

California Emissions Estimator Model (CalEEMod) Output Files

CalEEMod Version: CalEEMod.2016.3.2 Page 1 of 27 Date: 8/6/2020 4:15 PM

Rezoning Sites for Housing Project - Sonoma County - Sonoma-San Francisco County, Winter

### **Rezoning Sites for Housing Project - Sonoma County**

### Sonoma-San Francisco County, Winter

### 1.0 Project Characteristics

### 1.1 Land Usage

| Land Uses             | Size  | Metric        | Lot Acreage | Floor Surface Area | Population |
|-----------------------|-------|---------------|-------------|--------------------|------------|
| Single Family Housing | 38.00 | Dwelling Unit | 12.34       | 68,400.00          | 109        |

### 1.2 Other Project Characteristics

| Urbanization               | Urban                 | Wind Speed (m/s)           | 2.2   | Precipitation Freq (Days)  | 75    |
|----------------------------|-----------------------|----------------------------|-------|----------------------------|-------|
| Climate Zone               | 4                     |                            |       | Operational Year           | 2021  |
| Utility Company            | Pacific Gas & Electri | c Company                  |       |                            |       |
| CO2 Intensity<br>(lb/MWhr) | 641.35                | CH4 Intensity<br>(lb/MWhr) | 0.029 | N2O Intensity<br>(lb/MWhr) | 0.006 |

### 1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.2 Page 2 of 27 Date: 8/6/2020 4:15 PM

Rezoning Sites for Housing Project - Sonoma County - Sonoma-San Francisco County, Winter

Project Characteristics -

Land Use -

Construction Phase - Grading portion extended to represent a realistic length for amount of soil import/export.

Trips and VMT -

Demolition -

Grading -

Architectural Coating -

Vehicle Trips - Adjusted trip rates for VMT total

Woodstoves - '

Area Coating -

Water And Wastewater -

Solid Waste -

Construction Off-road Equipment Mitigation -

| Table Name           | Column Name      | Default Value | New Value |
|----------------------|------------------|---------------|-----------|
| tblConstructionPhase | NumDays          | 30.00         | 60.00     |
| tblGrading           | MaterialExported | 0.00          | 5,808.00  |
| tblGrading           | MaterialImported | 0.00          | 5,808.00  |
| tblVehicleTrips      | ST_TR            | 9.91          | 3.50      |
| tblVehicleTrips      | SU_TR            | 8.62          | 3.50      |
| tblVehicleTrips      | WD_TR            | 9.52          | 3.50      |

### 2.0 Emissions Summary

CalEEMod Version: CalEEMod.2016.3.2 Page 3 of 27 Date: 8/6/2020 4:15 PM

### Rezoning Sites for Housing Project - Sonoma County - Sonoma-San Francisco County, Winter

### 2.1 Overall Construction (Maximum Daily Emission)

### **Unmitigated Construction**

|         | ROG     | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|---------|---------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|----------------|----------------|--------|--------|----------------|
| Year    |         |         |         |        | lb/d             | day             |               |                   |                  |             |          |                | lb/d           | day    |        |                |
| 2021    | 4.4733  | 53.0845 | 32.9805 | 0.0822 | 18.2141          | 2.0456          | 20.2597       | 9.9699            | 1.8819           | 11.8518     | 0.0000   | 8,170.942<br>2 | 8,170.942<br>2 | 2.0761 | 0.0000 | 8,222.843<br>9 |
| 2022    | 48.3677 | 16.0716 | 16.8744 | 0.0290 | 0.1419           | 0.8108          | 0.9527        | 0.0383            | 0.7629           | 0.8011      | 0.0000   | 2,766.988<br>2 | 2,766.988<br>2 | 0.7175 | 0.0000 | 2,782.537<br>2 |
| Maximum | 48.3677 | 53.0845 | 32.9805 | 0.0822 | 18.2141          | 2.0456          | 20.2597       | 9.9699            | 1.8819           | 11.8518     | 0.0000   | 8,170.942<br>2 | 8,170.942<br>2 | 2.0761 | 0.0000 | 8,222.843<br>9 |

### **Mitigated Construction**

|                      | ROG     | NOx     | СО      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total    | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------------------|---------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------|
| Year                 |         |         |         |        | lb/              | /day            |               |                   |                  |                |          |                | lb.            | /day   |        |                |
| 2021                 | 4.4733  | 53.0845 | 32.9805 | 0.0822 | 18.2141          | 2.0456          | 20.2597       | 9.9699            | 1.8819           | 11.8518        | 0.0000   | 8,170.942<br>2 | 8,170.942<br>2 | 2.0761 | 0.0000 | 8,222.843<br>9 |
| 2022                 | 48.3677 | 16.0716 | 16.8744 | 0.0290 | 0.1419           | 0.8108          | 0.9527        | 0.0383            | 0.7629           | 0.8011         | 0.0000   | 2,766.988<br>2 | 2,766.988<br>2 | 0.7175 | 0.0000 | 2,782.537<br>2 |
| Maximum              | 48.3677 | 53.0845 | 32.9805 | 0.0822 | 18.2141          | 2.0456          | 20.2597       | 9.9699            | 1.8819           | 11.8518        | 0.0000   | 8,170.942<br>2 | 8,170.942<br>2 | 2.0761 | 0.0000 | 8,222.843<br>9 |
|                      | ROG     | NOx     | СО      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio-CO2       | Total CO2      | CH4    | N20    | CO2e           |
| Percent<br>Reduction | 0.00    | 0.00    | 0.00    | 0.00   | 0.00             | 0.00            | 0.00          | 0.00              | 0.00             | 0.00           | 0.00     | 0.00           | 0.00           | 0.00   | 0.00   | 0.00           |

CalEEMod Version: CalEEMod.2016.3.2 Page 4 of 27 Date: 8/6/2020 4:15 PM

### Rezoning Sites for Housing Project - Sonoma County - Sonoma-San Francisco County, Winter

2.2 Overall Operational Unmitigated Operational

|          | ROG     | NOx    | СО      | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4             | N2O             | CO2e           |
|----------|---------|--------|---------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|----------------|----------------|-----------------|-----------------|----------------|
| Category | lb/day  |        |         |                 |                  |                 |               |                   |                  | lb/day      |          |                |                |                 |                 |                |
| Area     | 41.2029 | 0.7945 | 54.0728 | 0.0961          |                  | 7.2192          | 7.2192        |                   | 7.2192           | 7.2192      | 774.3769 | 240.3509       | 1,014.727<br>7 | 0.9630          | 0.0546          | 1,055.085<br>2 |
| Energy   | 0.0326  | 0.2789 | 0.1187  | 1.7800e-<br>003 |                  | 0.0226          | 0.0226        |                   | 0.0226           | 0.0226      |          | 355.9947       | 355.9947       | 6.8200e-<br>003 | 6.5300e-<br>003 | 358.1102       |
| Mobile   | 0.2439  | 1.2499 | 2.8601  | 7.8900e-<br>003 | 0.6550           | 8.3800e-<br>003 | 0.6633        | 0.1756            | 7.8800e-<br>003  | 0.1835      |          | 798.5361       | 798.5361       | 0.0371          |                 | 799.4643       |
| Total    | 41.4793 | 2.3233 | 57.0516 | 0.1058          | 0.6550           | 7.2501          | 7.9051        | 0.1756            | 7.2496           | 7.4252      | 774.3769 | 1,394.881<br>6 | 2,169.258<br>5 | 1.0069          | 0.0612          | 2,212.659<br>6 |

### **Mitigated Operational**

|          | ROG     | NOx    | СО      | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4             | N2O             | CO2e           |
|----------|---------|--------|---------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|----------------|----------------|-----------------|-----------------|----------------|
| Category | lb/day  |        |         |                 |                  |                 |               |                   |                  | lb/day      |          |                |                |                 |                 |                |
| Area     | 41.2029 | 0.7945 | 54.0728 | 0.0961          |                  | 7.2192          | 7.2192        |                   | 7.2192           | 7.2192      | 774.3769 | 240.3509       | 1,014.727<br>7 | 0.9630          | 0.0546          | 1,055.085<br>2 |
| Energy   | 0.0326  | 0.2789 | 0.1187  | 1.7800e-<br>003 |                  | 0.0226          | 0.0226        |                   | 0.0226           | 0.0226      |          | 355.9947       | 355.9947       | 6.8200e-<br>003 | 6.5300e-<br>003 | 358.1102       |
| Mobile   | 0.2439  | 1.2499 | 2.8601  | 7.8900e-<br>003 | 0.6550           | 8.3800e-<br>003 | 0.6633        | 0.1756            | 7.8800e-<br>003  | 0.1835      |          | 798.5361       | 798.5361       | 0.0371          |                 | 799.4643       |
| Total    | 41.4793 | 2.3233 | 57.0516 | 0.1058          | 0.6550           | 7.2501          | 7.9051        | 0.1756            | 7.2496           | 7.4252      | 774.3769 | 1,394.881<br>6 | 2,169.258<br>5 | 1.0069          | 0.0612          | 2,212.659<br>6 |

### Rezoning Sites for Housing Project - Sonoma County - Sonoma-San Francisco County, Winter

|                      | ROG  | NOx  | СО   | SO2  | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4  | N20  | CO2e |
|----------------------|------|------|------|------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------|-----------|------|------|------|
| Percent<br>Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 0.00             | 0.00            | 0.00          | 0.00              | 0.00             | 0.00           | 0.00     | 0.00     | 0.00      | 0.00 | 0.00 | 0.00 |

### 3.0 Construction Detail

### **Construction Phase**

| Phase<br>Number | Phase Name            | Phase Type            | Start Date | End Date  | Num Days<br>Week | Num Days | Phase Description |
|-----------------|-----------------------|-----------------------|------------|-----------|------------------|----------|-------------------|
| 1               | Demolition            | Demolition            | 1/1/2021   | 1/28/2021 | 5                | 20       |                   |
| 2               | Site Preparation      | Site Preparation      | 1/29/2021  | 2/11/2021 | 5                | 10       |                   |
| 3               | Grading               | Grading               | 2/12/2021  | 5/6/2021  | 5                | 60       |                   |
| 4               | Building Construction | Building Construction | 5/7/2021   | 6/30/2022 | 5                | 300      |                   |
| 5               | Paving                | Paving                | 7/1/2022   | 7/28/2022 | 5                | 20       |                   |
| 6               | Architectural Coating | Architectural Coating | 7/29/2022  | 8/25/2022 | 5                | 20       |                   |

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 150

Acres of Paving: 0

Residential Indoor: 138,510; Residential Outdoor: 46,170; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

**OffRoad Equipment** 

CalEEMod Version: CalEEMod.2016.3.2 Page 10 of 27 Date: 8/6/2020 4:15 PM

### Rezoning Sites for Housing Project - Sonoma County - Sonoma-San Francisco County, Winter

3.3 Site Preparation - 2021

<u>Unmitigated Construction Off-Site</u>

|          | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-----|----------|
| Category |        |        |        |                 | lb/d             | day             |               |                   |                  |             |          |           | lb/d      | day             |     |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000          |     | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000          |     | 0.0000   |
| Worker   | 0.0880 | 0.0615 | 0.5838 | 1.3800e-<br>003 | 0.1479           | 1.1000e-<br>003 | 0.1490        | 0.0392            | 1.0200e-<br>003  | 0.0402      |          | 136.9553  | 136.9553  | 4.7100e-<br>003 |     | 137.0730 |
| Total    | 0.0880 | 0.0615 | 0.5838 | 1.3800e-<br>003 | 0.1479           | 1.1000e-<br>003 | 0.1490        | 0.0392            | 1.0200e-<br>003  | 0.0402      |          | 136.9553  | 136.9553  | 4.7100e-<br>003 |     | 137.0730 |

