval ft. -			10 -			
(5) EQUIPMENT: (6) GRAVB PACK: Rotary Reverse No Size Size Cable Air No Size Size Other Backet Part Mom TO Backet Part Mom (7) CASING INSTALLED: (8) FERFORATION:	1	Municipal	6			·
Rotary Reverse No Size Cable Air XX There of bore Other Bucket Prove of bore - (7) CASING INSTALLED: (8) PERFORATION: - Steel Plastic Convert Type of perform or base of screen - From To Dia Calvert Ft. Size Mode Calvert Ft. Size - (9) WELL SEAL: - - - Was urface sanitary seal provided? Yes No If yes, to depth - (9) WELL SEAL: - - - Was urface sanitary seal provided? Yes No If yes, to depth - (10) WATER LEVELS: - - - Depth of first water, if known ft. - - - - (11) WATER Level S:: - - Well Daller) NAME Wayne Miller Type of test Pump Baller Air lift - - -<				∋⊻		
Cable Air Air <td< th=""><th></th><th></th><th></th><th><u> </u></th><th></th><th>· · · · · · · · · · · · · · · · · · ·</th></td<>				<u> </u>		· · · · · · · · · · · · · · · · · · ·
Other Backet Hand Mom Id - (7) CASING INSTALLED: (6) FERFORATIONS: - Steel Plastic Contract Type of perifering or size of screen - From To Dia. Calue of ft - ft ft ft ft - Mol Calsed From To Size - No Calsed - - - - (9) WELL SEAL: - - - - Ware strate sealed against pollution? Yes No If yes, to depth ft. - (10) WATER LEVELS: - - - - - Depth of first water, if known ft. ft. - - - - (11) WELL TESTS: Well Duiller -						
(7) CASING INSTALLED: (8) FERFORATIONS: Steel Plastic Convect Type of performe or size of screen - From To Dia. ft ft ft ft ft ft NDC cased - No If yes, to depth ft method of sealing Work started casinst pollution? Yes No <ii>Interval ft ft Method of sealing Work started (10) WATER LEVELS: Work started Citl Standing level after well completion ft ft (11) WELL TESTS: No<ii>If yes, by whom? Was well test made? Yes<ii>No<ii>Bailer ft At end of test ft Depth to water at start of test ft At end of test ft No<iii by="" h="" td="" whom?<="" yes,=""> City Sanalysis m</iii></ii></ii></ii></ii>		bore	<u>+{{}}~</u>		· · · · · · · · · · · · · · · · · · ·	1
Steel Plastic Convect Type of perfections or size of screen - From To Dia. Calce of ft. To - ft. ft. ft. ft. ft. - Not cased - - - - (9) WELL SEAL: - - - Was surface samitary seal provided? Yes No If yes, to depthft. - Were strata sealed against pollution? Yes No Intervalft. - Method of sealing Work started 6/5/ 1984 Completed 6/12 19.84 (10) WATER LEVELS: - Work started 6/5/ 1984 Completed 6/12 19.84 (11) WELL TESTS: - Well DRILLER'S STATEMENT: This well was drilled under my jurisdiction and this report is true to the best of my fonucledge and belief Noucledge and belief. Noucledge and belief. Noucledge and belief. Noucledge and belief. NAME		RATIONS:			······································	
ft. f	$ (N N) _{-}$.	Fanjon or size of screen	<u> </u>			
ft. f	From To Dia. Gage of From	D To Show	_			
(9) WELL SEAL: - Was surface sanitary seal provided? Yes □ No □ If yes, to depth		ft. size				
(9) WELL SEAL: - Was surface sanitary seal provided? Yes □ No □ If yes, to depthft. - Were strata sealed against pollution? Yes □ No □ Intervalft. - Method of sealing No □ Intervalft. - Method of sealing No □ Intervalft. - (10) WATER LEVELS: Well DRILLER'S STATEMENT: - Depth of first water, if knownft. * Well DRILLER'S STATEMENT: This well was drilled under my jurisdiction and this report is true to the best of my knowledge and belief. SicNED						
Was surface sanitary seal provided? Yes No If yes, to depthft. Were strata sealed against pollution? Yes No Intervalft. Method of sealing					· ···· · · · · · · · · · · · · · · ·	
Was surface sanitary seal provided? Yes No If yes, to depthft. Were strata sealed against pollution? Yes No Intervalft. Method of sealing	(9) WELL SEAL:					· · · · · · · · · · · · · · · · · · ·
Method of sealing] If yes, to depthft.	. –			
(10) WATER LEVELS: Depth of first water, if knownft. Standing level after well completionft. (11) WELL TESTS: Was well test made? Yes Depth to water at start of testft. Depth to water at start of testft. Dischargegal/min afterhours Water temperature (11) water analysis made? Yes No If yes, by whom? Comparison of the start of testft. Mater temperature City Santa Rosa, Ca, m Viscon this report City Santa Rosa, Ca, m City Sa	Were strata sealed against pollution? Yes []	No 🗌 Intervalft.	_			
Depth of first water, if knownft. ft. Standing level after well completionft. ft. Standing level after well completionft. ft. (11) WELL TESTS: ft. Was well test made? Yes No If yes, by whom? Depth to water at start of test ft. At end of test ft. Dischargegal/min after hours Water temperature ('') analysis made? Yes No If yes, by whom? ('') analysis made? Yes No If yes, by whom?						<u>-6/12 ¹⁹84</u>
Standing level after well completionft. ft. knowledge and belief. (11) WELL TESTS:		ft.	This well was dr	illed under my i		is true to the best of my
(11) WELL TESTS: (Weil Driller) Was well test made? Yes No If yes, by whom? (Weil Driller) Type of test Pump Bailer Air lift NAME Wayne Miller Depth to water at start of test ft. At end of test ft. At end of test ft. Discharge gal/min after hours Water temperature Address 5434 Old Redwood Highway Address 5434 Old Redwood Highway ('' analysis made? Yes No If yes, by whom? City Santa Rosa, Ca, m Zip 95401		ft.	knowledge and b	elief.	•	_
Type of test Pump Bailer Air lift Depth to water at start of testft. At end of testft. At end of testft. NAME(Person, firm, or corporation) (Typed or printed) Dischargegal/min afterhours Water temperature Address 5434 Old Redwood Highway ('') analysis made? YesNo If yes, by whom? City Santa Rosa, Ca, m Zip 95401		by whom?	SIGNED		(Well Driller)	<u>y u</u>
Dischargegal/min afterhours Water temperature ('analysis made? Yes D No D If yes, by whom? City Santa Rosa, Ca, M Zip 95401 City Santa Rosa, Ca, M Zip 95401	Type of test Pump 🗌 Bailer [] Air lift []	NAME			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•		Address 5434			
τ_{1} τ_{2} τ_{1} τ_{2} τ_{2					-	
			License No	61084	Date of this report	<u> </u>

-

. .

DWR 188 (REV. 7-76) IF ADDITIONAL SPACE IS NEEDED. USE NEXT CONSECUTIVELY NUMBERED FORM .

•

ч**н** -

. . ·

APPENDIX B

WELL 3 E-LOG SURVEY RESULTS

	EST WELL LOG GEOPHYSIC			T	EL	ECTR	C - GA	MMA RA'	Y-TEMPE	RATURE L	OG
						Wes	t Coa	st Well L	_ogging	Services	
P.O.Box 279	97, Rancho C	ordova CA 9	5741 •	Phone: 91	6-858-8148	Fax: 916-	-858-8174	· Web: www.wcv	wls.com Ema	il: wcwls@sbcglob	al.net
Filing No.											
		MPANY _		Huckf	eldt Wel	<u>l Drillin</u>	ig				
	WE	ELL _		Carne	rosView	Vineya	ards				
	FIE	LD		Sonor	na						
	ST	ATE _	TE California COUNTY Sonoma								
Job No. 1315	4:	CATION: 270 Stage			lwy 116	8.24728	LONG	.:: <u>122.501</u> 5		THER SERVIO	DES:
Permanent Da	atum:	Groun	d Lev	vel		Ele	ev.:		Ft. El	evs.: K.B.	Ft.
Log Measured	d From:	Top of	f Cas	ing		0 Ft	. Above	Perm. Datur	n	D.F.	Ft.
Drilling Measu	ured From	Groun	d Lev	vel	,					G.L.	Ft.
Run			One								
Date		Мау	11, 2	016							
Depth-Driller			740	F			Ft		Fi		Ft
Depth-Logger			737	F			Ft		FI		Ft
Top Logged Inte			0	F			Ft		Fi		Ft
Btm Logged Inte Casing-Driller	erval	n/a	737	F	-	In @	Ft Ft	In	F1 @ F1	1	Ft D Ft
Casing - Logger	ln @ Et	n/a n/a		F		In @	Ft	In	-		
Bit Size	mert	8.75		F		In @	Ft	In			
Time On Bottom	n		5:00	-							5 11
Type Fluid in Ho			ntoni								
Density Vis	scosity	n/a	T	n/a							
pH FI	uid Loss	n/a		n/a m	I		ml		m		ml
Source of Samp	le	S	hake	r							
Rm @ Mea. Ter	mp	5.6	@	75 °F	-	@	°F	0	°F	@	°F
Rmf @ Mea. Te	mp	5.4	@	°F	-	@	°F	0	°F	@	°F
Rmc @ Mea. Te	emp	4.1	@	٩		@	°F	Ø	°F	. @	°F
Source Rmf R	Rmc	Meas									
Rm @ BHT		n/a	@	°F	-	@	°F	a	°F	@	°F
Time Since Circ			4	Н			Hr		Hi		Hr
Max. Rec. Temp	D.		82.7	°F	:		°F		°F	·	°F
├ ─── └ ─	ocation	WC-1		RC							
Recorded By		Sha	arple	SS							
Witnessed By		т. с	aldw	ell							

This Eagle Plot Heading Conforms To API RP 31A

ELECTRIC - GAMMA RAY-TEMPERATURE LOG TOOL

ELECTRIC LOG SPECIFICATIONS:

Diameter	1.73 Inches
Length	8.37 Feet
Weight	21.7 Lbs.
Max. Temp	158° F
Resist. Range	0 - 10,000 ohm-m
Gamma Ray	1.97 inches long x .98 inches diameter Scintillation crystal

SPONTANEOUS POTENTIAL LOGS:

SP Logs record potentials or voltages developed between the borehole fluid and the surrounding formation and are representations of lithology and water quality. Recording of SP logs are limited to water-filled or mud-filled open holes.

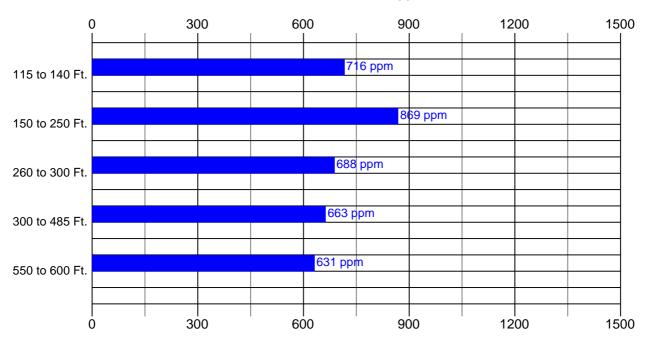
NORMAL RESISTIIVITY LOGS:

Normal Resistivity Logs record the electrical resistivity of the borehole environment with lower resistivities indicative of clays and higher resistivities being sands and gravels. Normal resistivity logs are affected by bed thickness, Borehole diameter and borehole fluid.

SINGLE POINT RESISTIVITY LOGS:

Single Point Resistivity Logs record the electrical resistance from points within the borehole to an electrical ground at land surface. Single-point resistance logs are useful in the determination of lithology, water quality, and location of fracture zones.

GAMMA RAY LOGS:


Gamma Ray Logs record the amount of natural gamma radiation emitted by the rocks surrounding the borehole. The most significant naturally occurring sources of gamma radiation are potassium 40 and daughter products of the uranium and thorium decay series. Clay and shale bearing rocks commonly emit relatively high gamma radiation because they include weathering products of potassium feldspar and mica and tend to concentrate uranium and thorium by ion absorption and exchange.

TEMPERATURE LOGS:

Temperature Logs record the water temperature in the borehole. Temperature logs are useful for delineating water-bearing zones and identifying vertical flow in the borehole between zones of differing hydraulic head penetrated by wells. Borehole flow between zones is indicated by temperature gradients that are less than the regional geothermal gradient.

TOTAL DISSOLVED SOLIDS

* NaCl

Parts Per Million - ppm

TDS Classes

Class 1: Excellent to Good – Less than 700 ppm Class 2: Good to Injurious – 700 to 2000 ppm Class 3: Injurious to Poor – More than 2000 ppm

NaCI = Sodium Chloride

METHODOLOGY TO CALCULATE TDS FROM THE SP CURVE

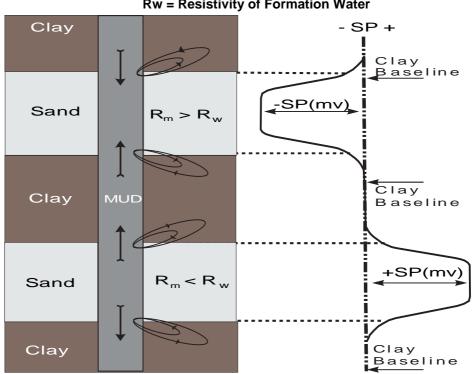
Obtain freshly circulated mud and use a mud press to measure $R_{\text{mf.}}$

Obtain SSP from SP to make these calculations:

- 1. $R_{mf}^{Corr} = [R_{mf} @ meas temp x (Temp +6.77) / 81.770]$
- 2. $R_{we} = R_{mf}^{Corr} / 10^{(ssp/-70.7)}$
- 3. $R_w(NaCL) = (R_{we}^{1.227}) \times .0825$
- R_w(NaHCO³) = R_w (NaCl / 0.85)

Solving for Electrical Conductivity (EC):

- 5. NaCl in MilliSiemens/cm³=10,000 / R_w(NaCL)
- NaHCO³ in MilliSiemens/cm³ = 10,000 / R_w(NaHCO³)


Solving for Total Dissolved Solids (TDS):

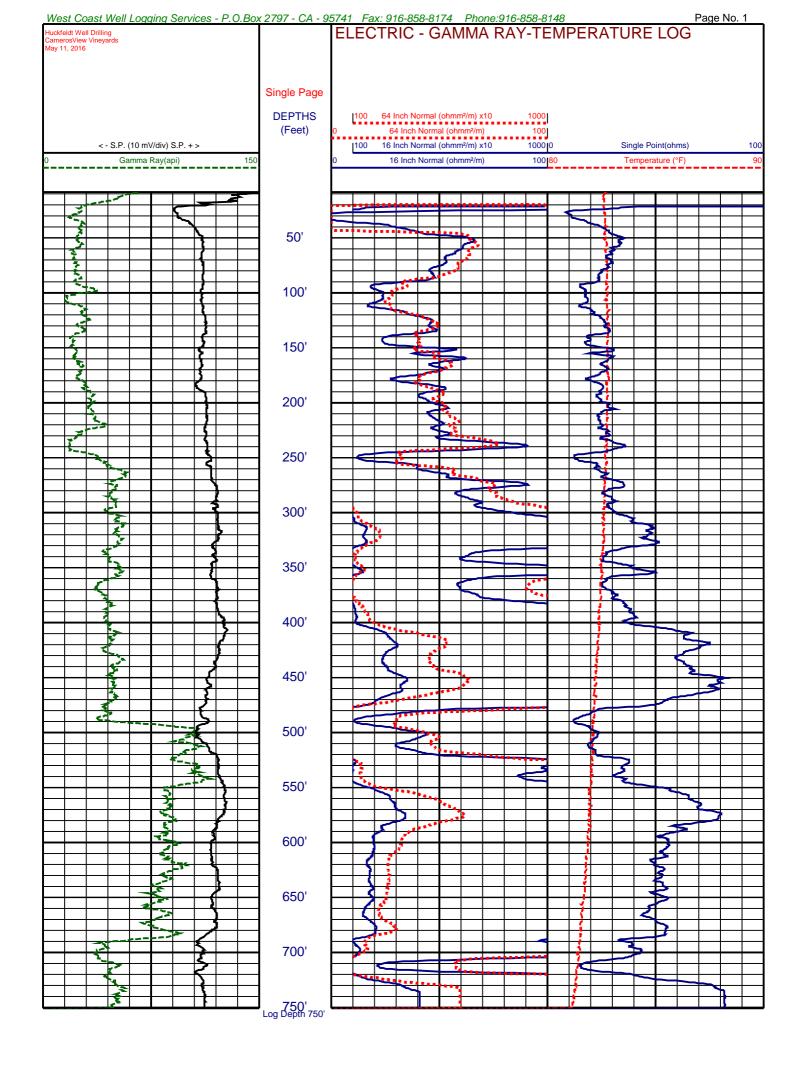
- 7. NaCl in ppm = 5300 / R_w(NaCL)
- 8. NaHCO³ in ppm = 10000 / R_w(NaCL)

REFERENCES:

WWW.EPA.GOV?OGWDW/UIC/PDFS/HISTORICAL/STUDY_UIC_METHODS_TDS_CONC_1988,PDF WWW.WELLLOG.COM/TDS.HTM

THE DEVELOPMENT OF THE SP CURVE

Rm = Resistivity of Mud Rw = Resistivity of Formation Water


The Liquid Junction Potential is important for SP development. This type of potential develops when two electrolytes of different concentrations containing ions of different mobilities come in contact with each other. The Electric Log Tool is designed to measure that potential displayed as the SP Curve.

NOTICE

All interpretations are opinions based on inferences from electrical and other measurements and we do not guarantee the accuracy or correctness of any verbal or written interpretation, and we shall not, except in the case of gross or willful negligence on our part, be liable or responsible for any loss, costs, damages or expenses incurred or sustained by anyone resulting from any interpretation made by one of our officers, agents or employees. These interpretations are also subject to our General Terms and Conditions as set out in our current Price Schedule.

REMARKS

Consulting Company: Slade & Assoc.

APPENDIX C

STEVE MARTIN AND ASSOCIATES PROCESS WASTEWATER SUMMARY

SMA Steve Martin Associates, Inc.

130 South Main Street, Suite 202 Sebastopol, CA 95472 p. 707-824-9730 f. 707-824-0266

606 Alamo Pintada Road #3-221 Solvang, CA 93463 p. 805-541-9730

June 27, 2016

Sonoma County Permit Resource Management Department 2550 Ventura Avenue Santa Rosa, CA 95403

Attention: Ms. Becky VerMeer

Re: 4200 Stage Gulch Road Sonoma, CA A.P.N. 142-051-031 So. Co. PRMD File: PLP02-0085 Wastewater Feasibility Study SMA Project No. 2008008

Dear Ms. VerMeer,

The purpose of this letter is to supplement the Use Permit Modification application for the Carneros Vintners Winery which includes an increase from 250,000 cases of wine production (see PLP02-0085) to 2,500,000 cases of wine production and the elimination of public tasting, tours, and all events. Steve Martin Associates, Inc. has prepared this Wastewater Feasibility Study for the purpose of assessing the onsite sanitary and process wastewater system treatment and disposal capacity necessary for the proposed expanded production level.

The requested 2,500,000 cases of wine production will be comprised of the following breakdown:

- a. 55,000 cases (873 tons) full production and bottled on site
- b. 289,000 cases (4,587 tons) crush and bulk off haul of juice
- c. 1,056,000 cases (16,762 tons) crush, fermentation and bulk off haul wine
- d. 300,000 cases (4,762 tons) Lees wine
- e. 800,000 cases bottling only bulk wine import for bottling on site

The sanitary wastewater (SW) consists of wastewater from the laboratory and restroom facilities. The process wastewater (PW) consists of winery wastewater generated from producing 2,500,000 cases of wine. The existing SW wastewater management system consists of a SW septic tank, SW sump tank, and a primary above ground mound system with a 200% expansion/reserve area. The existing PW wastewater system includes a PW sump and pump, rotary screen for solids filtration, and an aerated pond system.

The existing wastewater management systems described above and herein will be adequate to treat and dispose of the projected SW and PW flows generated from the increase in production of the winery facility. To assist you in the evaluation of the above conclusions, the following information is enclosed:

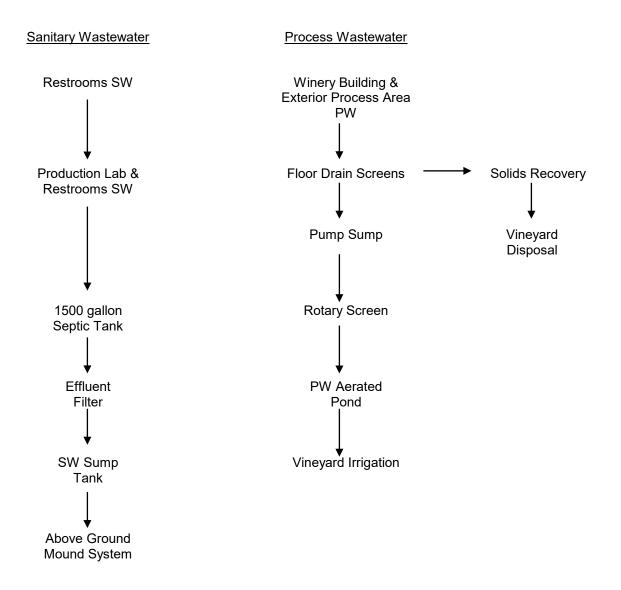
Attachment I:Wastewater System Flow DiagramAttachment II:Wastewater System Design Criteria & EvaluationAttachment III:Pond Sizing & Pond Water BalanceAttachment IV:Use Permit Plans, Mound System Plans, & PW Pond & Irrigation Area Plans

In addition, please refer to the Overall Site Plan included with this document for the locations of the Wastewater Management System components. The Overall Site Plan indicates the relative locations of buildings, roads, wastewater pretreatment area, process wastewater pond, primary and expansion mounds/leachfield area, and other site features that would be required for this project.

If you have any questions or require further information, please feel free to contact me at (707) 824-9730.

Sincerely,

Steven M. Martin, PE


Tamara A. Martin, REHS

Attachments

ATTACHMENT I

SANITARY & PROCESS WASTEWATER MANAGEMENT SYSTEM FLOW DIAGRAM

SANITARY & PROCESS WASTEWATER MANAGEMENT SYSTEM FLOW DIAGRAM

ATTACHMENT II

SANITARY & PROCESS WASTEWATER MANAGEMENT SYSTEM DESIGN CRITERIA & EVALUATION

Carneros Vintners

4200 Stage Gulch Road Sonoma, California

WASTEWATER MANAGEMENT SYSTEM DESIGN CRITERIA & EVALUATION

SANITARY WASTEWATER

Sanitary wastewater (SW) at the winery will consist of typical wastewater generated from restrooms, laboratory and technical tasting facilities.

No public tasting is proposed for this Use Permit Modification. Business visitors are anticipated to average 15 per week, with a maximum of 5 on a peak day.

Anticipated SW flows are projected as follows:

SW FLOWS

AVERAGE DAY:

15 full-time employee x 15 gpcd	=	225
3 business visitors x 2.5 gpcd	=	<u>7.5</u>
Total	=	232.5 gpd
PEAK DAY:		
20 full-time employees x 15 gpcd	=	300
5 business visitors x 2.5 gpcd	=	<u>12.5</u>
Total	=	312.5 gpd
Design SW flow	=	<u>313 gpd SW</u>

TREATMENT & DISPOSAL

SW LEACH FIELD OVERVIEW

In 2005, an above ground Wisconsin mound system was designed and installed to serve 10 employees only (SEP05-1043). In 2008, in anticipation of this Use Permit modification application, the mound system was expanded (SEP08-0834) to accommodate a total of 20 full time employees on a peak day and 5 business visitors.

SEPTIC TANK

The required total septic tank size for the projected SW flows based on the Manual of Septic Tank Practice is as follows:

Carneros Vintners Winery APN 142-051-031

The existing 1200-gallon septic tank is sufficient for the treatment of the projected SW flows. The resulting detention time for a peak day flow would be 3.8 days.

SW MOUND SYSTEM SIZING

While the mound system that was installed in 2008 is sized appropriately based on the total flows of 313 gpd, and has the appropriate amount of rock below the pipe for a commercial system, the loading rate that was used was 1.0 gallons per square foot per day. A change in PRMD design guidelines now requires a loading rate of 0.8 g/sf/d.