### **Mitigated Construction On-Site**

|               | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O  | CO2e           |
|---------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|----------------|----------------|--------|------|----------------|
| Category      |        |         |         |        | lb/d             | day             |               |                   |                  |             |          |                | lb/c           | lay    |      |                |
| Fugitive Dust |        |         |         |        | 18.0663          | 0.0000          | 18.0663       | 9.9307            | 0.0000           | 9.9307      |          |                | 0.0000         |        |      | 0.0000         |
| Off-Road      | 3.8882 | 40.4971 | 21.1543 | 0.0380 |                  | 2.0445          | 2.0445        |                   | 1.8809           | 1.8809      | 0.0000   | 3,685.656<br>9 | 3,685.656<br>9 | 1.1920 | <br> | 3,715.457<br>3 |
| Total         | 3.8882 | 40.4971 | 21.1543 | 0.0380 | 18.0663          | 2.0445          | 20.1107       | 9.9307            | 1.8809           | 11.8116     | 0.0000   | 3,685.656<br>9 | 3,685.656<br>9 | 1.1920 |      | 3,715.457<br>3 |

CalEEMod Version: CalEEMod.2016.3.2 Page 11 of 27 Date: 8/6/2020 4:15 PM

### Rezoning Sites for Housing Project - Sonoma County - Sonoma-San Francisco County, Winter

3.3 Site Preparation - 2021

Mitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-----|----------|
| Category |        |        |        |                 | lb/d             | day             |               |                   |                  |             |          |           | lb/d      | day             |     |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000          |     | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 0.0000    | 0.0000    | 0.0000          |     | 0.0000   |
| Worker   | 0.0880 | 0.0615 | 0.5838 | 1.3800e-<br>003 | 0.1479           | 1.1000e-<br>003 | 0.1490        | 0.0392            | 1.0200e-<br>003  | 0.0402      |          | 136.9553  | 136.9553  | 4.7100e-<br>003 |     | 137.0730 |
| Total    | 0.0880 | 0.0615 | 0.5838 | 1.3800e-<br>003 | 0.1479           | 1.1000e-<br>003 | 0.1490        | 0.0392            | 1.0200e-<br>003  | 0.0402      |          | 136.9553  | 136.9553  | 4.7100e-<br>003 |     | 137.0730 |

### 3.4 Grading - 2021

**Unmitigated Construction On-Site** 

|               | ROG    | NOx     | СО      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O  | CO2e           |
|---------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|----------------|----------------|--------|------|----------------|
| Category      |        |         |         |        | lb/d             | day             |               |                   |                  |             |          |                | lb/c           | day    |      |                |
| Fugitive Dust |        |         |         |        | 8.6952           | 0.0000          | 8.6952        | 3.5998            | 0.0000           | 3.5998      |          |                | 0.0000         |        |      | 0.0000         |
| Off-Road      | 4.1912 | 46.3998 | 30.8785 | 0.0620 |                  | 1.9853          | 1.9853        |                   | 1.8265           | 1.8265      |          | 6,007.043<br>4 | 6,007.043<br>4 | 1.9428 | <br> | 6,055.613<br>4 |
| Total         | 4.1912 | 46.3998 | 30.8785 | 0.0620 | 8.6952           | 1.9853          | 10.6806       | 3.5998            | 1.8265           | 5.4263      |          | 6,007.043<br>4 | 6,007.043<br>4 | 1.9428 |      | 6,055.613<br>4 |

CalEEMod Version: CalEEMod.2016.3.2 Page 12 of 27 Date: 8/6/2020 4:15 PM

### Rezoning Sites for Housing Project - Sonoma County - Sonoma-San Francisco County, Winter

3.4 Grading - 2021

<u>Unmitigated Construction Off-Site</u>

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4             | N2O | CO2e           |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|----------------|----------------|-----------------|-----|----------------|
| Category |        |        |        |                 | lb/d             | day             |               |                   |                  |             |          |                | lb/c           | lay             |     |                |
| Hauling  | 0.1843 | 6.6164 | 1.4534 | 0.0187          | 0.4177           | 0.0228          | 0.4405        | 0.1140            | 0.0218           | 0.1358      |          | 2,011.726<br>2 | 2,011.7262     | 0.1280          |     | 2,014.927<br>1 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      |          | 0.0000         | 0.0000         | 0.0000          |     | 0.0000         |
| Worker   | 0.0978 | 0.0683 | 0.6487 | 1.5300e-<br>003 | 0.1643           | 1.2300e-<br>003 | 0.1655        | 0.0436            | 1.1300e-<br>003  | 0.0447      |          | 152.1726       | 152.1726       | 5.2300e-<br>003 |     | 152.3033       |
| Total    | 0.2821 | 6.6847 | 2.1021 | 0.0202          | 0.5820           | 0.0240          | 0.6060        | 0.1576            | 0.0229           | 0.1805      |          | 2,163.898<br>8 | 2,163.898<br>8 | 0.1333          |     | 2,167.230<br>5 |

### **Mitigated Construction On-Site**

|               | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O  | CO2e           |
|---------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|----------------|----------------|--------|------|----------------|
| Category      |        |         |         |        | lb/d             | day             |               |                   |                  |             |          |                | lb/c           | lay    |      |                |
| Fugitive Dust |        |         |         |        | 8.6952           | 0.0000          | 8.6952        | 3.5998            | 0.0000           | 3.5998      |          |                | 0.0000         |        |      | 0.0000         |
| Off-Road      | 4.1912 | 46.3998 | 30.8785 | 0.0620 |                  | 1.9853          | 1.9853        |                   | 1.8265           | 1.8265      | 0.0000   | 6,007.043<br>4 | 6,007.043<br>4 | 1.9428 | <br> | 6,055.613<br>4 |
| Total         | 4.1912 | 46.3998 | 30.8785 | 0.0620 | 8.6952           | 1.9853          | 10.6806       | 3.5998            | 1.8265           | 5.4263      | 0.0000   | 6,007.043<br>4 | 6,007.043      | 1.9428 |      | 6,055.613<br>4 |

CalEEMod Version: CalEEMod.2016.3.2 Page 13 of 27 Date: 8/6/2020 4:15 PM

### Rezoning Sites for Housing Project - Sonoma County - Sonoma-San Francisco County, Winter

3.4 Grading - 2021

<u>Mitigated Construction Off-Site</u>

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4             | N2O | CO2e           |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|-----------------|-----|----------------|
| Category |        |        |        |                 | lb/d             | day             |               |                   |                  |                |          |                | lb/d           | day             |     |                |
| Hauling  | 0.1843 | 6.6164 | 1.4534 | 0.0187          | 0.4177           | 0.0228          | 0.4405        | 0.1140            | 0.0218           | 0.1358         | i<br>i   | 2,011.7262     | 2,011.7262     | 0.1280          |     | 2,014.927<br>1 |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         |          | 0.0000         | 0.0000         | 0.0000          |     | 0.0000         |
| Worker   | 0.0978 | 0.0683 | 0.6487 | 1.5300e-<br>003 | 0.1643           | 1.2300e-<br>003 | 0.1655        | 0.0436            | 1.1300e-<br>003  | 0.0447         |          | 152.1726       | 152.1726       | 5.2300e-<br>003 |     | 152.3033       |
| Total    | 0.2821 | 6.6847 | 2.1021 | 0.0202          | 0.5820           | 0.0240          | 0.6060        | 0.1576            | 0.0229           | 0.1805         |          | 2,163.898<br>8 | 2,163.898<br>8 | 0.1333          |     | 2,167.230<br>5 |

### 3.5 Building Construction - 2021

**Unmitigated Construction On-Site** 

|          | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |         |         |        | lb/d             | day             |               |                   |                  |             |          |                | lb/c           | lay    |     |                |
| Off-Road | 1.9009 | 17.4321 | 16.5752 | 0.0269 |                  | 0.9586          | 0.9586        |                   | 0.9013           | 0.9013      |          | 2,553.363<br>9 | 2,553.363<br>9 | 0.6160 |     | 2,568.764<br>3 |
| Total    | 1.9009 | 17.4321 | 16.5752 | 0.0269 |                  | 0.9586          | 0.9586        |                   | 0.9013           | 0.9013      |          | 2,553.363<br>9 | 2,553.363<br>9 | 0.6160 |     | 2,568.764<br>3 |

CalEEMod Version: CalEEMod.2016.3.2 Page 14 of 27 Date: 8/6/2020 4:15 PM

### Rezoning Sites for Housing Project - Sonoma County - Sonoma-San Francisco County, Winter

3.5 Building Construction - 2021 Unmitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|-----|----------|
| Category |        |        |        |                 | lb/d             | day             |               |                   |                  |                 |          |           | lb/c      | lay             |     |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          |          | 0.0000    | 0.0000    | 0.0000          |     | 0.0000   |
| Vendor   | 0.0132 | 0.4355 | 0.1144 | 1.0400e-<br>003 | 0.0269           | 1.1200e-<br>003 | 0.0280        | 7.7400e-<br>003   | 1.0700e-<br>003  | 8.8100e-<br>003 |          | 111.0783  | 111.0783  | 6.9700e-<br>003 |     | 111.2526 |
| Worker   | 0.0684 | 0.0478 | 0.4541 | 1.0700e-<br>003 | 0.1150           | 8.6000e-<br>004 | 0.1159        | 0.0305            | 7.9000e-<br>004  | 0.0313          |          | 106.5208  | 106.5208  | 3.6600e-<br>003 |     | 106.6123 |
| Total    | 0.0816 | 0.4833 | 0.5685 | 2.1100e-<br>003 | 0.1419           | 1.9800e-<br>003 | 0.1439        | 0.0383            | 1.8600e-<br>003  | 0.0401          |          | 217.5991  | 217.5991  | 0.0106          |     | 217.8649 |

### **Mitigated Construction On-Site**

|          | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O | CO2e           |
|----------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|----------------|----------------|--------|-----|----------------|
| Category |        |         |         |        | lb/d             | day             |               |                   |                  |             |          |                | lb/c           | lay    |     |                |
| Off-Road | 1.9009 | 17.4321 | 16.5752 | 0.0269 |                  | 0.9586          | 0.9586        |                   | 0.9013           | 0.9013      | 0.0000   | 2,553.363<br>9 | 2,553.363<br>9 | 0.6160 |     | 2,568.764<br>3 |
| Total    | 1.9009 | 17.4321 | 16.5752 | 0.0269 |                  | 0.9586          | 0.9586        |                   | 0.9013           | 0.9013      | 0.0000   | 2,553.363<br>9 | 2,553.363<br>9 | 0.6160 |     | 2,568.764<br>3 |

### Rezoning Sites for Housing Project - Sonoma County - Sonoma-San Francisco County, Winter

|             | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O | CO2e     |
|-------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|-----|----------|
| Category    | lb/day |        |        |                 |                  |                 |               |                   |                  |             |          | lb/c      | day       |        |     |          |
| Mitigated   | 0.2439 | 1.2499 | 2.8601 | 7.8900e-<br>003 | 0.6550           | 8.3800e-<br>003 | 0.6633        | 0.1756            | 7.8800e-<br>003  | 0.1835      |          | 798.5361  | 798.5361  | 0.0371 |     | 799.4643 |
| Unmitigated | 0.2439 | 1.2499 | 2.8601 | 7.8900e-<br>003 | 0.6550           | 8.3800e-<br>003 | 0.6633        | 0.1756            | 7.8800e-<br>003  | 0.1835      |          | 798.5361  | 798.5361  | 0.0371 |     | 799.4643 |

### **4.2 Trip Summary Information**

|                       | Avei    | rage Daily Trip Ra | ate    | Unmitigated | Mitigated  |
|-----------------------|---------|--------------------|--------|-------------|------------|
| Land Use              | Weekday | Saturday           | Sunday | Annual VMT  | Annual VMT |
| Single Family Housing | 133.00  | 133.00             | 133.00 | 307,178     | 307,178    |
| Total                 | 133.00  | 133.00             | 133.00 | 307,178     | 307,178    |

### **4.3 Trip Type Information**

|                       |            | Miles       |            |            | Trip %      |         | Trip Purpose % |         |   |  |  |
|-----------------------|------------|-------------|------------|------------|-------------|---------|----------------|---------|---|--|--|
| Land Use              | H-W or C-W | H-O or C-NW | H-W or C-W | H-S or C-C | H-O or C-NW | Primary | Diverted       | Pass-by |   |  |  |
| Single Family Housing | 10.80      | 4.80        | 5.70       | 31.00      | 15.00       | 54.00   | 86             | 11      | 3 |  |  |

### 4.4 Fleet Mix

| Land Use              | LDA      | LDT1     | LDT2     | MDV      | LHD1     | LHD2     | MHD      | HHD      | OBUS     | UBUS     | MCY      | SBUS     | МН       |
|-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Single Family Housing | 0.578299 | 0.039453 | 0.169996 | 0.109068 | 0.028307 | 0.006716 | 0.029274 | 0.026666 | 0.003071 | 0.001838 | 0.005325 | 0.000874 | 0.001112 |

### 5.0 Energy Detail

Historical Energy Use: N

CalEEMod Version: CalEEMod.2016.3.2 Page 23 of 27 Date: 8/6/2020 4:15 PM

### Rezoning Sites for Housing Project - Sonoma County - Sonoma-San Francisco County, Winter

### **5.1 Mitigation Measures Energy**

|                           | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|---------------------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Category                  |        |        |        |                 | lb/d             | day             |               |                   |                  |             |          |           | lb/d      | lay             |                 |          |
| NaturalGas<br>Mitigated   | 0.0326 | 0.2789 | 0.1187 | 1.7800e-<br>003 |                  | 0.0226          | 0.0226        |                   | 0.0226           | 0.0226      |          | 355.9947  | 355.9947  | 6.8200e-<br>003 | 6.5300e-<br>003 | 358.1102 |
| NaturalGas<br>Unmitigated | 0.0326 | 0.2789 | 0.1187 | 1.7800e-<br>003 |                  | 0.0226          | 0.0226        |                   | 0.0226           | 0.0226      |          | 355.9947  | 355.9947  | 6.8200e-<br>003 | 6.5300e-<br>003 | 358.1102 |

### 5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

|                          | NaturalGa<br>s Use | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|--------------------------|--------------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Land Use                 | kBTU/yr            |        |        |        |                 | lb/d             | day             |               |                   |                  |             |          |           | lb/d      | lay             |                 |          |
| Single Family<br>Housing | 3025.95            | 0.0326 | 0.2789 | 0.1187 | 1.7800e-<br>003 |                  | 0.0226          | 0.0226        |                   | 0.0226           | 0.0226      |          | 355.9947  | 355.9947  | 6.8200e-<br>003 | 6.5300e-<br>003 | 358.1102 |
| Total                    |                    | 0.0326 | 0.2789 | 0.1187 | 1.7800e-<br>003 |                  | 0.0226          | 0.0226        |                   | 0.0226           | 0.0226      |          | 355.9947  | 355.9947  | 6.8200e-<br>003 | 6.5300e-<br>003 | 358.1102 |

CalEEMod Version: CalEEMod.2016.3.2 Page 24 of 27 Date: 8/6/2020 4:15 PM

### Rezoning Sites for Housing Project - Sonoma County - Sonoma-San Francisco County, Winter

### **5.2 Energy by Land Use - NaturalGas**

### **Mitigated**

|                          | NaturalGa<br>s Use | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O             | CO2e     |
|--------------------------|--------------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|-----------------|----------|
| Land Use                 | kBTU/yr            |        |        |        |                 | lb/d             | day             |               |                   |                  |             |          |           | lb/c      | day             |                 |          |
| Single Family<br>Housing | 3.02595            | 0.0326 | 0.2789 | 0.1187 | 1.7800e-<br>003 |                  | 0.0226          | 0.0226        |                   | 0.0226           | 0.0226      |          | 355.9947  | 355.9947  | 6.8200e-<br>003 | 6.5300e-<br>003 | 358.1102 |
| Total                    |                    | 0.0326 | 0.2789 | 0.1187 | 1.7800e-<br>003 |                  | 0.0226          | 0.0226        |                   | 0.0226           | 0.0226      |          | 355.9947  | 355.9947  | 6.8200e-<br>003 | 6.5300e-<br>003 | 358.1102 |

### 6.0 Area Detail

### **6.1 Mitigation Measures Area**

|             | ROG     | NOx    | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2      | CH4    | N2O    | CO2e           |
|-------------|---------|--------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|----------------|--------|--------|----------------|
| Category    |         |        |         |        | lb/d             | day             |               |                   |                  |             |          |           | lb/c           | lay    |        |                |
| Mitigated   | 41.2029 | 0.7945 | 54.0728 | 0.0961 |                  | 7.2192          | 7.2192        |                   | 7.2192           | 7.2192      | 774.3769 | 240.3509  | 1,014.727<br>7 | 0.9630 | 0.0546 | 1,055.085<br>2 |
| Unmitigated | 41.2029 | 0.7945 | 54.0728 | 0.0961 |                  | 7.2192          | 7.2192        |                   | 7.2192           | 7.2192      | 774.3769 | 240.3509  | 1,014.727<br>7 | 0.9630 | 0.0546 | 1,055.085<br>2 |

CalEEMod Version: CalEEMod.2016.3.2 Page 25 of 27 Date: 8/6/2020 4:15 PM

### Rezoning Sites for Housing Project - Sonoma County - Sonoma-San Francisco County, Winter

### 6.2 Area by SubCategory Unmitigated

|                          | ROG     | NOx    | CO      | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2      | CH4             | N2O    | CO2e           |
|--------------------------|---------|--------|---------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|----------------|-----------------|--------|----------------|
| SubCategory              |         |        |         | day             |                  |                 | lb/d          | day               |                  |             |          |           |                |                 |        |                |
| Architectural<br>Coating | 0.2638  |        |         |                 |                  | 0.0000          | 0.0000        | <br>              | 0.0000           | 0.0000      |          |           | 0.0000         |                 |        | 0.0000         |
| Consumer<br>Products     | 1.4638  |        |         |                 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      |          |           | 0.0000         |                 |        | 0.0000         |
| Hearth                   | 39.3801 | 0.7583 | 50.9310 | 0.0959          |                  | 7.2019          | 7.2019        |                   | 7.2019           | 7.2019      | 774.3769 | 234.7059  | 1,009.082<br>8 | 0.9575          | 0.0546 | 1,049.303<br>4 |
| Landscaping              | 0.0952  | 0.0363 | 3.1419  | 1.7000e-<br>004 |                  | 0.0173          | 0.0173        | <br>              | 0.0173           | 0.0173      |          | 5.6450    | 5.6450         | 5.4700e-<br>003 |        | 5.7818         |
| Total                    | 41.2028 | 0.7945 | 54.0728 | 0.0961          |                  | 7.2192          | 7.2192        |                   | 7.2192           | 7.2192      | 774.3769 | 240.3509  | 1,014.727<br>7 | 0.9630          | 0.0546 | 1,055.085<br>2 |

CalEEMod Version: CalEEMod.2016.3.2 Page 26 of 27 Date: 8/6/2020 4:15 PM

### Rezoning Sites for Housing Project - Sonoma County - Sonoma-San Francisco County, Winter

### 6.2 Area by SubCategory

### **Mitigated**

|                          | ROG     | NOx    | CO      | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2      | CH4             | N2O    | CO2e           |
|--------------------------|---------|--------|---------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|----------------|-----------------|--------|----------------|
| SubCategory              |         |        |         |                 | lb/d             | day             |               |                   |                  | lb/d        | day      |           |                |                 |        |                |
| Architectural<br>Coating | 0.2638  |        |         |                 |                  | 0.0000          | 0.0000        | <br>              | 0.0000           | 0.0000      |          |           | 0.0000         |                 |        | 0.0000         |
| Consumer<br>Products     | 1.4638  |        |         |                 |                  | 0.0000          | 0.0000        | <br> <br> <br>    | 0.0000           | 0.0000      |          |           | 0.0000         |                 |        | 0.0000         |
| Hearth                   | 39.3801 | 0.7583 | 50.9310 | 0.0959          |                  | 7.2019          | 7.2019        | <br> <br> <br>    | 7.2019           | 7.2019      | 774.3769 | 234.7059  | 1,009.082<br>8 | 0.9575          | 0.0546 | 1,049.303<br>4 |
| Landscaping              | 0.0952  | 0.0363 | 3.1419  | 1.7000e-<br>004 |                  | 0.0173          | 0.0173        |                   | 0.0173           | 0.0173      |          | 5.6450    | 5.6450         | 5.4700e-<br>003 |        | 5.7818         |
| Total                    | 41.2028 | 0.7945 | 54.0728 | 0.0961          |                  | 7.2192          | 7.2192        |                   | 7.2192           | 7.2192      | 774.3769 | 240.3509  | 1,014.727<br>7 | 0.9630          | 0.0546 | 1,055.085<br>2 |

### 7.0 Water Detail

### 7.1 Mitigation Measures Water

### 8.0 Waste Detail

### 8.1 Mitigation Measures Waste

### 9.0 Operational Offroad

### 10.0 Stationary Equipment

Rezoning Sites for Housing Project - Sonoma County - Sonoma-San Francisco County, Winter

# Fire Pumps and Emergency Generators Boilers User Defined Equipment

## 11.0 Vegetation

CalEEMod Version: CalEEMod.2016.3.2 Page 1 of 52 Date: 7/27/2020 1:28 PM

Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

# Rezoning Sites for Housing Project - Sonoma County - GHG Analysis Sonoma-San Francisco County, Annual

### 1.0 Project Characteristics

### 1.1 Land Usage

| Land Uses             | Size     | Metric        | Lot Acreage | Floor Surface Area | Population |
|-----------------------|----------|---------------|-------------|--------------------|------------|
| Single Family Housing | 2,975.00 | Dwelling Unit | 965.91      | 5,355,000.00       | 8509       |

### 1.2 Other Project Characteristics

| Urbanization               | Urban                      | Wind Speed (m/s)           | 2.2   | Precipitation Freq (Days)  | 75    |
|----------------------------|----------------------------|----------------------------|-------|----------------------------|-------|
| Climate Zone               | 4                          |                            |       | Operational Year           | 2021  |
| Utility Company            | Pacific Gas & Electric Con | mpany                      |       |                            |       |
| CO2 Intensity<br>(lb/MWhr) | 477.6                      | CH4 Intensity<br>(lb/MWhr) | 0.022 | N2O Intensity<br>(lb/MWhr) | 0.005 |

### 1.3 User Entered Comments & Non-Default Data

CalEEMod Version: CalEEMod.2016.3.2 Page 2 of 52 Date: 7/27/2020 1:28 PM

Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

Project Characteristics - 2021 PG&E Intensity Factors

Land Use - 2,975 is total buildout increase over existing zoning; conservatively assumed SF as SF requires more energy than MF

Construction Phase - Schedule adjusted to fit a 10-year timescale.