DESIGN CRITERIA

- Distribution Bed Loading Rate = 0.8 gallons/s.f./day (Commercial) (Medium textured sand)
- Design Flow = <u>313 gpd</u>
- Linear Loading Rate (LLR) = 4.0 gal. /l.f./day
- Soil Application Rate = 0.563 gallons/s.f./day
- Ground slope is 16.5 % in the area of the primary and expansion mounds

PRIMARY MOUND DESIGN

Min. Distribution Bed Area Required =	<u>Total flow</u> Sand App. Rate	=	<u>313 gpd</u> 0.8 gal/s.f. /day	= <u>391.25 s,f,</u>
Existing Distribution Bed Size = 4' x 78.2	25' = <u>313 s,f,</u>			
Min. Sand Basal Area Required =	<u>Total Flow</u> Soil App. Rate		<u>.</u>	= <u>556 s,f,</u>
Existing Primary Sand Mound Dimensio	ins:	<u>27' x 9</u>	<u>6.25'</u>	
Total Existing Mound Footprint (with soi	l cover):	<u>41' x 1</u>	<u>04.25'</u>	

Sand Basal Area Provided = (Distance (width) from upper side of distribution bed to downslope toe of sand) x (dist bed length) = $22' \times 78.25' = \frac{1721.5 \text{ s.f.}}{1721.5 \text{ s.f.}}$

While the gravel bed area is 78.25 sf undersized, the sand basal area, is 1,165.50 sf oversized. As a result, even though a less conservative loading rate was utilized in the 2008 expansion design, the ample amount of sand basal area (which is the total effective absorption area of the entire system) that is currently provided shows that the system will not need to be expanded further.

PROCESS WASTEWATER

Process wastewater consists primarily of wastewaters collected at floor drains and trenches within the winery, receiving, crush, tank and wash-down areas, including exterior tank and process areas which are all under a roof. The screened baskets and strainers have screen opening sizes of 1/4 inch for exterior drains and 1/8 inch for interior drains.

The PW flows by gravity to a PW pump station. The gravity piping collection system provides low maintenance and no infiltration or exfiltration. The piping is compatible with process wastewaters and satisfies Uniform Plumbing Code and local PRMD requirements. A PVC force main to the ponds is sized to be adequate for the peak flow rates anticipated from the pump station. The pump conveys the PW to the rotary screen and Pond.

Biological stabilization occurs in the facultative aerated pond system which will consist of two cells, configured by a floating baffle to be installed upon approval of this Use Permit Modification. Currently the pond has no baffle installed. The total usable volume of the pond system is approximately 2.2 MG in addition to a 2 ft minimum freeboard. Surface mechanical aerators for the aeration pond have been upsized to satisfy biochemical oxygen demand as well as oxygen dispersion requirements for the increase in production. Time clock control of the aerators currently allows personnel to adjust aerator operation to changing winery functions and pond conditions. The existing flow meters measure the flows from the PW pump station to the aerated pond and from the pond to the irrigation system.

The irrigation disposal area is currently sized at 5.8 acres of grass / pasture area with no vineyard irrigation. The increase in production, will require an additional irrigation area of 30 acres of vineyard to dispose of the reclaimed wastewater via drip irrigation. The existing 80 acres of vines on site and adjacent to the winery parcel will more than provide enough vines to dispose of the treated PW. As a result, final reuse (disposal) of effluent is to be accomplished by spray irrigation of 5.4 acres of grassland and drip irrigation of 30 acres vineyard. The irrigation demand is the lowest during the wet season (November through April) and application rates should be less than 1.3 inches per day.

The irrigation system is controlled manually. The Pond Water Balance (PWB) provides operators with the projected irrigation discharge amount per month. Visual observation and monitoring of the vineyard is made weekly to ensure against surface runoff. Irrigation/disposal will be suspended for approximately 24 hours prior to, during and following any forecasted storms. Irrigation/disposal will be suspended as long as saturated soil conditions persist.

PROCESS WASTEWATER FLOWS

Based on flow data from the planned Operator's existing Carneros Vintners and Lodi Custom Crush facility as well as from wineries of similar size and characteristics, the process wastewater (PW) generation rates were determined and the projected flows are calculated as follows:

The 2.5M case wine production is projected to consist of the following breakdown:

- a. 55,000 cases (873 tons) full production and bottled on site
- b. 289,000 cases (4,587 tons) crush and bulk off haul of juice
- c. 1,056,000 cases (16,762 tons) crush, fermentation and bulk off haul wine
- d. 300,000 cases (4,762 tons) Lees wine
- e. 800,000 cases bottling only bulk wine import for bottling on site

Annual Volume

55,000 cases full production onsite:

Gallons of wine produced onsite = 2.4 gallons/case x 55,000 cases = 132,000 gal

Generation rate = 2.0 gal PW/gal wine (based on 10 yrs actual flow data from existing & Lodi facility)

Annual Volume = 132,000 gal wine x 2.0 gal PW/gal wine = 264,000 gal PW

289,000 cases crush and run:

Gallons of wine crushed and hauled offsite = 2.4 gallons/case x 289,000 cases = 693,600 gal

Generation rate = 1.0 gal PW/gal wine

Annual Volume = 693,600 gal wine x 1.0 gal PW/gal wine = 693,600 gal PW

1,056,000 cases crush, ferment, and run:

Gallons of wine crushed, fermented, and hauled offsite = 2.4 gallons/case x 1,056,000 cases = 2,534,400 gal

Generation rate = 1.5 gal PW/gal wine

Annual Volume = 2,534,400 gal wine x 1.5 gal PW/gal wine = 3,801,600 gal PW

300,000 cases Lees wine onsite:

Gallons of Lees wine produced onsite = 2.4 gallons/case x 300,000 cases = 720,000 gal

Generation rate = 1.75 gal PW/gal wine

Annual Volume = 720,000 gal wine x 1.75 gal PW/gal wine = 1,260,000 gal PW

800,000 cases bottling onsite:

Generation rate = 0.3 gal PW/case

Annual Volume = 800,000 cases wine x 0.3 gal PW/case wine = 240,000 gal PW

Total Annual Volume = <u>6,259,200</u> gallons of Process Wastewater

Average Harvest Day Flow

Based on 10 plus years' worth of data from the operators existing Carneros Vintners and Lodi facilities, the harvest months of August – November account for approximately 16, 17.5, 13, and 9 percent of the annual PW flow, respectively.

6.26 Mgal PW x (0.16 + 0.175 + 0.13 + .09) = 28,474 gal PW/day 122 days

Use 28,500 gal/d PW

Average Day, Peak Harvest Month Flow

The harvest month of September accounts for approximately 17.5 percent of the annual PW flow.

6.26 Mgal PW x <u>(0.175)</u> 30 days	=	36,512 gal PW/day
		<u>Use 37,000 gal/d PW</u>
Peak Day Crush Flow		
Maximum crush rate	=	500 tons grapes crushed/day
Wine generation rate	=	160 gal wine/ton grapes crushed
PW generation rate	=	0.5 gal PW/gal wine
Peak flow	=	500 tons/day x 160 gal wine/ton x 0.5 gal PW/gal wine
	=	40,000 gal PW/day <u>Use 40,000 gal/d PW</u>

PW SYSTEM DESCRIPTION

Process wastewater will consist primarily of wastewaters collected at floor drains and trenches within the winery, receiving, crush, tank and wash-down areas. No sanitary wastewater will be discharged into the PW management system. The criteria used to evaluate the wastewater management system are summarized in this section. No distillation will occur at the facility; hence there will be no stillage waste.

Process Wastewater Conveyance, Treatment and Disposal

The following features will be incorporated into the process wastewater management system:

- 1) Initial screening
- 2) Gravity collection system
- 3) PW pump station
- 4) Pretreatment consisting of:
 - i) pH control (if necessary)
 - ii) Flow measurement
 - iii) Solids removal screen
- 5) Facultative aerated pond
- 6) Flow measurement
- 7) Filter
- 8) Irrigation disposal (reuse)

A discussion of each of these features is provided below. Refer to the Wastewater Management System Schematic above for a flow diagram of the PW management system.

- Initial screening -- Provided by screened baskets and strainers installed on the trench drains and floor drains within the winery. Screen opening sizes will be on the order of 1/4 inch for exterior drains and 1/8 inch for interior drains.
- Gravity collection system -- Designed to provide low maintenance and no infiltration or exfiltration. Piping is compatible with process wastewaters and satisfies Uniform Plumbing Code and local requirements.
- 3) PW pump station -- The duplex pump station will be capable of pumping all of the anticipated process wastewater flow ranges (see Pond Sizing section for projected process wastewater flows) with one duty and one standby pump that can alternate functions. The duty pump would be used for all but the most extreme PW flow conditions. The second (standby) pump would be activated during peak hour events or similar events of infrequent occurrence and short duration. Storage in the pump sump would provide some additional factor of safety. A PVC force main to the ponds will be sized to be adequate for the peak flow rates anticipated from the duplex pump station. The pumps convey the PW to the Pond.
- 4) Pretreatment Consisting of the following elements:

- i) pH control system (if necessary)
 - (a) SMA's experience over the last 10 years has indicated that pH neutralization of winery PW is typically not required for aerated pond systems. The combination of naturally occurring alkalinity in the source water and the alkaline cleaning compounds used within the winery usually provides sufficient buffering to maintain pond pH above 6.5. Neutralizing chemicals should only be used when absolutely necessary. Since the Process Wastewater is ultimately disposed via irrigation, the neutralizing chemicals would be applied to the land.
 - (b) For the above reasons, the installation of pH control systems when the PW Management System is first constructed is not recommended. Instead, SMA recommends that the pH of the ponds be monitored for a year (monitoring is required by the RWQCB), especially through one harvest season. If at the end of the one-year monitoring period it has been demonstrated that pH control is necessary (or sooner if conditions warrant), a pH control system could be added.
- ii) Flow measurement An inline magnetic flow measurement device will be provided to measure flows from the PW pump station to the facultative aerated pond.
- iii) Solids removal screen A motorized rotary drum screen will remove the large solids from the system and, as a result, reduce the organic biological loading on and the accumulation of solids in the aerated pond system. Solids from the screening operations will be treated as pomace (residual grape solids). Refer to solid waste section for disposal description of pomace.
- 5) Facultative aerated pond -- Biological stabilization will occur in the facultative aerated pond system which will consist of two cells separated by a floating baffle. The first cell is approximately 1.6 Mgal and the second cell is approximately 0.6 Mgal. This pond system will be large enough to provide a normal residence time of 55 days at average day peak harvest month flow conditions. This residence time is within the 50 to 100 days detention time recommended for these types of systems. For ultimate process wastewater/rainfall inputs and evaporation/irrigation outputs, refer to the pond water balance (based on 10 year rainfall and a minimum two foot freeboard) enclosed. The total usable volume of the pond system is approximately 2.2 MG in addition to a 2 ft minimum freeboard.

Surface mechanical aerators for the aeration pond will be upsized to satisfy biochemical oxygen demand as well as oxygen dispersion requirements for the increased flows. Time clock control of the aerators will be provided to allow operations personnel to adjust aerator operation to changing winery functions and pond conditions.

- 6) Flow Measurement Flow measurement devices will be provided to measure the flows from the pretreatment area to the aerated pond and from the pond to the irrigation system.
- 7) Filter A filter will be provided to screen secondary effluent prior to vineyard irrigation.
- 8) Irrigation disposal (reuse) -- Final reuse (disposal) of effluent is to be accomplished by spray irrigation of a minimum 5.4 acres of grassland on-site and drip irrigation of 30 acres of vineyard on site and on adjacent parcels. The irrigation demand of the grassland & vineyard exceeds the estimated annual process wastewater volume. Refer to the pond water balance for proposed application rates to the disposal area and effluent storage volumes. To meet the additional irrigation demand the treated PW can be supplemented with irrigation water if needed. The irrigation demand is the lowest during the wet season (November through April) and application rates should be less than 0.2 inches per day. Irrigation of vineyards would likely be suspended in August, just prior to harvest, to control sugar content in the grapes.

If necessary, double check valves or similar backflow prevention devices will be installed on the existing irrigation system discharge to prevent any cross-contamination with treated effluent applied to the

irrigation distribution network. The treated PW is not recycled for winery use.

OTHER CONSIDERATIONS

Odor Control

There should be no obnoxious odors from a properly designed and operated treatment system of this type. See Alternative Courses of Action for operation alternatives for unforeseen conditions.

Ground Water Contamination

The nearest water well to the winery process wastewater treatment and disposal systems is over 600 feet from the aerated pond. No disposal of reclaimed wastewater will occur within 100 feet of any existing wells.

The groundwater in the pond area will be protected from possible contamination by the liners installed in each pond.

Irrigation/disposal of treated effluent is considered a beneficial use and is considered an effective means to protect groundwater quality. Well water may be added to the treated PW when capacity permits to supplement the volume of water used for irrigation.

Surface Waters

All wastewater treatment facilities are designed with sufficient drainage facilities to divert local runoff. Irrigation/disposal operations will be routinely monitored to ensure against surface runoff. Irrigation/disposal will be suspended for approximately 24 hours prior to, during and following any forecasted storms. Irrigation/disposal will be suspended as long as saturated soil conditions persist.

Protection

Exposed wastewater treatment facilities will be posted with appropriate warning signs. The aerated ponds will be fenced, if necessary, to restrict public access.