Trips and VMT - '

Demolition - Assumed 5000 sf per day of demolition

Grading - Assumed 24 trips per day during grading

Architectural Coating -

Vehicle Trips - Adjusted trip rates for VMT total

Woodstoves -

Area Coating -

Energy Use -

Water And Wastewater -

Solid Waste -

Construction Off-road Equipment Mitigation - Per BAAQMD rules.

**Energy Mitigation -**

Water Mitigation -

Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

| Table Name                | Column Name                  | Default Value | New Value |
|---------------------------|------------------------------|---------------|-----------|
| tblConstDustMitigation    | WaterUnpavedRoadVehicleSpeed | 0             | 15        |
| tblConstructionPhase      | NumDays                      | 1,000.00      | 150.00    |
| tblConstructionPhase      | NumDays                      | 600.00        | 150.00    |
| tblConstructionPhase      | NumDays                      | 1,550.00      | 450.00    |
| tblConstructionPhase      | NumDays                      | 15,500.00     | 1,000.00  |
| tblConstructionPhase      | NumDays                      | 1,100.00      | 300.00    |
| tblConstructionPhase      | NumDays                      | 1,100.00      | 300.00    |
| tblGrading                | MaterialExported             | 0.00          | 43,200.00 |
| tblGrading                | MaterialImported             | 0.00          | 43,200.00 |
| tblProjectCharacteristics | CH4IntensityFactor           | 0.029         | 0.022     |
| tblProjectCharacteristics | CO2IntensityFactor           | 641.35        | 477.6     |
| tblProjectCharacteristics | N2OIntensityFactor           | 0.006         | 0.005     |
| tblVehicleTrips           | ST_TR                        | 9.91          | 4.98      |
| tblVehicleTrips           | SU_TR                        | 8.62          | 4.98      |
| tblVehicleTrips           | WD_TR                        | 9.52          | 4.98      |

### 2.0 Emissions Summary

CalEEMod Version: CalEEMod.2016.3.2 Page 4 of 52 Date: 7/27/2020 1:28 PM

### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

# 2.1 Overall Construction Unmitigated Construction

|         | ROG     | NOx             | СО              | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2      | Total CO2      | CH4             | N2O    | CO2e           |
|---------|---------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|----------------|----------------|-----------------|--------|----------------|
| Year    |         |                 |                 |                 | ton              | s/yr            |                 |                   |                  |                 |          |                | МТ             | /yr             |        |                |
| 2021    | 0.4754  | 5.0758          | 2.9569          | 6.5100e-<br>003 | 1.4168           | 0.2315          | 1.6483          | 0.6192            | 0.2141           | 0.8333          | 0.0000   | 585.0635       | 585.0635       | 0.1403          | 0.0000 | 588.5704       |
| 2022    | 0.4916  | 5.6047          | 3.8128          | 9.8200e-<br>003 | 1.7177           | 0.2144          | 1.9320          | 0.6504            | 0.1973           | 0.8477          | 0.0000   | 883.9070       | 883.9070       | 0.2288          | 0.0000 | 889.6269       |
| 2023    | 0.5012  | 5.1043          | 4.1896          | 0.0122          | 1.5500           | 0.1765          | 1.7264          | 0.5135            | 0.1626           | 0.6762          | 0.0000   | 1,103.730<br>3 | 1,103.730<br>3 | 0.2322          | 0.0000 | 1,109.534<br>3 |
| 2024    | 0.7761  | 5.4629          | 6.2077          | 0.0237          | 1.3711           | 0.0922          | 1.4632          | 0.3711            | 0.0866           | 0.4577          | 0.0000   | 2,197.157<br>8 | 2,197.157<br>8 | 0.1482          | 0.0000 | 2,200.863<br>1 |
| 2025    | 0.7223  | 5.2388          | 5.8616          | 0.0232          | 1.3658           | 0.0803          | 1.4461          | 0.3697            | 0.0754           | 0.4451          | 0.0000   | 2,146.891<br>0 | 2,146.891<br>0 | 0.1442          | 0.0000 | 2,150.496<br>4 |
| 2026    | 0.6901  | 5.1683          | 5.5994          | 0.0227          | 1.3658           | 0.0799          | 1.4456          | 0.3697            | 0.0750           | 0.4447          | 0.0000   | 2,109.175<br>0 | 2,109.175<br>0 | 0.1414          | 0.0000 | 2,112.7110     |
| 2027    | 0.5035  | 3.9435          | 4.3665          | 0.0168          | 0.9725           | 0.0721          | 1.0447          | 0.2632            | 0.0675           | 0.3307          | 0.0000   | 1,550.333<br>3 | 1,550.333<br>3 | 0.1232          | 0.0000 | 1,553.412<br>0 |
| 2028    | 4.6438  | 0.9898          | 1.7571          | 2.9300e-<br>003 | 0.0434           | 0.0481          | 0.0915          | 0.0116            | 0.0443           | 0.0558          | 0.0000   | 258.3658       | 258.3658       | 0.0734          | 0.0000 | 260.1995       |
| 2029    | 32.8862 | 0.1864          | 0.6652          | 1.9900e-<br>003 | 0.2192           | 7.8900e-<br>003 | 0.2271          | 0.0583            | 7.7900e-<br>003  | 0.0661          | 0.0000   | 178.1073       | 178.1073       | 4.4500e-<br>003 | 0.0000 | 178.2184       |
| 2030    | 0.3779  | 1.6700e-<br>003 | 7.2800e-<br>003 | 2.0000e-<br>005 | 2.5200e-<br>003  | 4.0000e-<br>005 | 2.5600e-<br>003 | 6.7000e-<br>004   | 4.0000e-<br>005  | 7.1000e-<br>004 | 0.0000   | 2.0025         | 2.0025         | 4.0000e-<br>005 | 0.0000 | 2.0036         |
| Maximum | 32.8862 | 5.6047          | 6.2077          | 0.0237          | 1.7177           | 0.2315          | 1.9320          | 0.6504            | 0.2141           | 0.8477          | 0.0000   | 2,197.157<br>8 | 2,197.157<br>8 | 0.2322          | 0.0000 | 2,200.863<br>1 |

CalEEMod Version: CalEEMod.2016.3.2 Page 5 of 52 Date: 7/27/2020 1:28 PM

### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

### 2.1 Overall Construction

### **Mitigated Construction**

|                      | ROG     | NOx             | CO              | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Tota      | Bio- CO2 | NBio- CO2      | Total CO2      | CH4             | N2O    | CO2e           |
|----------------------|---------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|----------------|----------------|-----------------|--------|----------------|
| Year                 |         |                 |                 |                 | tor              | ns/yr           |                 |                   |                  |                 |          |                | M              | Γ/yr            |        |                |
| 2021                 | 0.4754  | 5.0758          | 2.9569          | 6.5100e-<br>003 | 0.6623           | 0.2315          | 0.8938          | 0.2854            | 0.2141           | 0.4995          | 0.0000   | 585.0630       | 585.0630       | 0.1403          | 0.0000 | 588.5698       |
| 2022                 | 0.4916  | 5.6047          | 3.8128          | 9.8200e-<br>003 | 0.8271           | 0.2144          | 1.0415          | 0.3069            | 0.1973           | 0.5042          | 0.0000   | 883.9062       | 883.9062       | 0.2288          | 0.0000 | 889.6261       |
| 2023                 | 0.5012  | 5.1043          | 4.1896          | 0.0122          | 0.8399           | 0.1765          | 1.0164          | 0.2692            | 0.1626           | 0.4319          | 0.0000   | 1,103.729<br>5 | 1,103.729<br>5 | 0.2322          | 0.0000 | 1,109.533<br>5 |
| 2024                 | 0.7761  | 5.4629          | 6.2077          | 0.0237          | 1.3711           | 0.0922          | 1.4632          | 0.3711            | 0.0866           | 0.4577          | 0.0000   | 2,197.157<br>5 | 2,197.157<br>5 | 0.1482          | 0.0000 | 2,200.862<br>8 |
| 2025                 | 0.7223  | 5.2388          | 5.8616          | 0.0232          | 1.3658           | 0.0803          | 1.4461          | 0.3697            | 0.0754           | 0.4451          | 0.0000   | 2,146.890<br>7 | 2,146.890<br>7 | 0.1442          | 0.0000 | 2,150.496<br>0 |
| 2026                 | 0.6901  | 5.1683          | 5.5993          | 0.0227          | 1.3658           | 0.0799          | 1.4456          | 0.3697            | 0.0750           | 0.4447          | 0.0000   | 2,109.174<br>6 | 2,109.174<br>6 | 0.1414          | 0.0000 | 2,112.7107     |
| 2027                 | 0.5035  | 3.9435          | 4.3665          | 0.0168          | 0.9725           | 0.0721          | 1.0447          | 0.2632            | 0.0675           | 0.3307          | 0.0000   | 1,550.332<br>9 | 1,550.332<br>9 | 0.1232          | 0.0000 | 1,553.4117     |
| 2028                 | 4.6438  | 0.9898          | 1.7571          | 2.9300e-<br>003 | 0.0434           | 0.0481          | 0.0915          | 0.0116            | 0.0443           | 0.0558          | 0.0000   | 258.3656       | 258.3656       | 0.0734          | 0.0000 | 260.1992       |
| 2029                 | 32.8862 | 0.1864          | 0.6652          | 1.9900e-<br>003 | 0.2192           | 7.8900e-<br>003 | 0.2271          | 0.0583            | 7.7900e-<br>003  | 0.0661          | 0.0000   | 178.1072       | 178.1072       | 4.4500e-<br>003 | 0.0000 | 178.2184       |
| 2030                 | 0.3779  | 1.6700e-<br>003 | 7.2800e-<br>003 | 2.0000e-<br>005 | 2.5200e-<br>003  | 4.0000e-<br>005 | 2.5600e-<br>003 | 6.7000e-<br>004   | 4.0000e-<br>005  | 7.1000e-<br>004 | 0.0000   | 2.0025         | 2.0025         | 4.0000e-<br>005 | 0.0000 | 2.0036         |
| Maximum              | 32.8862 | 5.6047          | 6.2077          | 0.0237          | 1.3711           | 0.2315          | 1.4632          | 0.3711            | 0.2141           | 0.5042          | 0.0000   | 2,197.157<br>5 | 2,197.157<br>5 | 0.2322          | 0.0000 | 2,200.862<br>8 |
|                      | ROG     | NOx             | СО              | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio-CO2       | Total CO2      | CH4             | N20    | CO2e           |
| Percent<br>Reduction | 0.00    | 0.00            | 0.00            | 0.00            | 23.49            | 0.00            | 21.36           | 28.56             | 0.00             | 22.17           | 0.00     | 0.00           | 0.00           | 0.00            | 0.00   | 0.00           |