ALTERNATIVE COURSES OF ACTION

Although no operational difficulties are foreseen, the following additional courses of action would be available if necessary:

- 1) Ability to add carbon dioxide to reduce pH at the pretreatment site or installation of another type of pH control.
- 2) Ability to add hydrogen peroxide or liquid oxygen to the ponds as a supplemental oxygen source or for odor control
- 3) Provision of higher aeration capacity in the pond
- 4) Additional stages of treatment to increase effluent quality
- 5) Increased use of irrigation/disposal area to increase discharge capacity

The facultative aerated ponds have been designed for retention of wastewater and rainwater through the majority of the rainy season with minimal discharges to irrigation/disposal fields (based on a 10 year seasonal rainfall). Should there be a winter with more rainfall than the design condition, several operational procedures are available to compensate:

- 1) Additional water conservation at winery
- 2) Light irrigation during periods between storms -- not exceeding the assimilative capacity of the soil
- 3) Increased irrigation during the months of planned irrigation.
- 4) Pumping and truck transfer of treated and diluted wastewater to a sewage treatment plant or land disposal site

ATTACHMENT III

PW POND SYSTEM SIZING

POND WATER BALANCE

Carneros Vintners 4200 Stage Gulch Road Sonoma, California

PW POND SYSTEM SIZING

POND SIZING

A total retention time of 50 to 100 days for a Peak Day Flow (40,000 gpd) is recommended for this type of pond system to provide required treatment with at least 50 days.

The existing pond configuration will provide adequate residence time for the proposed flows, as calculated below with the addition of a floating baffle and increased aeration.

Pond:

Total Volume	=	2.2 MG
Detention Time	=	<u>2,200,000 gal</u> 40,000 gal PW/day
	=	55 days

Detention Time of 55 days

AERATION REQUIREMENTS

Sizing parameters for the aerators are as follows:

	BOD₅ Concentration Peak Day Peak Harvest Month Flow Oxygen Requirement Oxygen Transfer Rate(Vertical Turbine Aerator) Power/Vol Ratio, Cell #1 Power/Vol Ratio, Cell #2 Cell #1 Volume Cell #2 Volume Total Pond Volume		5,000 mg/l 40,000 gal PW/day 1.5 lbs O ₂ /lb BOD 2.2 lbs O ₂ /HP - hr 0.10 - 0.20 HP/1,000 cu ft 0.05 - 0.10 HP/1,000 cu ft 1.6 Mgal 0.6 Mgal 2.2 Mgal
Aerated Pond -	<u>- Cell No. 1:</u>		
BOD ₅ I	Mass Loading:		
	(5,000 mg/L)(0.040 Mgal PW/day)(8.345 lbs/Mga	al)	
Oxyge	n Requirements:	=	1669 lbs BOD₅/day
	<u>(1.5 lbs O₂/lbs BOD₅)(1669 lbs BOD₅/day)</u>	=	104 lbs O ₂ /hr
	(24 hrs/day)		<u>Use 104 lbs O₂/hr</u>
Aerato	r Horsepower Required:		
	$104 \text{ lbs } O_2/\text{hr} = 47.3 \text{ HP}$ 2.2 lbs $O_2/\text{HP-hr}$		<u>Use 50 HP (2-25 HP)</u>
Check	Power-to-Volume Ratio:		
P\V =	<u> 50 HP x 7.48gal</u> x <u> 103 </u>	=	<u>0.17 HP/1,000 cf</u>

 $PV = \underbrace{50 \text{ HP}}_{2,200,000 \text{ gal}} \times \underbrace{7.48 \text{ gal}}_{\text{cf}} \times \underbrace{10^3}_{1,000 \text{ cf}} = \underbrace{0.17 \text{ HP}/1,000 \text{ cf}}_{0.17 \text{ HP}/1,000 \text{ cf}}$

P\V of 0.17 HP/1,000 cf is in the range of acceptable values and less than the maximum of 0.20. Therefore, oxygen transfer and mixing are expected to occur in the upper 3-4 feet of the pond as required in a facultative aerated lagoon system.

The existing pond has 1-25 HP aerator and 1-15 HP aerator in cell #1. The 15 HP aerator will need to be replaced by a new 25 HP aerator.

Aerated Pond - Cell No. 2:

Try P/V of 0.08 HP/1,000 cf

 $0.60 \text{ Mgal} = 80.2 \text{ x} 10^3 \text{ cf}$

Power Required = $(0.08 \text{ HP}/1,000 \text{ cf})(80.2 \text{ x } 10^3 \text{ cf})$ = 6.4 HP

Existing 10 HP aerator installed

		Crushing Season	Noncrushing Season	Reclaime Water	ed
<u>Characteristic</u>	<u>Units</u>	<u>Range</u>	Range		<u>Avg.</u>
рН		2.5 - 9.5	3.5 - 11.0	6.5-9.5	7.9
Dissolved Oxygen	mg/L	0.5 - 8.5	1.0 - 10.0	1.0-10.0	6.0
BODs	mg/L	500 - 12,000	300 - 3,500	10-160	50
C.O.D.	mg/L	800 - 15,000	500 - 6,000	-	90
Grease	mg/L	5 - 30	5 - 50	-	0.2
Settleable Solids	mg/L	25 - 100	2 - 100	-	0.2
Nonfilterable Residue	mg/L	40 - 800	10 - 400	-	20
Volatile Suspended Solids	mg/L	150 - 700	80 - 350	-	15
Total Dissolved Solids	mg/L	80 – 2,900	80 – 2,900	8-1,500	900
Nitrogen	mg/L	1 - 40	1 - 40	-	5.0
Nitrate	mg/L	0.5 - 4.8	-	0.1-40	1.5
Phosphorous	mg/L	1 - 10	1 - 40	-	5.0
Sodium	mg/L	35 - 200	35 - 200	-	100
Alkalinity (CaCO ₃)	mg/L	40 - 730	10 - 730	-	40
Chloride	mg/L	3 - 250	3 - 250	2.5-210	50
Sulfate	mg/L	10 - 75	20 - 75	-	25

TYPICAL WINERY WASTEWATER CHARACTERISTICS

ATTACHMENT IV

SHEET UP1 SANITARY WASTEWATER MOUND SYSTEM PLANS C1-C3 PROCESS WASTEWATER POND SHEETS PW1-PW4 RECLAIMED PROCESS WASTEWATER IRRIGAION AREAS SHEET C1

APPENDIX D

SONOMA COUNTY GROUNDWATER RECHARGE ANALYSIS

Sonoma County Groundwater Recharge Analysis

Introduction

Developing accurate estimates of the spatial and temporal distribution of groundwater recharge is a key component of sustainable groundwater management. Efforts to quantify recharge are inherently difficult owing to the wide variability of controlling hydrologic processes, the wide range of available tools/methods for estimating recharge, and the difficulty in assessing the accuracy of estimates because direct measurement of recharge rates is, for the most part, infeasible.

Numerical modeling is a common approach for developing recharge estimates. Soil-waterbalance modeling is one category of numerical models particularly well-suited for estimating recharge across large areas with modest data requirements. This study describes an application of the U.S. Geological Survey's (USGS) Soil Water Balance Model (SWB) (Westenbroek et al., 2010) to develop spatial and temporal distributions of groundwater recharge across Sonoma County. Hydrologically connected portions of Marin County, including the San Antonio Creek and Walker Creek watersheds, were also included in the model domain. This model operates on a daily timestep and calculates surface runoff based on the Natural Resources Conservation Service (NRCS) curve number method, actual evapotranspiration (AET), and recharge based on a modified Thornthwaite-Mather soil-water-balance approach (Westenbroek et al., 2010).

It is important to note that the SWB model focuses on surface and soil-zone processes and does not simulate the groundwater system or track groundwater storage over time. The model also does not simulate surface water/groundwater interaction or baseflow; thus, the runoff estimates represent only the surface runoff component of streamflow resulting from rainstorms and the recharge estimates represent only the infiltration recharge component (also referred to as diffuse recharge) of total recharge (stream-channel recharge is not simulated).

Model Development

The model was developed using a 1 arc-second (90.8-ft) resolution rectangular grid. Water budget calculations were made on a daily time step. Key spatial inputs included a flow direction map developed from the USGS 1 arc-second resolution Digital Elevation Model (DEM), a land cover dataset derived from the Sonoma County Veg Map Lifeform dataset supplemented by the U.S. Forest Service (USFS) CALVEG dataset for portions of Marin County (Figure 1), a distribution of Hydrologic Soil Groups (A through D classification from lowest to highest runoff potential; Figure 2), and a distribution of Available Water Capacity (AWC) developed from the NRCS Soil Survey Geographic Database (SSURGO) (Figure 3).

A series of model parameters were assigned for each land cover type/soil group combination including a curve number, dormant and growing season interception storage values, and a rooting depth (Table 1). Curve numbers were assigned based on standard NRCS methods. Interception storage values and rooting depths were assigned based on literature values and

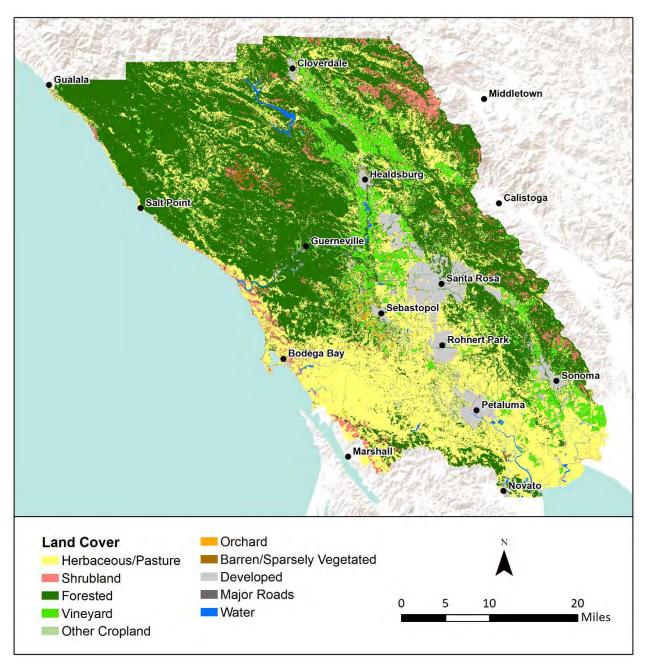


Figure 1: Land cover map used in the Sonoma County SWB model.

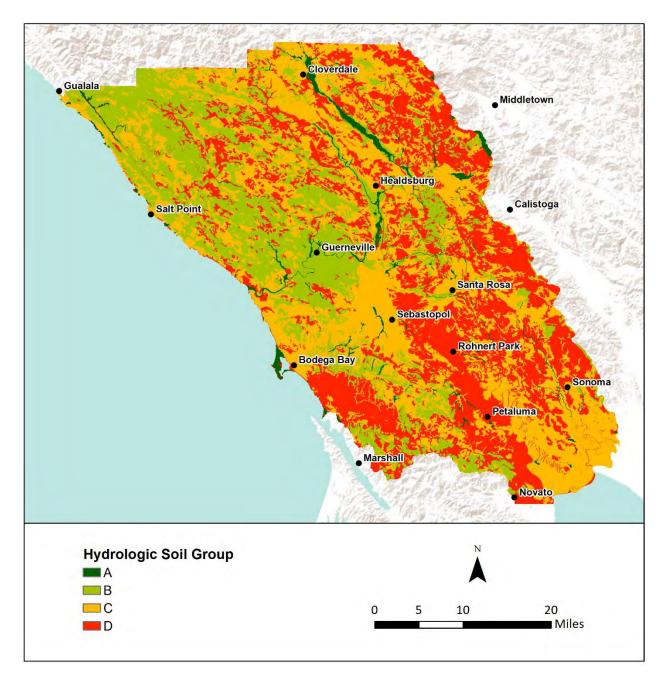


Figure 2: Hydrologic soil group map used in the Sonoma County SWB model.

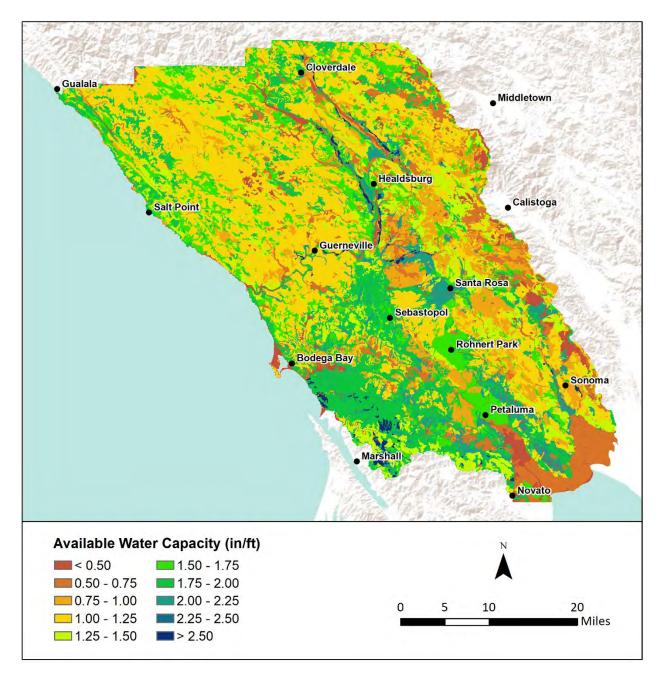


Figure 3: Available water capacity map used in the Sonoma County SWB model.