Page 6 of 52 Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

Date: 7/27/2020 1:28 PM

| Quarter | Start Date | End Date   | Maximum Unmitigated ROG + NOX (tons/quarter) | Maximum Mitigated ROG + NOX (tons/quarter) |
|---------|------------|------------|----------------------------------------------|--------------------------------------------|
| 1       | 1-1-2021   | 3-31-2021  | 1.3217                                       | 1.3217                                     |
| 2       | 4-1-2021   | 6-30-2021  | 1.3312                                       | 1.3312                                     |
| 3       | 7-1-2021   | 9-30-2021  | 1.4258                                       | 1.4258                                     |
| 4       | 10-1-2021  | 12-31-2021 | 1.4633                                       | 1.4633                                     |
| 5       | 1-1-2022   | 3-31-2022  | 1.3248                                       | 1.3248                                     |
| 6       | 4-1-2022   | 6-30-2022  | 1.5810                                       | 1.5810                                     |
| 7       | 7-1-2022   | 9-30-2022  | 1.5984                                       | 1.5984                                     |
| 8       | 10-1-2022  | 12-31-2022 | 1.6034                                       | 1.6034                                     |
| 9       | 1-1-2023   | 3-31-2023  | 1.3586                                       | 1.3586                                     |
| 10      | 4-1-2023   | 6-30-2023  | 1.3709                                       | 1.3709                                     |
| 11      | 7-1-2023   | 9-30-2023  | 1.3859                                       | 1.3859                                     |
| 12      | 10-1-2023  | 12-31-2023 | 1.5183                                       | 1.5183                                     |
| 13      | 1-1-2024   | 3-31-2024  | 1.5689                                       | 1.5689                                     |
| 14      | 4-1-2024   | 6-30-2024  | 1.5370                                       | 1.5370                                     |
| 15      | 7-1-2024   | 9-30-2024  | 1.5539                                       | 1.5539                                     |
| 16      | 10-1-2024  | 12-31-2024 | 1.5861                                       | 1.5861                                     |
| 17      | 1-1-2025   | 3-31-2025  | 1.4874                                       | 1.4874                                     |
| 18      | 4-1-2025   | 6-30-2025  | 1.4746                                       | 1.4746                                     |
| 19      | 7-1-2025   | 9-30-2025  | 1.4908                                       | 1.4908                                     |
| 20      | 10-1-2025  | 12-31-2025 | 1.5204                                       | 1.5204                                     |
| 21      | 1-1-2026   | 3-31-2026  | 1.4607                                       | 1.4607                                     |
| 22      | 4-1-2026   | 6-30-2026  | 1.4496                                       | 1.4496                                     |
| 23      | 7-1-2026   | 9-30-2026  | 1.4656                                       | 1.4656                                     |
| 24      | 10-1-2026  | 12-31-2026 | 1.4932                                       | 1.4932                                     |
| 25      | 1-1-2027   | 3-31-2027  | 1.4354                                       | 1.4354                                     |
| 26      | 4-1-2027   | 6-30-2027  | 1.4260                                       | 1.4260                                     |

Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

| 27 | 7-1-2027  | 9-30-2027  | 1.2701 | 1.2701 |
|----|-----------|------------|--------|--------|
| 28 | 10-1-2027 | 12-31-2027 | 0.3145 | 0.3145 |
| 29 | 1-1-2028  | 3-31-2028  | 0.3109 | 0.3109 |
| 30 | 4-1-2028  | 6-30-2028  | 0.3106 | 0.3106 |
| 31 | 7-1-2028  | 9-30-2028  | 0.3140 | 0.3140 |
| 32 | 10-1-2028 | 12-31-2028 | 4.8464 | 4.8464 |
| 33 | 1-1-2029  | 3-31-2029  | 8.1488 | 8.1488 |
| 34 | 4-1-2029  | 6-30-2029  | 8.2359 | 8.2359 |
| 35 | 7-1-2029  | 9-30-2029  | 8.3264 | 8.3264 |
| 36 | 10-1-2029 | 12-31-2029 | 8.3299 | 8.3299 |
| 37 | 1-1-2030  | 3-31-2030  | 0.2712 | 0.2712 |
|    |           | Highest    | 8.3299 | 8.3299 |

CalEEMod Version: CalEEMod.2016.3.2 Page 8 of 52 Date: 7/27/2020 1:28 PM

### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

### 2.2 Overall Operational

### **Unmitigated Operational**

|          | ROG     | NOx     | CO       | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2       | NBio- CO2       | Total CO2       | CH4     | N2O    | CO2e            |  |
|----------|---------|---------|----------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------------|-----------------|-----------------|---------|--------|-----------------|--|
| Category |         |         |          |        | ton              | s/yr            |               |                   |                  |             | MT/yr          |                 |                 |         |        |                 |  |
| Area     | 42.8889 | 0.6398  | 47.6349  | 0.0537 |                  | 3.7989          | 3.7989        |                   | 3.7989           | 3.7989      | 378.1552       | 128.9324        | 507.0876        | 0.7495  | 0.0216 | 532.2658        |  |
| Energy   | 0.4663  | 3.9843  | 1.6955   | 0.0254 |                  | 0.3221          | 0.3221        |                   | 0.3221           | 0.3221      | 0.0000         | 9,828.597<br>7  | 9,828.597<br>7  | 0.3286  | 0.1392 | 9,878.290<br>3  |  |
| Mobile   | 4.9629  | 24.7554 | 55.1400  | 0.1614 | 12.6974          | 0.1687          | 12.8662       | 3.4172            | 0.1585           | 3.5757      | 0.0000         | 14,828.93<br>45 | 14,828.93<br>45 | 0.6650  | 0.0000 | 14,845.56<br>00 |  |
| Waste    |         |         |          |        |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      | 725.4450       | 0.0000          | 725.4450        | 42.8726 | 0.0000 | 1,797.259<br>4  |  |
| Water    | <br>    |         |          |        |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      | 61.4943        | 319.8689        | 381.3632        | 6.3308  | 0.1525 | 585.0734        |  |
| Total    | 48.3180 | 29.3796 | 104.4704 | 0.2406 | 12.6974          | 4.2898          | 16.9872       | 3.4172            | 4.2795           | 7.6967      | 1,165.094<br>6 | 25,106.33<br>35 | 26,271.42<br>80 | 50.9465 | 0.3133 | 27,638.44<br>88 |  |

CalEEMod Version: CalEEMod.2016.3.2 Page 9 of 52 Date: 7/27/2020 1:28 PM

Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

#### 2.2 Overall Operational

#### **Mitigated Operational**

|          | ROG     | NOx     | CO       | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2       | NBio- CO2       | Total CO2       | CH4     | N2O    | CO2e            |
|----------|---------|---------|----------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------------|-----------------|-----------------|---------|--------|-----------------|
| Category | tons/yr |         |          |        |                  |                 |               |                   |                  |             |                | MT              | /yr             |         |        |                 |
| Area     | 42.8889 | 0.6398  | 47.6349  | 0.0537 |                  | 3.7989          | 3.7989        |                   | 3.7989           | 3.7989      | 378.1552       | 128.9324        | 507.0876        | 0.7495  | 0.0216 | 532.2658        |
| Energy   | 0.4663  | 3.9843  | 1.6955   | 0.0254 |                  | 0.3221          | 0.3221        |                   | 0.3221           | 0.3221      | 0.0000         | 8,215.531<br>4  | 8,215.531<br>4  | 0.2543  | 0.1223 | 8,258.334<br>0  |
| Mobile   | 4.9629  | 24.7554 | 55.1400  | 0.1614 | 12.6974          | 0.1687          | 12.8662       | 3.4172            | 0.1585           | 3.5757      | 0.0000         | 14,828.93<br>45 | 14,828.93<br>45 | 0.6650  | 0.0000 | 14,845.56<br>00 |
| Waste    |         |         |          |        |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      | 725.4450       | 0.0000          | 725.4450        | 42.8726 | 0.0000 | 1,797.259<br>4  |
| Water    |         |         |          |        |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      | 49.1955        | 274.4260        | 323.6215        | 5.0655  | 0.1222 | 486.6688        |
| Total    | 48.3180 | 29.3796 | 104.4704 | 0.2406 | 12.6974          | 4.2898          | 16.9872       | 3.4172            | 4.2795           | 7.6967      | 1,152.795<br>7 | 23,447.82<br>43 | 24,600.62<br>00 | 49.6069 | 0.2661 | 25,920.08<br>79 |

|                      | ROG  | NOx  | СО   | SO2  | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio-CO2 | Total CO2 | CH4  | N20   | CO2e |
|----------------------|------|------|------|------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------|-----------|------|-------|------|
| Percent<br>Reduction | 0.00 | 0.00 | 0.00 | 0.00 | 0.00             | 0.00            | 0.00          | 0.00              | 0.00             | 0.00           | 1.06     | 6.61     | 6.36      | 2.63 | 15.06 | 6.22 |

#### 3.0 Construction Detail

#### **Construction Phase**

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

| Phase<br>Number | Phase Name            | Phase Type            | Start Date | End Date   | Num Days<br>Week | Num Days | Phase Description |
|-----------------|-----------------------|-----------------------|------------|------------|------------------|----------|-------------------|
| 1               | Demolition            | Demolition            | 1/1/2021   | 7/29/2021  | 5                | 150      |                   |
| 2               | Site Preparation      | Site Preparation      | 7/30/2021  | 2/24/2022  | 5                | 150      |                   |
| 3               | Grading               | Grading               | 2/25/2022  | 11/16/2023 | 5                | 450      |                   |
| 4               | Building Construction | Building Construction | 11/17/2023 | 9/16/2027  | 5                | 1000     |                   |
| 5               | Paving                | Paving                | 9/17/2027  | 11/9/2028  | 5                | 300      |                   |
| 6               | Architectural Coating | Architectural Coating | 11/10/2028 | 1/3/2030   | 5                | 300      |                   |

Acres of Grading (Site Preparation Phase): 0

Acres of Grading (Grading Phase): 1125

Acres of Paving: 0

Residential Indoor: 10,843,875; Residential Outdoor: 3,614,625; Non-Residential Indoor: 0; Non-Residential Outdoor: 0; Striped Parking Area: 0 (Architectural Coating – sqft)