		Interco Storage	•		Rooting Depth (ft)					
Land Cover	A Soils	B Soils	C Soils	D Soils	Growing Season	Dormant Season	A Soils	B Soils	C Soils	D Soils
Herbaceous	30	58	71	78	0.005	0.004	1.3	1.1	1.0	1.0
Shrubland	30	48	65	73	0.080	0.015	3.2	2.8	2.7	2.6
Forested	30	55	70	77	0.050	0.020	5.9	5.1	4.9	4.7
Vineyard	38	61	75	81	0.080	0.015	2.2	2.1	2.0	1.9
Other Cropland	38	61	75	81	0.080	0.040	2.0	1.9	1.8	1.7
Orchard	38	61	75	81	0.050	0.015	3.2	2.8	2.7	2.6
Barren	77	86	91	94	0.000	0.000	0.7	0.6	0.5	0.4
Developed	61	75	83	87	0.005	0.002	2.3	2.1	2.0	1.8
Major Roads	77	85	90	92	0.005	0.002	0.7	0.6	0.5	0.4
Water	100	100	100	100	0.000	0.000	0.0	0.0	0.0	0.0

Table 1: Soil and land cover properties used in the Sonoma County SWB model.

Table 2: Infiltration rates for NRCS hydrologicsoil groups (Cronshey et al., 1986).

Soil Group	Infiltration Rate (in/hr)
A	> 0.3
В	0.15 - 0.3
С	0.05 - 0.15
D	< 0.05

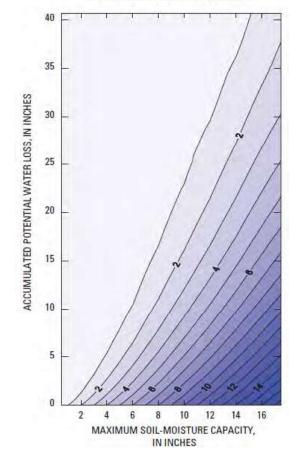


Figure 4: Soil-moisture-retention table (Thornthwaite and Mather, 1957).

SOIL MOISTURE RETAINED, IN INCHES

previous modeling experience. Infiltration rates for hydrologic soil groups A through D were applied based on Cronshey et al. (1986) (Table 2) along with default soil-moisture-retention relationships based on Thornthwaite and Mather (1957) (Figure 4).

The SWB model utilizes daily precipitation and mean daily temperature data derived from climate stations. To account for the spatial variability of these parameters, daily precipitation and mean daily temperature were input as gridded time-series. The gridded precipitation time-series was created using data from 22 weather stations in Sonoma County, and the gridded mean temperature time-series was created using data from 10 stations (Table 3, Figures 5 & 6). These stations were selected based on completeness of the records and to provide station data across the range of climates experienced in the county. Temperature and precipitation data were obtained from the California Data Exchange Center (CDEC), the Western Regional Climate Center (WRCC), the National Climatic Data Center (NCDC), and data collected by O'Connor Environmental, Inc. from work on prior projects.

To create the gridded time-series, the model domain was divided into discrete areas represented by individual weather stations (Figures 7 and 8). This delineation was based on the USGS HUC-10 watersheds, local knowledge of climate variations across the county, and climate variations described by existing gridded mean annual (1981-2010) precipitation and temperature data (PRISM, 2010).

For the precipitation time-series, each area representing a weather station was subdivided into three to fifteen zones based on PRISM-derived 2-inch interval mean annual precipitation zones. The ratio of mean annual precipitation within a given zone and at a given gauge location was used to define scaling factors for each zone. The raw station data (daily precipitation) was then multiplied by the scaling factor to develop the final timeseries for each zone. The resulting gridded time-series is comprised of 215 individual time-series based on the scaled station data from the twenty-two stations.

The assignment of temperature stations was based on the understanding that the 10 available stations represent distinct climate zones in Sonoma County. Coastal climate conditions are best represented by the Fort Ross and Bodega Bay weather stations. The Occidental station is most representative of climate conditions in the coastal mountains of western Sonoma County, and the St. Helena station is most representative of conditions in the mountains of eastern Sonoma County. The remaining 6 stations all represent climate conditions in the inland valley bottom areas of the county. The temperature areas were not divided into additional zones for scaling because variations in temperatures within each representative area are expected to be relatively minor compared with the variations in precipitation; also the model sensitivity to temperature is expected to be small compared to the sensitivity to precipitation.

Missing and suspect data was encountered in the raw precipitation and temperature data from the weather stations used by the model. Values that were significantly outside the typical range and where similar outlying observations were not observed at nearby stations were removed from the datasets. These and missing values were filled using scaled data from other nearby

stations. Precipitation data was scaled using the ratio of the 1981 to 2010 mean annual precipitation (PRISM 2010) between the two stations. Temperature data was scaled using the ratio of the 1981 to 2010 mean monthly minimum and maximum temperatures (PRISM, 2010) between the two stations.

The current analysis focuses on a Water Year 2010 (October 1, 2009 – September 30, 2010). This year was selected because it represents a recent year with data available from most weather stations in the county, and the total annual rainfall was near long-term average conditions at most of the weather stations. Water year 2010 rainfall ranged from 83% of long-term average conditions at the Sonoma and Petaluma 10.1 W station to 137% at the Fort Ross station based on a comparison between the station data and the 1981-2010 average precipitation from PRISM (2010) (Table 3).

Climate Zone	Station	Data Source	Data Used	1981 - 2010 Mean Annual Precip (in)	WY 2010 Precip (in)	WY 2010 Precip (% Avg.)
Coastal	Bodega Bay 6 WSW	NOAA accessed via NCDC	Precip. & Temp.	34.06	37.11	109%
Coastal	Fort Ross	NOAA accessed via WRCC	Precip. & Temp.	35.10	48.01	137%
	Francini Creek	OEI Project Data	Precip. Only	46.99	59.71	127%
	Geyserville 10.6 WNW	NOAA accessed via NCDC	Precip. Only	52.34	52.97	101%
Western	Monte Rio	NOAA accessed via NCDC	Precip. Only	48.44	51.01	105%
Mountains	Occidental	NOAA accessed via WRCC	Precip. & Temp.	55.37	57.02	103%
wountains	Petaluma 10.1 W	NOAA accessed via NCDC	Precip. Only	37.90	31.57	83%
	SF Fuller Creek	OEI Project Data	Precip. Only	56.49	60.89	108%
	Venado	CA DWR accessed via CDEC	Precip. Only	60.14	66.01	110%
	Cloverdale	NOAA accessed via WRCC	Precip. & Temp.	42.63	52.65	123%
	Glen Ellen 1.5 N	NOAA accessed via NCDC	Precip. Only	36.14	46.74	129%
	Graton	NOAA from WRCC	Precip. & Temp.	41.07	45.00	110%
	Healdsburg	NOAA accessed via WRCC	Precip. Only	40.95	47.65	116%
Valleys	Petaluma River Airport	NOAA accessed via WRCC	Precip. & Temp.	26.60	26.92	101%
valleys	Rohnert Park 0.9 SW	NOAA accessed via NCDC	Precip. Only	33.36	34.73	104%
	Santa Rosa	CAL Fire accessed via CDEC	Precip. & Temp.	31.90	39.55	124%
	Sonoma	NOAA accessed via WRCC	Precip. & Temp.	31.77	26.35	83%
	Calistoga	NOAA accessed via WRCC	Temp. Only	na	na	na
	Warm Springs Dam	USACE accessed via CDEC	Precip. Only	43.44	53.29	123%
	Calistoga 4.6 WSW	NOAA accessed via NCDC	Precip. Only	39.64	44.85	113%
Eastern	Glen Ellen 1.9 WNW	NOAA accessed via NCDC	Precip. Only	49.16	46.32	94%
Mountains	Hawkeye	NOAA accessed via WRCC	Precip. Only	45.57	51.06	112%
	St. Helena 4 WSW	CA DWR accessed via CDEC	Precip. & Temp.	49.12	47.88	97%

Table 3: Weather stations used in the Sonoma County SWB model.

Notes: NOAA – National Oceanic and Atmospheric Administration; CA DWR – California Department of Water Resources NCDC- National Climate Data Center; USACE – United States Army Corps of Engineers; WRCC – Western Regional Climate Center; CDEC – California Data Exchange Center

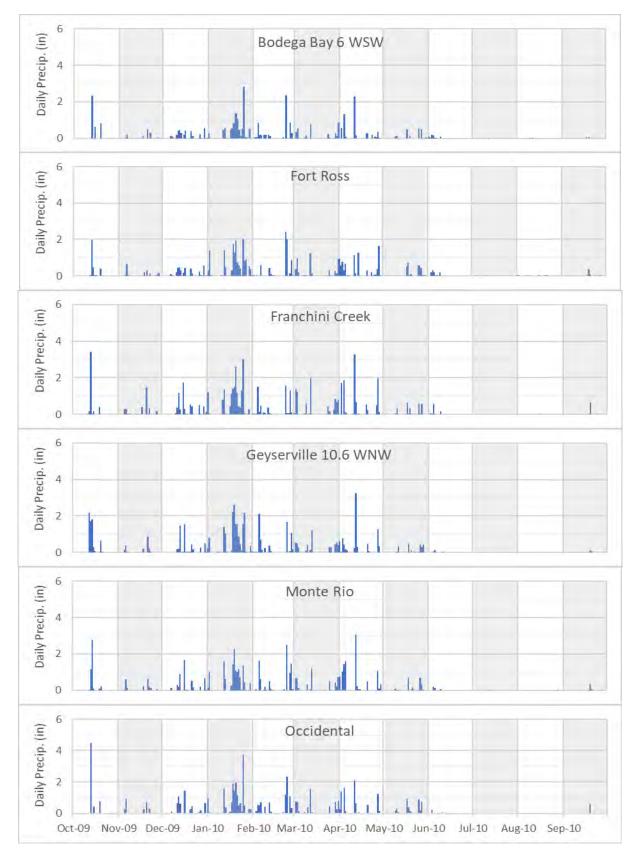


Figure 5: Daily precipitation data used in the Sonoma County SWB model.

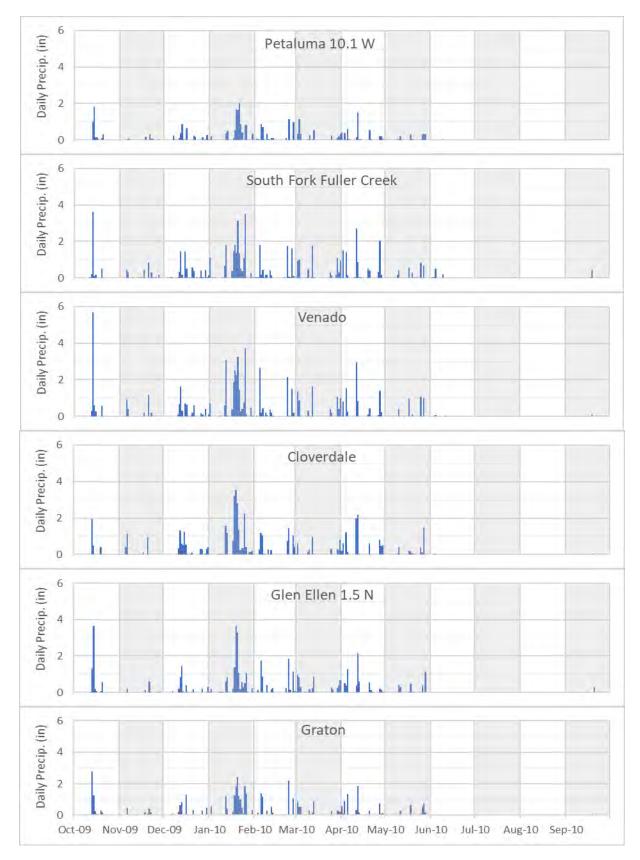


Figure 5 (continued)

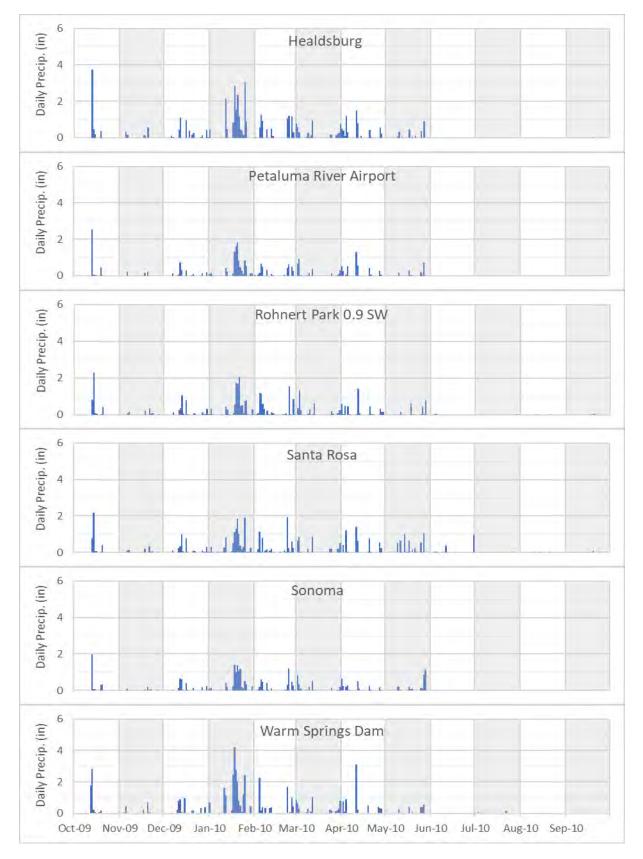


Figure 5 (continued)

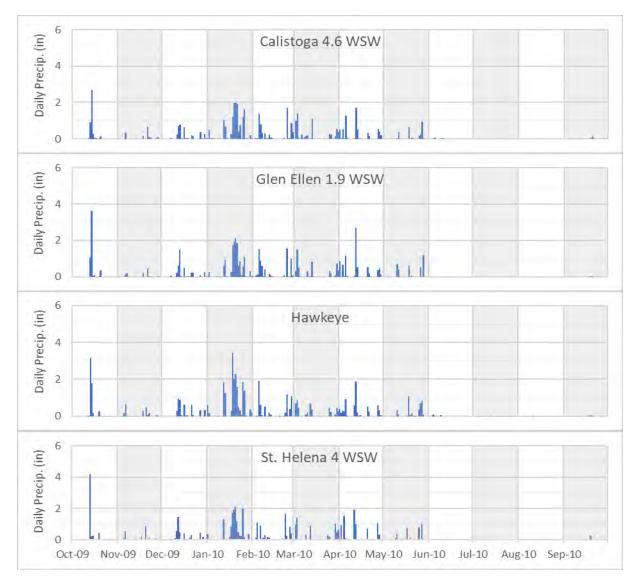


Figure 5 (continued)

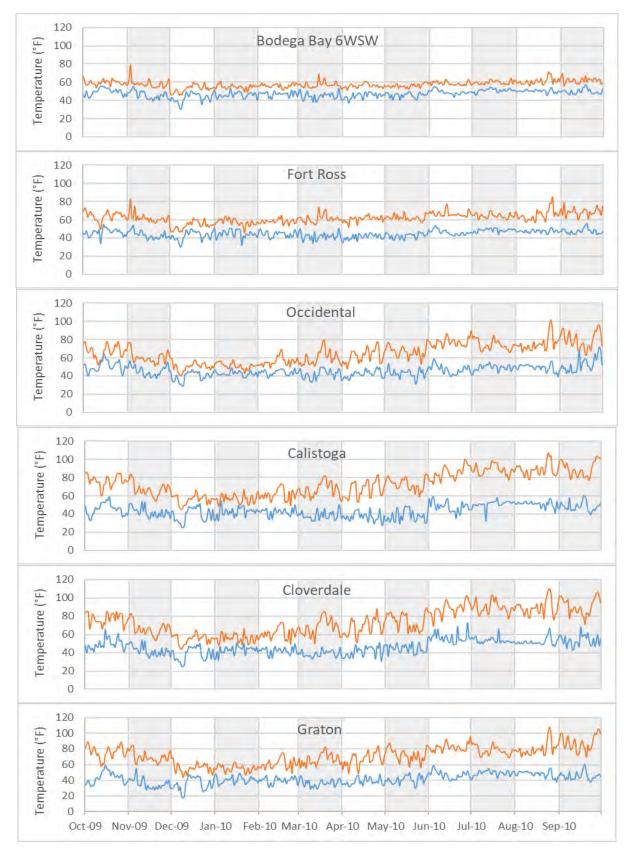


Figure 6: Daily minimum and maximum temperature data used in the Sonoma County SWB model.

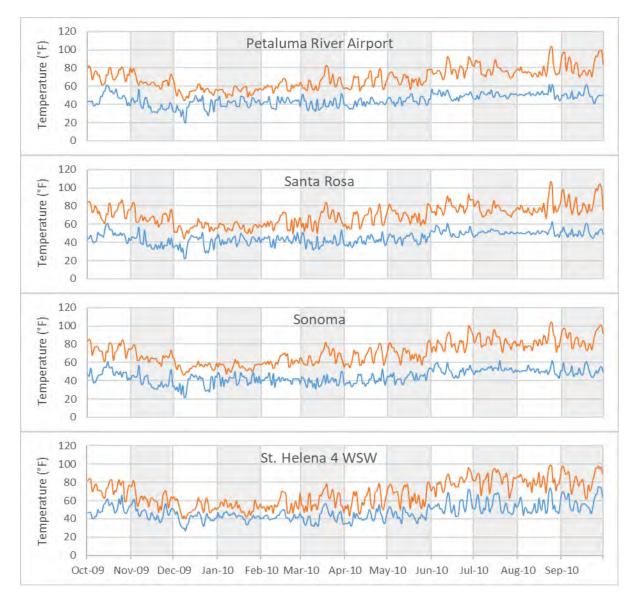


Figure 6 (continued)

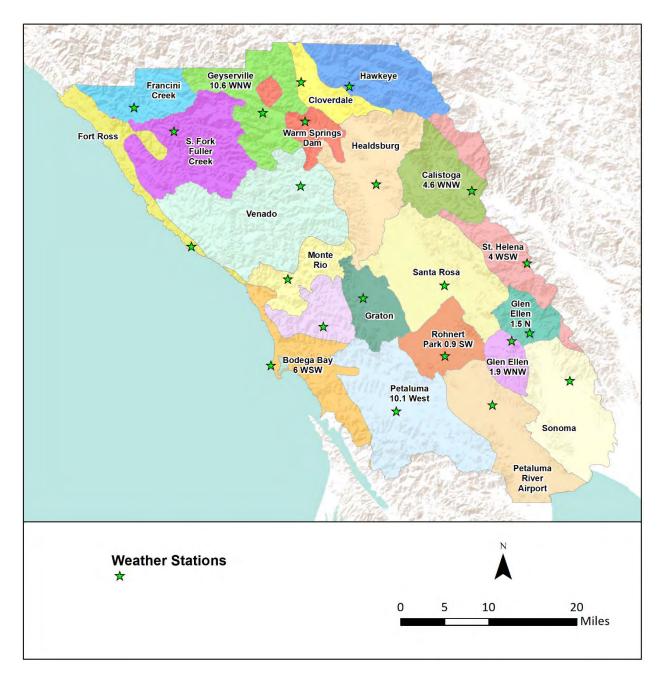


Figure 7: Precipitation zones used in the Sonoma County SWB model.

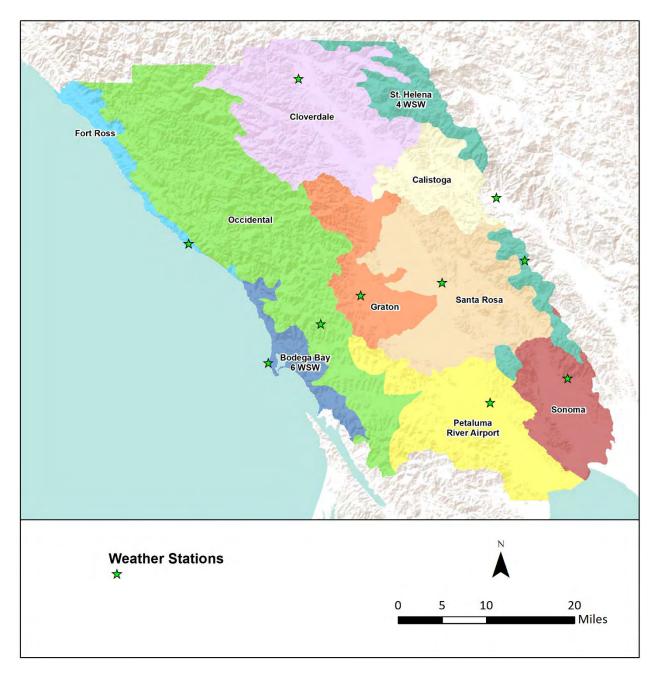


Figure 8: Temperature zones used in the Sonoma County SWB model.

Model Calibration

To provide a means of calibrating the Sonoma County SWB model, streamflow data was compiled from five gauges with available data for water year 2010 (Figure 9, Table 4). These gauges were selected because they represent relatively small watersheds without significant urbanization, diversions, groundwater abstraction, reservoir impoundments, or large alluvial bodies where significant exchanges between surface water and groundwater may be expected. These attributes are desirable because the hydrographs can more readily be separated into surface runoff and baseflow components and the surface runoff pattern is more directly comparable to the SWB simulated surface runoff which does not account for water use, reservoir operations, or surface water/groundwater exchange. An overview of hydrograph separation methods may be found in Healy (2010, pp. 85-90).

We utilized the web-based Hydrograph Analysis Tool (Lim et al., 2005) to perform baseflow separations on the gauge records using the recursive digital filter method (Eckahardt, 2005) and default filter parameters for perennial streams with hard rock aquifers. Total monthly surface runoff volumes were compiled for each gauge and compared to the mean monthly surface runoff volumes predicted by SWB within each corresponding watershed area. SWB utilizes a simplified routing scheme whereby surface runoff is routed to downslope cells or out of the model domain on the same day in which it originates as rainfall, thus it is not capable of accurately estimating streamflow over short-time frames. The use of the total monthly surface runoff volumes provides a means of calibrating the model to measured surface runoff data within the limitations of the model's routing scheme.

The model successfully reproduced the seasonal variations in surface runoff at all five gauge locations (Figure 10). Monthly Mean Errors (ME) ranged from -0.2 to 0.4 inches with a mean value of 0.1 inches (Table 5). Monthly Root Mean Square Errors (RMSE) ranged from 0.5 to 1.5 inches with a mean value of 1.0 inches. Annual surface runoff totals ranged from an under-prediction of approximately 10% at Franchini Creek to an over-prediction of approximately 19% at Buckeye Creek, with a mean over-prediction of approximately 6% across the five stations (Table 5). These results indicate that the SWB model was able to reproduce monthly surface runoff volumes with a reasonable degree of accuracy and that the model tends to over-predict surface runoff somewhat, suggesting that the model may generate a low-range estimate of recharge.

	Operated By	Drainage Area (mi ²)	Period of Record
Sonoma Creek at Kenwood, CA (#11458433)	USGS	14.3	Oct 2008 - present
Buckeye Creek	OEI	3.1	Dec 2005 - Sept. 2012
Franchini Creek	OEI	1.8	Dec 2005 - Sept. 2012
South Fork Fuller Creek	OEI	1.2	Mar 2006 - Sept. 2012
Soda Springs Creek	OEI	1.5	Dec 2005 - Sept. 2012

Table 4: Overview of the streamflow gauges used for calibrating the Sonoma County SWB model.

Notes: USGS - U.S. Geological Survey, OEI - O'Connor Environmental, Inc.

	Annual Simulated Surface Runoff (in)	Annual Observed Surface Runoff (in)	Annual PE	Monthly ME (in)	Monthly RMSE (in)
Sonoma Creek	12.7	11.7	8.1%	0.1	0.6
Buckeye Creek	31.6	26.5	19.2%	0.4	1.2
Franchini Creek	22.1	24.5	-9.6%	-0.2	1.0
South Fork Fuller Creek	24.1	21.9	10.2%	0.2	1.5
Soda Springs Creek	24.2	24.1	0.6%	0.0	0.5
MEAN	23.0	21.7	5.7%	0.1	1.0

Table 5: Calibration statistics for the Sonoma County SWB model calibration.