**OffRoad Equipment** 

Page 11 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

| Phase Name            | Offroad Equipment Type    | Amount | Usage Hours | Horse Power | Load Factor |
|-----------------------|---------------------------|--------|-------------|-------------|-------------|
| Demolition            | Concrete/Industrial Saws  | 1      | 8.00        | 81          | 0.73        |
| Demolition            | Excavators                | 3      | 8.00        | 158         | 0.38        |
| Demolition            | Rubber Tired Dozers       | 2      | 8.00        | 247         | 0.40        |
| Site Preparation      | Rubber Tired Dozers       | 3      | 8.00        | 247         | 0.40        |
| Site Preparation      | Tractors/Loaders/Backhoes | 4      | 8.00        | 97          | 0.37        |
| Grading               | Excavators                | 2      | 8.00        | 158         | 0.38        |
| Grading               | Graders                   | 1      | 8.00        | 187         | 0.41        |
| Grading               | Rubber Tired Dozers       | 1      | 8.00        | 247         | 0.40        |
| Grading               | Scrapers                  | 2      | 8.00        | 367         | 0.48        |
| Grading               | Tractors/Loaders/Backhoes | 2      | 8.00        | 97          | 0.37        |
| Building Construction | Cranes                    | 1      | 7.00        | 231         | 0.29        |
| Building Construction | Forklifts                 | 3      | 8.00        | 89          | 0.20        |
| Building Construction | Generator Sets            | 1      | 8.00        | 84          | 0.74        |
| Building Construction | Tractors/Loaders/Backhoes | 3      | 7.00        | 97          | 0.37        |
| Building Construction | Welders                   | 1      | 8.00        | 46          | 0.45        |
| Paving                | Pavers                    | 2      | 8.00        | 130         | 0.42        |
| Paving                | Paving Equipment          | 2      | 8.00        | 132         | 0.36        |
| Paving                | Rollers                   | 2      | 8.00        | 80          | 0.38        |
| Architectural Coating | Air Compressors           | 1      | 6.00        | 78          | 0.48        |

#### **Trips and VMT**

Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

Date: 7/27/2020 1:28 PM

| Phase Name            | Offroad Equipment<br>Count | Worker Trip<br>Number | Vendor Trip<br>Number | Hauling Trip<br>Number | Worker Trip<br>Length | Vendor Trip<br>Length | Hauling Trip<br>Length | Worker Vehicle<br>Class | Vendor<br>Vehicle Class | Hauling<br>Vehicle Class |
|-----------------------|----------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|-------------------------|-------------------------|--------------------------|
| Demolition            | 6                          | 15.00                 | 0.00                  | 3,411.00               | 10.80                 | 7.30                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Site Preparation      | 7                          | 18.00                 | 0.00                  | 0.00                   | 10.80                 | 7.30                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Grading               | 8                          | 20.00                 | 0.00                  | 10,800.00              | 10.80                 | 7.30                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Building Construction | 9                          | 1,071.00              | 318.00                | 0.00                   | 10.80                 | 7.30                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Paving                | 6                          | 15.00                 | 0.00                  | 0.00                   | 10.80                 | 7.30                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |
| Architectural Coating | 1                          | 214.00                | 0.00                  | 0.00                   | 10.80                 | 7.30                  | 20.00                  | LD_Mix                  | HDT_Mix                 | HHDT                     |

#### **3.1 Mitigation Measures Construction**

Water Exposed Area

Reduce Vehicle Speed on Unpaved Roads

#### 3.2 Demolition - 2021

|               | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|---------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category      |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |          |
| Fugitive Dust |        |        |        |                 | 0.3691           | 0.0000          | 0.3691        | 0.0559            | 0.0000           | 0.0559      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000   |
| Off-Road      | 0.2374 | 2.3581 | 1.6174 | 2.9100e-<br>003 |                  | 0.1164          | 0.1164        |                   | 0.1081           | 0.1081      | 0.0000   | 255.0059  | 255.0059  | 0.0718 | 0.0000 | 256.8002 |
| Total         | 0.2374 | 2.3581 | 1.6174 | 2.9100e-<br>003 | 0.3691           | 0.1164          | 0.4855        | 0.0559            | 0.1081           | 0.1640      | 0.0000   | 255.0059  | 255.0059  | 0.0718 | 0.0000 | 256.8002 |

CalEEMod Version: CalEEMod.2016.3.2 Page 13 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

3.2 Demolition - 2021

<u>Unmitigated Construction Off-Site</u>

|          | ROG             | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e     |
|----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|----------|
| Category |                 |                 |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |        |          |
| Hauling  | 0.0128          | 0.4636          | 0.0986 | 1.3300e-<br>003 | 0.0283           | 1.5800e-<br>003 | 0.0299          | 7.7500e-<br>003   | 1.5100e-<br>003  | 9.2600e-<br>003 | 0.0000   | 129.6649  | 129.6649  | 7.9800e-<br>003 | 0.0000 | 129.8644 |
| Vendor   | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000   |
| Worker   | 4.9700e-<br>003 | 3.4700e-<br>003 | 0.0355 | 9.0000e-<br>005 | 8.8300e-<br>003  | 7.0000e-<br>005 | 8.9000e-<br>003 | 2.3500e-<br>003   | 6.0000e-<br>005  | 2.4100e-<br>003 | 0.0000   | 7.8520    | 7.8520    | 2.7000e-<br>004 | 0.0000 | 7.8586   |
| Total    | 0.0178          | 0.4670          | 0.1340 | 1.4200e-<br>003 | 0.0371           | 1.6500e-<br>003 | 0.0388          | 0.0101            | 1.5700e-<br>003  | 0.0117          | 0.0000   | 137.5168  | 137.5168  | 8.2500e-<br>003 | 0.0000 | 137.7230 |

|               | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|---------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category      |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |          |
| Fugitive Dust |        |        |        |                 | 0.1661           | 0.0000          | 0.1661        | 0.0252            | 0.0000           | 0.0252      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000   |
| Off-Road      | 0.2374 | 2.3581 | 1.6174 | 2.9100e-<br>003 |                  | 0.1164          | 0.1164        |                   | 0.1081           | 0.1081      | 0.0000   | 255.0056  | 255.0056  | 0.0718 | 0.0000 | 256.7999 |
| Total         | 0.2374 | 2.3581 | 1.6174 | 2.9100e-<br>003 | 0.1661           | 0.1164          | 0.2825        | 0.0252            | 0.1081           | 0.1332      | 0.0000   | 255.0056  | 255.0056  | 0.0718 | 0.0000 | 256.7999 |

CalEEMod Version: CalEEMod.2016.3.2 Page 14 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

3.2 Demolition - 2021

<u>Mitigated Construction Off-Site</u>

|          | ROG             | NOx             | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e     |
|----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|----------|
| Category |                 |                 |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /уг             |        |          |
| Hauling  | 0.0128          | 0.4636          | 0.0986 | 1.3300e-<br>003 | 0.0283           | 1.5800e-<br>003 | 0.0299          | 7.7500e-<br>003   | 1.5100e-<br>003  | 9.2600e-<br>003 | 0.0000   | 129.6649  | 129.6649  | 7.9800e-<br>003 | 0.0000 | 129.8644 |
| Vendor   | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000   |
| Worker   | 4.9700e-<br>003 | 3.4700e-<br>003 | 0.0355 | 9.0000e-<br>005 | 8.8300e-<br>003  | 7.0000e-<br>005 | 8.9000e-<br>003 | 2.3500e-<br>003   | 6.0000e-<br>005  | 2.4100e-<br>003 | 0.0000   | 7.8520    | 7.8520    | 2.7000e-<br>004 | 0.0000 | 7.8586   |
| Total    | 0.0178          | 0.4670          | 0.1340 | 1.4200e-<br>003 | 0.0371           | 1.6500e-<br>003 | 0.0388          | 0.0101            | 1.5700e-<br>003  | 0.0117          | 0.0000   | 137.5168  | 137.5168  | 8.2500e-<br>003 | 0.0000 | 137.7230 |

#### 3.3 Site Preparation - 2021

|               | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|---------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category      |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |          |
| Fugitive Dust |        |        |        |                 | 1.0027           | 0.0000          | 1.0027        | 0.5512            | 0.0000           | 0.5512      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000   |
| Off-Road      | 0.2158 | 2.2476 | 1.1741 | 2.1100e-<br>003 |                  | 0.1135          | 0.1135        |                   | 0.1044           | 0.1044      | 0.0000   | 185.5682  | 185.5682  | 0.0600 | 0.0000 | 187.0686 |
| Total         | 0.2158 | 2.2476 | 1.1741 | 2.1100e-<br>003 | 1.0027           | 0.1135          | 1.1162        | 0.5512            | 0.1044           | 0.6555      | 0.0000   | 185.5682  | 185.5682  | 0.0600 | 0.0000 | 187.0686 |

CalEEMod Version: CalEEMod.2016.3.2 Page 15 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

3.3 Site Preparation - 2021

<u>Unmitigated Construction Off-Site</u>

|          | ROG             | NOx             | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |                 |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |        |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Worker   | 4.4200e-<br>003 | 3.0900e-<br>003 | 0.0315 | 8.0000e-<br>005 | 7.8400e-<br>003  | 6.0000e-<br>005 | 7.9000e-<br>003 | 2.0900e-<br>003   | 6.0000e-<br>005  | 2.1400e-<br>003 | 0.0000   | 6.9726    | 6.9726    | 2.4000e-<br>004 | 0.0000 | 6.9784 |
| Total    | 4.4200e-<br>003 | 3.0900e-<br>003 | 0.0315 | 8.0000e-<br>005 | 7.8400e-<br>003  | 6.0000e-<br>005 | 7.9000e-<br>003 | 2.0900e-<br>003   | 6.0000e-<br>005  | 2.1400e-<br>003 | 0.0000   | 6.9726    | 6.9726    | 2.4000e-<br>004 | 0.0000 | 6.9784 |

|               | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|---------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category      |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |          |
| Fugitive Dust |        |        |        |                 | 0.4512           | 0.0000          | 0.4512        | 0.2480            | 0.0000           | 0.2480      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000   |
| Off-Road      | 0.2158 | 2.2476 | 1.1741 | 2.1100e-<br>003 |                  | 0.1135          | 0.1135        | <br>              | 0.1044           | 0.1044      | 0.0000   | 185.5680  | 185.5680  | 0.0600 | 0.0000 | 187.0684 |
| Total         | 0.2158 | 2.2476 | 1.1741 | 2.1100e-<br>003 | 0.4512           | 0.1135          | 0.5647        | 0.2480            | 0.1044           | 0.3524      | 0.0000   | 185.5680  | 185.5680  | 0.0600 | 0.0000 | 187.0684 |

CalEEMod Version: CalEEMod.2016.3.2 Page 16 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

3.3 Site Preparation - 2021

Mitigated Construction Off-Site

|          | ROG             | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |                 |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |        |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Worker   | 4.4200e-<br>003 | 3.0900e-<br>003 | 0.0315 | 8.0000e-<br>005 | 7.8400e-<br>003  | 6.0000e-<br>005 | 7.9000e-<br>003 | 2.0900e-<br>003   | 6.0000e-<br>005  | 2.1400e-<br>003 | 0.0000   | 6.9726    | 6.9726    | 2.4000e-<br>004 | 0.0000 | 6.9784 |
| Total    | 4.4200e-<br>003 | 3.0900e-<br>003 | 0.0315 | 8.0000e-<br>005 | 7.8400e-<br>003  | 6.0000e-<br>005 | 7.9000e-<br>003 | 2.0900e-<br>003   | 6.0000e-<br>005  | 2.1400e-<br>003 | 0.0000   | 6.9726    | 6.9726    | 2.4000e-<br>004 | 0.0000 | 6.9784 |