Notes: PE - Percent Error, ME - Mean Error, RMSE – Root Mean Square Error

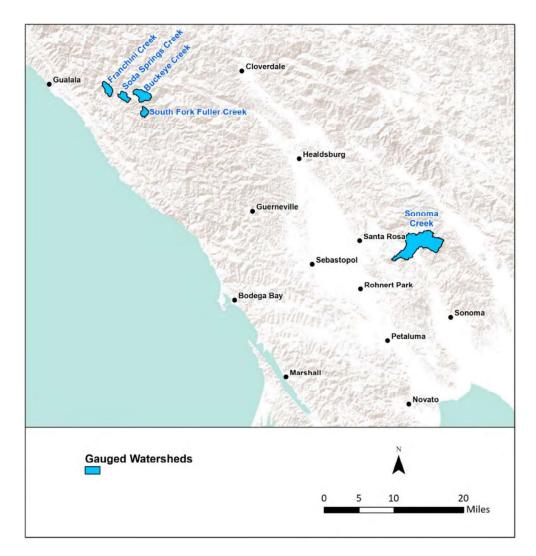


Figure 9: Gauged watersheds used to calibrate the Sonoma County SWB model.

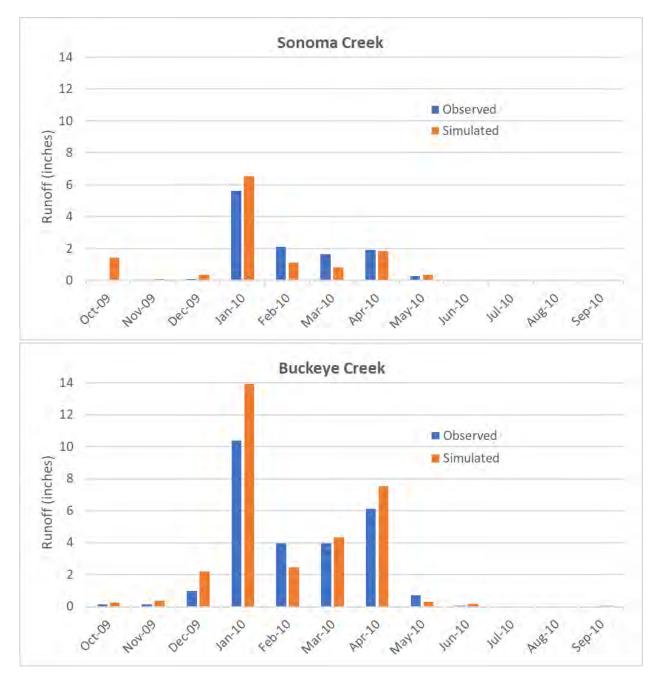


Figure 10: Comparison between monthly surface runoff computed from hydrograph separation at streamflow gauges and monthly surface runoff simulated with the Sonoma County SWB model.

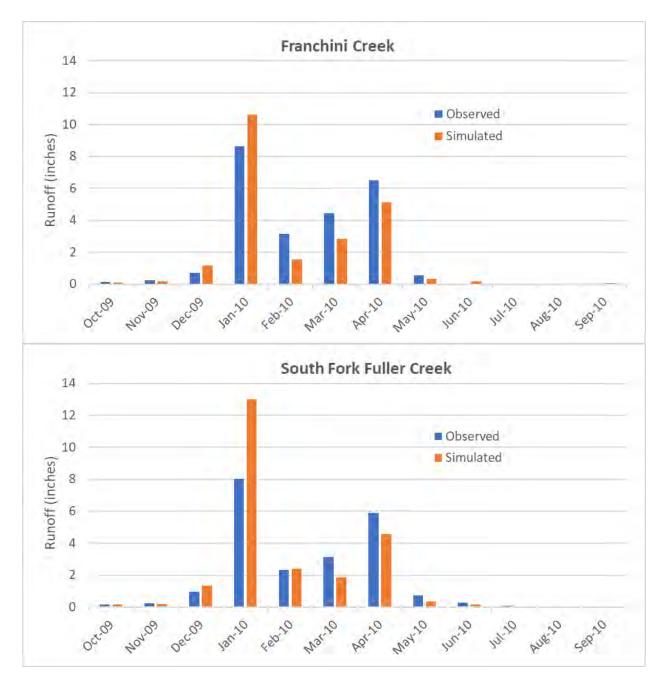


Figure 10 (continued)

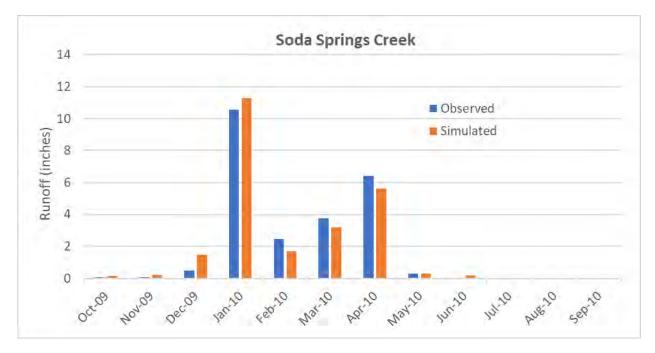


Figure 10 (continued)

Model Results

The principal elements of the annual water budget simulated with the Sonoma County SWB model for water year 2010 are shown in map form in Figures 12 through 16 and in tabular form (sorted by total annual precipitation) for 23 major watershed areas in the county in Table 6. The watersheds areas are a modified version of the USGS HUC-10 watersheds and are named for the stream which comprises the largest proportion of the area; although in many cases the areas consist of multiple tributary streams (Figure 11).

Water year 2010 precipitation varied from 26.1 inches in the Lower Sonoma Creek watershed to 70.7 inches in the Austin Creek watershed (Table 6, Figure 12). Actual evapotranspiration (AET) ranged from 17.9 inches in the San Antonio Creek watershed to 29.5 inches in the Pena Creek watershed (Table 6, Figure 13). Surface runoff ranged from 4.0 inches in the Lower Sonoma Creek watershed to 28.1 inches in the Austin Creek watershed (Table 6, Figure 14). Recharge ranged from 5.0 inches in the Lower Sonoma Creek watershed to 16.4 inches in the Austin Creek watershed (Table 6, Figure 15). Small decreases in soil moisture storage (up to 0.8 inches) occurred in 16 of the 23 watersheds and small increases (up to 0.8 inches) occurred in the remaining watersheds (Table 6, Figure 16).

When expressed as a percentage of the annual precipitation, AET ranged from 37% in the Austin Creek watershed to 69% in the Lower Sonoma Creek watershed (Table 7). Surface runoff ranged from 15% of precipitation in the Lower Sonoma Creek watershed to 40% in the Austin Creek watershed. The variations in recharge as a percentage of precipitation is relatively narrow ranging from 19% in the Lower Sonoma Creek watershed to 27% in the Salmon Creek watershed (Table 7).

Watershed	Drainage Area (sq. mi.)	Precipitation (in)	AET (in)	Surface Runoff (in)	Recharge (in)	Soil Moisture Change (in)
Lower Sonoma Creek	120	26.1	18.0	4.0	5.0	-0.8
San Antonio Creek	79	29.6	17.9	6.0	6.4	-0.7
Petaluma River	76	31.4	19.3	5.9	6.9	-0.7
Chileno Creek	145	33.3	19.1	7.0	7.9	-0.6
Upper Laguna De Santa Rosa	62	36.2	21.6	8.0	7.5	-0.8
Mark West Creek	161	43.3	26.6	8.7	8.5	-0.5
Lower Laguna De Santa Rosa	31	43.6	25.8	9.6	9.0	-0.8
Upper Sonoma Creek	45	46.4	24.1	13.4	9.4	-0.4
Sausal Creek	46	47.8	24.3	13.4	10.8	-0.8
Maacama Creek	97	47.9	25.4	12.6	10.6	-0.7
Salmon Creek	53	48.7	22.3	13.2	13.1	0.2
Atascadero Creek	38	50.2	28.1	12.7	10.0	-0.6
Big Sulphur Creek	130	52.6	26.2	16.5	10.5	-0.5
Lower Dry Creek	42	53.5	26.4	17.2	10.7	-0.7
Willow Creek	24	53.9	22.8	18.2	12.7	0.2
Mill Creek	53	55.4	27.7	17.1	11.3	-0.6
Upper Dry Creek	89	57.4	27.0	20.0	10.9	-0.5
Dutch Bill Creek	55	57.7	25.2	18.6	13.7	0.1
Wheatfield Fork Gualala River	145	61.4	26.0	20.9	14.0	0.5
Pena Creek	23	63.0	29.5	21.6	12.5	-0.5
Buckeye Creek	60	65.7	26.4	24.0	14.4	0.8
South Fork Gualala River	65	68.2	25.7	26.2	16.1	0.1
Austin Creek	70	70.7	26.1	28.1	16.4	0.0

Table 6: Water budgets simulated with the Sonoma County SWB model for water year 2010(see Figure 11 for locations).

Watershed	Drainage Area (sq. mi.)	Precipitation (in)	AET (%)	Surface Runoff (%)	Recharge (%)
Lower Sonoma Creek	120	26.1	69%	15%	19%
San Antonio Creek	79	29.6	60%	20%	22%
Petaluma River	76	31.4	62%	19%	22%
Chileno Creek	145	33.3	57%	21%	24%
Upper Laguna De Santa Rosa	62	36.2	59%	22%	21%
Mark West Creek	161	43.3	61%	20%	20%
Lower Laguna De Santa Rosa	31	43.6	59%	22%	21%
Upper Sonoma Creek	45	46.4	52%	29%	20%
Sausal Creek	46	47.8	51%	28%	23%
Maacama Creek	97	47.9	53%	26%	22%
Salmon Creek	53	48.7	46%	27%	27%
Atascadero Creek	38	50.2	56%	25%	20%
Big Sulphur Creek	130	52.6	50%	31%	20%
Lower Dry Creek	42	53.5	49%	32%	20%
Willow Creek	24	53.9	42%	34%	24%
Mill Creek	53	55.4	50%	31%	20%
Upper Dry Creek	89	57.4	47%	35%	19%
Dutch Bill Creek	55	57.7	44%	32%	24%
Wheatfield Fork Gualala River	145	61.4	42%	34%	23%
Pena Creek	23	63.0	47%	34%	20%
Buckeye Creek	60	65.7	40%	37%	22%
South Fork Gualala River	65	68.2	38%	38%	24%
Austin Creek	70	70.7	37%	40%	23%

Table 7: Water budgets simulated with the Sonoma County SWB model for water year 2010 expressed as apercentage of annual precipitation (see Figure 11 for locations).

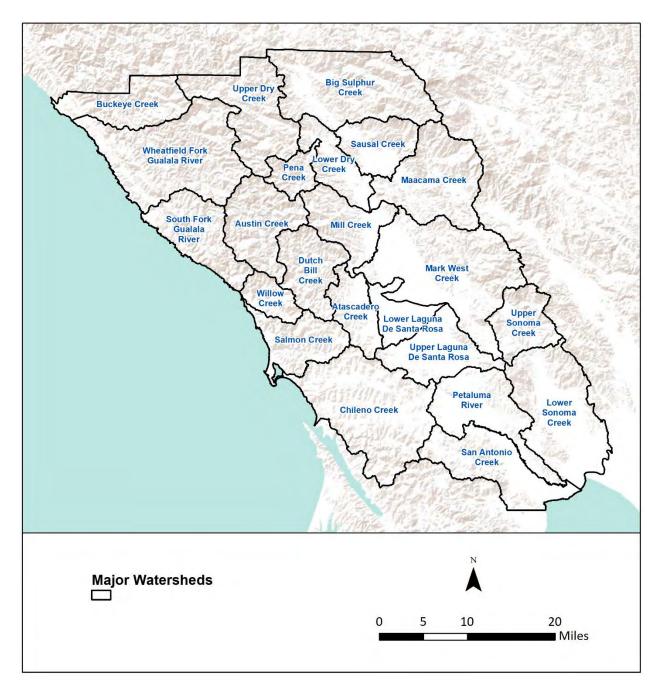


Figure 11: Major watersheds areas used to summarize water budget information in Tables 6 & 7).

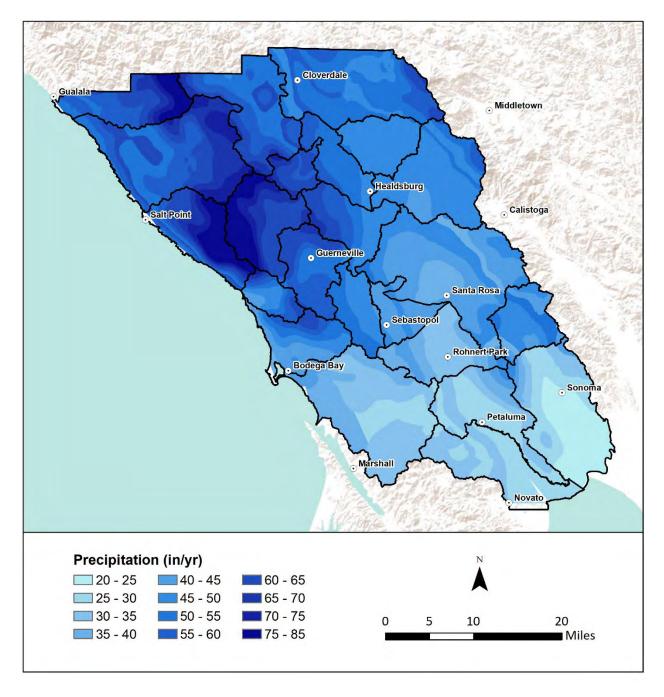


Figure 12: Water year 2010 Precipitation simulated with the Sonoma County SWB model.