#### 3.3 Site Preparation - 2022

|               | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e    |
|---------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|---------|
| Category      |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |         |
| Fugitive Dust |        |        | <br>   | <br>            | 0.3523           | 0.0000          | 0.3523        | 0.1937            | 0.0000           | 0.1937      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000  |
| Off-Road      | 0.0618 | 0.6451 | 0.3841 | 7.4000e-<br>004 |                  | 0.0315          | 0.0315        | <br>              | 0.0289           | 0.0289      | 0.0000   | 65.2068   | 65.2068   | 0.0211 | 0.0000 | 65.7340 |
| Total         | 0.0618 | 0.6451 | 0.3841 | 7.4000e-<br>004 | 0.3523           | 0.0315          | 0.3837        | 0.1937            | 0.0289           | 0.2226      | 0.0000   | 65.2068   | 65.2068   | 0.0211 | 0.0000 | 65.7340 |

CalEEMod Version: CalEEMod.2016.3.2 Page 17 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

3.3 Site Preparation - 2022
Unmitigated Construction Off-Site

|          | ROG             | NOx             | СО              | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |                 |                 |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |        |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Worker   | 1.4400e-<br>003 | 9.6000e-<br>004 | 9.9100e-<br>003 | 3.0000e-<br>005 | 2.7500e-<br>003  | 2.0000e-<br>005 | 2.7800e-<br>003 | 7.3000e-<br>004   | 2.0000e-<br>005  | 7.5000e-<br>004 | 0.0000   | 2.3602    | 2.3602    | 7.0000e-<br>005 | 0.0000 | 2.3620 |
| Total    | 1.4400e-<br>003 | 9.6000e-<br>004 | 9.9100e-<br>003 | 3.0000e-<br>005 | 2.7500e-<br>003  | 2.0000e-<br>005 | 2.7800e-<br>003 | 7.3000e-<br>004   | 2.0000e-<br>005  | 7.5000e-<br>004 | 0.0000   | 2.3602    | 2.3602    | 7.0000e-<br>005 | 0.0000 | 2.3620 |

|               | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e    |
|---------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|---------|
| Category      |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |         |
| Fugitive Dust |        |        |        |                 | 0.1585           | 0.0000          | 0.1585        | 0.0871            | 0.0000           | 0.0871      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000  |
| Off-Road      | 0.0618 | 0.6451 | 0.3841 | 7.4000e-<br>004 |                  | 0.0315          | 0.0315        | <br>              | 0.0289           | 0.0289      | 0.0000   | 65.2067   | 65.2067   | 0.0211 | 0.0000 | 65.7340 |
| Total         | 0.0618 | 0.6451 | 0.3841 | 7.4000e-<br>004 | 0.1585           | 0.0315          | 0.1900        | 0.0871            | 0.0289           | 0.1161      | 0.0000   | 65.2067   | 65.2067   | 0.0211 | 0.0000 | 65.7340 |

CalEEMod Version: CalEEMod.2016.3.2 Page 18 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

3.3 Site Preparation - 2022

Mitigated Construction Off-Site

|          | ROG             | NOx             | CO              | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |                 |                 |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |        |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Worker   | 1.4400e-<br>003 | 9.6000e-<br>004 | 9.9100e-<br>003 | 3.0000e-<br>005 | 2.7500e-<br>003  | 2.0000e-<br>005 | 2.7800e-<br>003 | 7.3000e-<br>004   | 2.0000e-<br>005  | 7.5000e-<br>004 | 0.0000   | 2.3602    | 2.3602    | 7.0000e-<br>005 | 0.0000 | 2.3620 |
| Total    | 1.4400e-<br>003 | 9.6000e-<br>004 | 9.9100e-<br>003 | 3.0000e-<br>005 | 2.7500e-<br>003  | 2.0000e-<br>005 | 2.7800e-<br>003 | 7.3000e-<br>004   | 2.0000e-<br>005  | 7.5000e-<br>004 | 0.0000   | 2.3602    | 2.3602    | 7.0000e-<br>005 | 0.0000 | 2.3620 |

#### 3.4 Grading - 2022

|               | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|---------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category      |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |          |
| Fugitive Dust |        |        |        |                 | 1.2669           | 0.0000          | 1.2669        | 0.4309            | 0.0000           | 0.4309      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000   |
| Off-Road      | 0.4005 | 4.2922 | 3.2091 | 6.8600e-<br>003 |                  | 0.1807          | 0.1807        |                   | 0.1662           | 0.1662      | 0.0000   | 602.6073  | 602.6073  | 0.1949 | 0.0000 | 607.4797 |
| Total         | 0.4005 | 4.2922 | 3.2091 | 6.8600e-<br>003 | 1.2669           | 0.1807          | 1.4475        | 0.4309            | 0.1662           | 0.5971      | 0.0000   | 602.6073  | 602.6073  | 0.1949 | 0.0000 | 607.4797 |

CalEEMod Version: CalEEMod.2016.3.2 Page 19 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

3.4 Grading - 2022

<u>Unmitigated Construction Off-Site</u>

|          | ROG             | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e     |
|----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|----------|
| Category |                 |                 |        |                 | ton              | s/yr            |               |                   |                  |                 |          |           | MT        | /yr             |        |          |
| Hauling  | 0.0187          | 0.6604          | 0.1473 | 2.0300e-<br>003 | 0.0784           | 2.1100e-<br>003 | 0.0805        | 0.0205            | 2.0100e-<br>003  | 0.0225          | 0.0000   | 198.8723  | 198.8723  | 0.0123          | 0.0000 | 199.1793 |
| Vendor   | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000   |
| Worker   | 9.0500e-<br>003 | 6.0600e-<br>003 | 0.0624 | 1.6000e-<br>004 | 0.0173           | 1.3000e-<br>004 | 0.0175        | 4.6200e-<br>003   | 1.2000e-<br>004  | 4.7400e-<br>003 | 0.0000   | 14.8604   | 14.8604   | 4.6000e-<br>004 | 0.0000 | 14.8719  |
| Total    | 0.0278          | 0.6664          | 0.2097 | 2.1900e-<br>003 | 0.0958           | 2.2400e-<br>003 | 0.0980        | 0.0251            | 2.1300e-<br>003  | 0.0273          | 0.0000   | 213.7327  | 213.7327  | 0.0127          | 0.0000 | 214.0511 |

|               | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|---------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category      |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |          |
| Fugitive Dust |        |        |        |                 | 0.5701           | 0.0000          | 0.5701        | 0.1939            | 0.0000           | 0.1939      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000   |
| Off-Road      | 0.4005 | 4.2922 | 3.2091 | 6.8600e-<br>003 |                  | 0.1807          | 0.1807        |                   | 0.1662           | 0.1662      | 0.0000   | 602.6066  | 602.6066  | 0.1949 | 0.0000 | 607.4790 |
| Total         | 0.4005 | 4.2922 | 3.2091 | 6.8600e-<br>003 | 0.5701           | 0.1807          | 0.7507        | 0.1939            | 0.1662           | 0.3601      | 0.0000   | 602.6066  | 602.6066  | 0.1949 | 0.0000 | 607.4790 |

CalEEMod Version: CalEEMod.2016.3.2 Page 20 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

3.4 Grading - 2022

Mitigated Construction Off-Site

|          | ROG             | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e     |
|----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|----------|
| Category |                 |                 |        |                 | ton              | s/yr            |               |                   |                  |                 |          |           | MT        | /yr             |        |          |
| Hauling  | 0.0187          | 0.6604          | 0.1473 | 2.0300e-<br>003 | 0.0784           | 2.1100e-<br>003 | 0.0805        | 0.0205            | 2.0100e-<br>003  | 0.0225          | 0.0000   | 198.8723  | 198.8723  | 0.0123          | 0.0000 | 199.1793 |
| Vendor   | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000   |
| Worker   | 9.0500e-<br>003 | 6.0600e-<br>003 | 0.0624 | 1.6000e-<br>004 | 0.0173           | 1.3000e-<br>004 | 0.0175        | 4.6200e-<br>003   | 1.2000e-<br>004  | 4.7400e-<br>003 | 0.0000   | 14.8604   | 14.8604   | 4.6000e-<br>004 | 0.0000 | 14.8719  |
| Total    | 0.0278          | 0.6664          | 0.2097 | 2.1900e-<br>003 | 0.0958           | 2.2400e-<br>003 | 0.0980        | 0.0251            | 2.1300e-<br>003  | 0.0273          | 0.0000   | 213.7327  | 213.7327  | 0.0127          | 0.0000 | 214.0511 |

#### 3.4 Grading - 2023

|               | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|---------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category      |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |          |
| Fugitive Dust |        |        |        |                 | 1.2910           | 0.0000          | 1.2910        | 0.4442            | 0.0000           | 0.4442      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000   |
| Off-Road      | 0.3803 | 3.9520 | 3.2119 | 7.1100e-<br>003 |                  | 0.1631          | 0.1631        | <br>              | 0.1501           | 0.1501      | 0.0000   | 624.4281  | 624.4281  | 0.2020 | 0.0000 | 629.4770 |
| Total         | 0.3803 | 3.9520 | 3.2119 | 7.1100e-<br>003 | 1.2910           | 0.1631          | 1.4541        | 0.4442            | 0.1501           | 0.5942      | 0.0000   | 624.4281  | 624.4281  | 0.2020 | 0.0000 | 629.4770 |

CalEEMod Version: CalEEMod.2016.3.2 Page 21 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

3.4 Grading - 2023

<u>Unmitigated Construction Off-Site</u>

|          | ROG             | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e     |
|----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|----------|
| Category |                 |                 |        |                 | ton              | s/yr            |               |                   |                  |                 |          |           | MT        | /yr             |        |          |
| Hauling  | 0.0137          | 0.4760          | 0.1393 | 2.0400e-<br>003 | 0.0788           | 9.5000e-<br>004 | 0.0798        | 0.0206            | 9.1000e-<br>004  | 0.0216          | 0.0000   | 199.4761  | 199.4761  | 0.0118          | 0.0000 | 199.7702 |
| Vendor   | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000   |
| Worker   | 8.7000e-<br>003 | 5.6000e-<br>003 | 0.0582 | 1.6000e-<br>004 | 0.0180           | 1.3000e-<br>004 | 0.0181        | 4.7800e-<br>003   | 1.2000e-<br>004  | 4.9000e-<br>003 | 0.0000   | 14.8057   | 14.8057   | 4.2000e-<br>004 | 0.0000 | 14.8162  |
| Total    | 0.0224          | 0.4816          | 0.1975 | 2.2000e-<br>003 | 0.0968           | 1.0800e-<br>003 | 0.0979        | 0.0254            | 1.0300e-<br>003  | 0.0265          | 0.0000   | 214.2819  | 214.2819  | 0.0122          | 0.0000 | 214.5865 |

|               | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|---------------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category      |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |          |
| Fugitive Dust |        |        |        |                 | 0.5809           | 0.0000          | 0.5809        | 0.1999            | 0.0000           | 0.1999      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000   |
| Off-Road      | 0.3803 | 3.9520 | 3.2119 | 7.1100e-<br>003 |                  | 0.1631          | 0.1631        |                   | 0.1501           | 0.1501      | 0.0000   | 624.4274  | 624.4274  | 0.2020 | 0.0000 | 629.4762 |
| Total         | 0.3803 | 3.9520 | 3.2119 | 7.1100e-<br>003 | 0.5809           | 0.1631          | 0.7440        | 0.1999            | 0.1501           | 0.3499      | 0.0000   | 624.4274  | 624.4274  | 0.2020 | 0.0000 | 629.4762 |