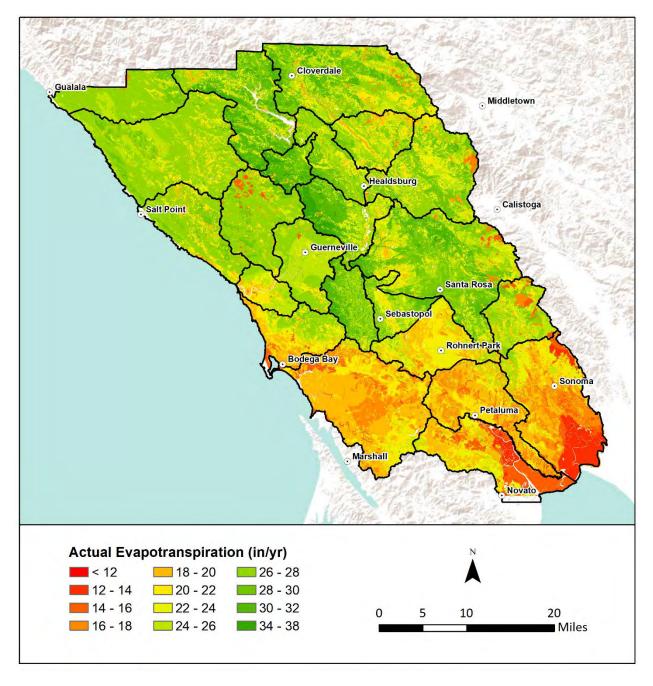


Figure 13: Water year 2010 Actual Evapotranspiration (AET) simulated with the Sonoma County SWB model.

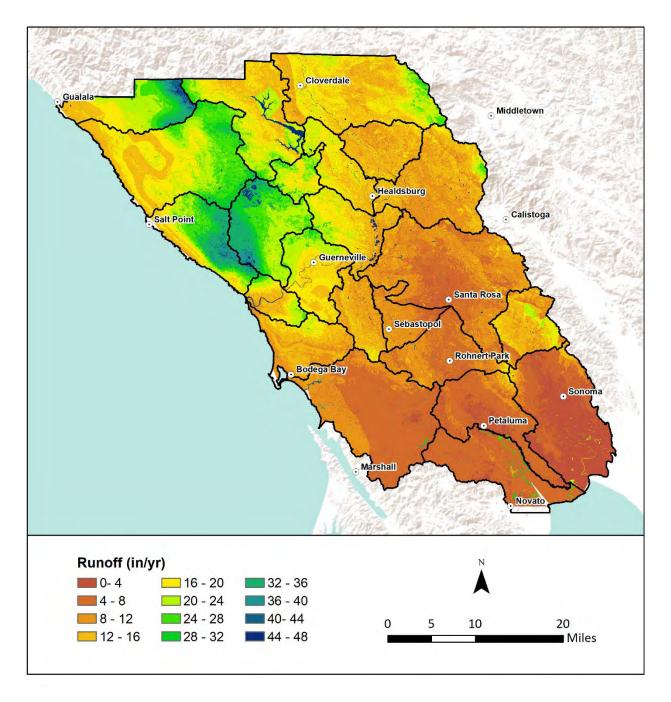


Figure 14: Water year 2010 Surface unoff simulated with the Sonoma County SWB model.

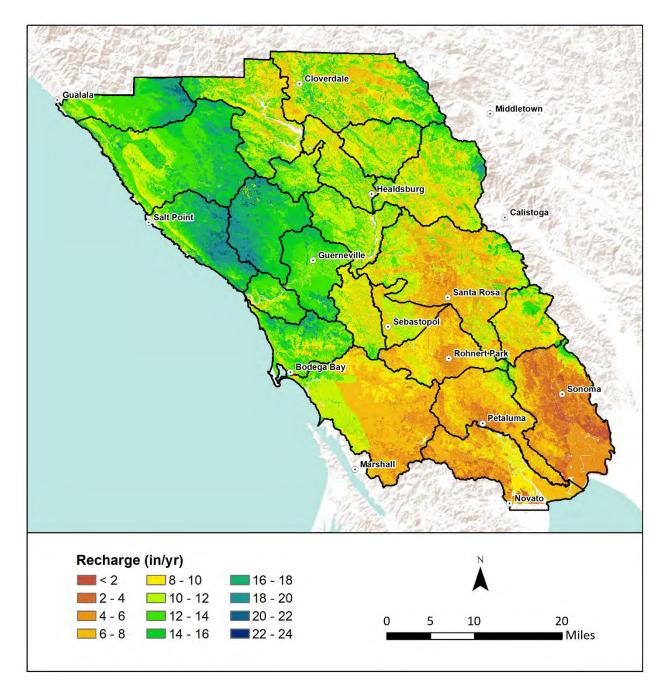


Figure 15: Water year 2010 Recharge simulated with the Sonoma County SWB model.

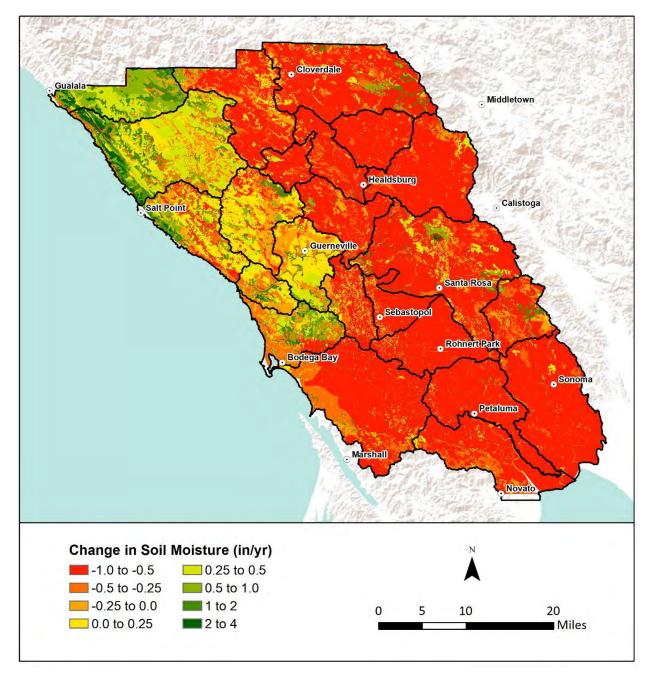


Figure 16: Water year 2010 Soil Moisture Change simulated with the Sonoma County SWB model.

Discussion and Conclusion

Previous modeling studies have estimated water budget components in several larger watershed areas in the county including the Santa Rosa Plain, the Green Valley and Dutch Bill Creek watersheds, and the Sonoma Valley (Farrar et. al., 2006; Kobor and O'Connor, 2016; Woolfenden and Hevesi, 2014). Comparisons to these water budgets are useful for evaluating the SWB results. One would not expect precise agreement owing to significant variations in climate, land cover, soil types, underlying hydrogeologic conditions, and different spatial scales of modeling studies. These regional analyses estimated that AET was equivalent to between 44% and 49% of mean annual precipitation which is consistent with this analysis where the county-wide AET was equivalent to 48% of the annual precipitation. The regional analyses estimated that surface runoff ranged from 37 to 55% of the annual precipitation which is somewhat higher than this analysis where the equivalent county-wide value was 29%. In the regional analyses, recharge varied from 7% to 19% of the annual precipitation. The equivalent county-wide value from this study is somewhat higher at 22%.

At the local scale, the simulation results indicate sensitivity of the water budget components to variations in topographic position, land cover, and soil texture, however at the watershed scale much of the variation in the principal water budget components (AET, surface runoff, and recharge) are correlated with variations in precipitation across the county (Figure 17). AET increases as a function of precipitation in watersheds with annual precipitation up to about 45 in/yr. Above 45 in/yr AET remains relatively constant (average of about 27 in/yr). This suggests that in portions of the county experiencing low precipitation where AET is limited by available soil moisture in contrast to areas of the county with higher precipitation where AET is limited by the potential ET. Although surface runoff varies more or less linearly as function of precipitation (Figure 17), the slope of the relationship with precipitation increases above precipitation of about 45 in/yr. This suggests that surface runoff increases with precipitation more sharply where precipitation is great enough to fully satisfy potential ET. Recharge also varies linearly as a function of precipitation (Figure 17).

The recharge estimates presented here arguably represent the best available county-wide estimates produced at a fine spatial resolution using a consistent and objective data-driven approach. The current analysis focused on a single water year, 2010, and was calibrated to streamflow gauge-derived monthly surface runoff rates at five locations. Future work to expand the analysis to additional water years and calibrate to additional gauge locations would help to further evaluate, refine, and quantify the uncertainty associated with the model's recharge estimates.

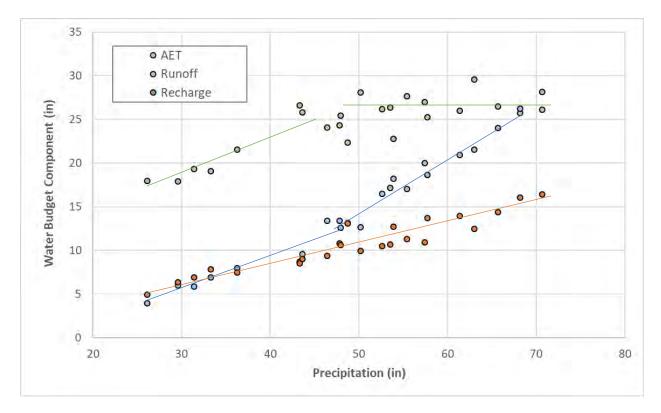


Figure 17: Principal water budget components simulated with the SWB model for major watersheds in Sonoma County as a function of annual precipitation. Trend lines fit by eye.

References

Cronshey, R., McCuen, R., Miller, N., Rawls, W., Robbins, S., and Woodward, D., 1986. Urban hydrology for small watersheds - TR-55 (2nd ed.), Washington, D.C., U.S. Department of Agriculture, Soil Conservation Service, Engineering Division, Technical Release 55, 164 p.

Eckhardt, K., 2005. How to Construct Recursive Digital Filters for Baseflow Separation. Hydrological Processes 19(2), pgs. 507-515.

Farrrar, C.D., Metzger, L.F., Nishikawa, T., Koczot, K.M., and Reichard, E.G., 2006. Geohydrological Characterization, Water-Chemistry, and Ground-water Flow Simulation Model of the Sonoma Valley Area, Sonoma County, California, U.S. Geological Survey Scientific Investigations Report 2006-5092.

Healy, R. W., 2010. Estimating Groundwater Recharge. Cambridge University Press. 245 p.

Kobor, J.S., and O'Connor, M., 2016. Integrated Surface and Groundwater Modeling and Flow Availability Analysis for Restoration Prioritization Planning: Green Valley/Atascadero and Dutch Bill Creek Watersheds, prepared by O'Connor Environmental, Inc. for the Gold Ridge Resource Conservation District, 175 pgs.

Lim, K.J., Engel, B.A., Tang, Z., Choi, J., Kim, K., Muthukrishnan, S., and Tripath, D., 2005. Automated Web GIS Based Hydrograph Analysis Tool, WHAT, Journal of the American Water Resources Association, Paper Number 04133, pgs. 1407-1460.

PRISM, 2010. 30 arcsecond resolution gridded total precipitation data for the conterminous United States, PRISM Climate Group, Oregon State University, www.prismclimate.org.

Thornthwaite, C.W., and Mather, J.R., 1957. Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance, Publications in Climatology, v. 10, no. 3, pgs 185-311.

Westenbroek, S.M., Kelson, V.A., Dripps, W.R., Hunt R.J., and Bradbury, K.R., 2010. SWB - A Modified Thornthwaite-Mather Soil-Water-Balance Code for Estimating Groundwater Recharge, U.S. Geological Survey Techniques and Methods 6-A31, 60 pgs.

Woolfenden, L.R., and Hevesi, J.A., 2014. Santa Rosa Plain Hydrologic Model Results, Chapter E in Simulation of Groundwater and Surface-Water Resources of the Santa Rosa Plain Watershed, Sonoma County, California, U.S. Geological Survey Scientific Investigations Report 2014-5052.