CalEEMod Version: CalEEMod.2016.3.2 Page 22 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

3.4 Grading - 2023

Mitigated Construction Off-Site

|          | ROG             | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e     |
|----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|----------|
| Category |                 |                 |        |                 | ton              | s/yr            |               |                   |                  |                 |          |           | MT        | /yr             |        |          |
| Hauling  | 0.0137          | 0.4760          | 0.1393 | 2.0400e-<br>003 | 0.0788           | 9.5000e-<br>004 | 0.0798        | 0.0206            | 9.1000e-<br>004  | 0.0216          | 0.0000   | 199.4761  | 199.4761  | 0.0118          | 0.0000 | 199.7702 |
| Vendor   | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000   |
| Worker   | 8.7000e-<br>003 | 5.6000e-<br>003 | 0.0582 | 1.6000e-<br>004 | 0.0180           | 1.3000e-<br>004 | 0.0181        | 4.7800e-<br>003   | 1.2000e-<br>004  | 4.9000e-<br>003 | 0.0000   | 14.8057   | 14.8057   | 4.2000e-<br>004 | 0.0000 | 14.8162  |
| Total    | 0.0224          | 0.4816          | 0.1975 | 2.2000e-<br>003 | 0.0968           | 1.0800e-<br>003 | 0.0979        | 0.0254            | 1.0300e-<br>003  | 0.0265          | 0.0000   | 214.2819  | 214.2819  | 0.0122          | 0.0000 | 214.5865 |

#### 3.5 Building Construction - 2023

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e    |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|---------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr             |        |         |
| Off-Road | 0.0244 | 0.2230 | 0.2518 | 4.2000e-<br>004 |                  | 0.0109          | 0.0109        |                   | 0.0102           | 0.0102      | 0.0000   | 35.9297   | 35.9297   | 8.5500e-<br>003 | 0.0000 | 36.1434 |
| Total    | 0.0244 | 0.2230 | 0.2518 | 4.2000e-<br>004 |                  | 0.0109          | 0.0109        |                   | 0.0102           | 0.0102      | 0.0000   | 35.9297   | 35.9297   | 8.5500e-<br>003 | 0.0000 | 36.1434 |

CalEEMod Version: CalEEMod.2016.3.2 Page 23 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

# 3.5 Building Construction - 2023 <u>Unmitigated Construction Off-Site</u>

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|----------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |                 |          |           | МТ        | /yr             |        |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000   |
| Vendor   | 0.0109 | 0.4072 | 0.1068 | 1.2600e-<br>003 | 0.0320           | 5.1000e-<br>004 | 0.0325        | 9.2300e-<br>003   | 4.9000e-<br>004  | 9.7200e-<br>003 | 0.0000   | 121.7621  | 121.7621  | 6.4300e-<br>003 | 0.0000 | 121.9229 |
| Worker   | 0.0631 | 0.0406 | 0.4217 | 1.1900e-<br>003 | 0.1303           | 9.4000e-<br>004 | 0.1312        | 0.0347            | 8.7000e-<br>004  | 0.0356          | 0.0000   | 107.3285  | 107.3285  | 3.0500e-<br>003 | 0.0000 | 107.4046 |
| Total    | 0.0740 | 0.4478 | 0.5285 | 2.4500e-<br>003 | 0.1622           | 1.4500e-<br>003 | 0.1637        | 0.0439            | 1.3600e-<br>003  | 0.0453          | 0.0000   | 229.0906  | 229.0906  | 9.4800e-<br>003 | 0.0000 | 229.3275 |

|          | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e    |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|--------|---------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |           | MT        | /yr             |        |         |
| Off-Road | 0.0244 | 0.2230 | 0.2518 | 4.2000e-<br>004 |                  | 0.0109          | 0.0109        | <br>              | 0.0102           | 0.0102         | 0.0000   | 35.9297   | 35.9297   | 8.5500e-<br>003 | 0.0000 | 36.1434 |
| Total    | 0.0244 | 0.2230 | 0.2518 | 4.2000e-<br>004 |                  | 0.0109          | 0.0109        |                   | 0.0102           | 0.0102         | 0.0000   | 35.9297   | 35.9297   | 8.5500e-<br>003 | 0.0000 | 36.1434 |

CalEEMod Version: CalEEMod.2016.3.2 Page 24 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

# 3.5 Building Construction - 2023 Mitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|----------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |                 |          |           | MT        | /yr             |        |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000   |
| Vendor   | 0.0109 | 0.4072 | 0.1068 | 1.2600e-<br>003 | 0.0320           | 5.1000e-<br>004 | 0.0325        | 9.2300e-<br>003   | 4.9000e-<br>004  | 9.7200e-<br>003 | 0.0000   | 121.7621  | 121.7621  | 6.4300e-<br>003 | 0.0000 | 121.9229 |
| Worker   | 0.0631 | 0.0406 | 0.4217 | 1.1900e-<br>003 | 0.1303           | 9.4000e-<br>004 | 0.1312        | 0.0347            | 8.7000e-<br>004  | 0.0356          | 0.0000   | 107.3285  | 107.3285  | 3.0500e-<br>003 | 0.0000 | 107.4046 |
| Total    | 0.0740 | 0.4478 | 0.5285 | 2.4500e-<br>003 | 0.1622           | 1.4500e-<br>003 | 0.1637        | 0.0439            | 1.3600e-<br>003  | 0.0453          | 0.0000   | 229.0906  | 229.0906  | 9.4800e-<br>003 | 0.0000 | 229.3275 |

#### 3.5 Building Construction - 2024

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |          |
| Off-Road | 0.1928 | 1.7611 | 2.1179 | 3.5300e-<br>003 |                  | 0.0803          | 0.0803        |                   | 0.0756           | 0.0756      | 0.0000   | 303.7223  | 303.7223  | 0.0718 | 0.0000 | 305.5179 |
| Total    | 0.1928 | 1.7611 | 2.1179 | 3.5300e-<br>003 |                  | 0.0803          | 0.0803        |                   | 0.0756           | 0.0756      | 0.0000   | 303.7223  | 303.7223  | 0.0718 | 0.0000 | 305.5179 |

CalEEMod Version: CalEEMod.2016.3.2 Page 25 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

# 3.5 Building Construction - 2024 Unmitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|----------------|----------------|--------|--------|----------------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |                | МТ             | /yr    |        |                |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Vendor   | 0.0884 | 3.3958 | 0.8531 | 0.0106          | 0.2700           | 4.1300e-<br>003 | 0.2741        | 0.0780            | 3.9500e-<br>003  | 0.0820      | 0.0000   | 1,022.646<br>8 | 1,022.646<br>8 | 0.0537 | 0.0000 | 1,023.990<br>1 |
| Worker   | 0.4949 | 0.3060 | 3.2367 | 9.6300e-<br>003 | 1.1011           | 7.7000e-<br>003 | 1.1088        | 0.2931            | 7.1000e-<br>003  | 0.3002      | 0.0000   | 870.7887       | 870.7887       | 0.0227 | 0.0000 | 871.3551       |
| Total    | 0.5833 | 3.7018 | 4.0898 | 0.0202          | 1.3711           | 0.0118          | 1.3829        | 0.3711            | 0.0111           | 0.3821      | 0.0000   | 1,893.435<br>5 | 1,893.435<br>5 | 0.0764 | 0.0000 | 1,895.345<br>3 |

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |          |
| Off-Road | 0.1928 | 1.7611 | 2.1179 | 3.5300e-<br>003 |                  | 0.0803          | 0.0803        |                   | 0.0756           | 0.0756      | 0.0000   | 303.7220  | 303.7220  | 0.0718 | 0.0000 | 305.5175 |
| Total    | 0.1928 | 1.7611 | 2.1179 | 3.5300e-<br>003 |                  | 0.0803          | 0.0803        |                   | 0.0756           | 0.0756      | 0.0000   | 303.7220  | 303.7220  | 0.0718 | 0.0000 | 305.5175 |

CalEEMod Version: CalEEMod.2016.3.2 Page 26 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

# 3.5 Building Construction - 2024 Mitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|----------------|----------------|--------|--------|----------------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |                | MT             | /yr    |        |                |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Vendor   | 0.0884 | 3.3958 | 0.8531 | 0.0106          | 0.2700           | 4.1300e-<br>003 | 0.2741        | 0.0780            | 3.9500e-<br>003  | 0.0820      | 0.0000   | 1,022.646<br>8 | 1,022.646<br>8 | 0.0537 | 0.0000 | 1,023.990<br>1 |
| Worker   | 0.4949 | 0.3060 | 3.2367 | 9.6300e-<br>003 | 1.1011           | 7.7000e-<br>003 | 1.1088        | 0.2931            | 7.1000e-<br>003  | 0.3002      | 0.0000   | 870.7887       | 870.7887       | 0.0227 | 0.0000 | 871.3551       |
| Total    | 0.5833 | 3.7018 | 4.0898 | 0.0202          | 1.3711           | 0.0118          | 1.3829        | 0.3711            | 0.0111           | 0.3821      | 0.0000   | 1,893.435<br>5 | 1,893.435<br>5 | 0.0764 | 0.0000 | 1,895.345<br>3 |

#### 3.5 Building Construction - 2025

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |          |
| Off-Road | 0.1785 | 1.6273 | 2.0991 | 3.5200e-<br>003 |                  | 0.0689          | 0.0689        |                   | 0.0648           | 0.0648      | 0.0000   | 302.6549  | 302.6549  | 0.0711 | 0.0000 | 304.4335 |
| Total    | 0.1785 | 1.6273 | 2.0991 | 3.5200e-<br>003 |                  | 0.0689          | 0.0689        |                   | 0.0648           | 0.0648      | 0.0000   | 302.6549  | 302.6549  | 0.0711 | 0.0000 | 304.4335 |

CalEEMod Version: CalEEMod.2016.3.2 Page 27 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

# 3.5 Building Construction - 2025 Unmitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|----------------|----------------|--------|--------|----------------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |                | МТ             | /yr    |        |                |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Vendor   | 0.0848 | 3.3372 | 0.8133 | 0.0105          | 0.2689           | 3.9600e-<br>003 | 0.2729        | 0.0777            | 3.7900e-<br>003  | 0.0815      | 0.0000   | 1,012.492<br>6 | 1,012.492<br>6 | 0.0529 | 0.0000 | 1,013.815<br>9 |
| Worker   | 0.4590 | 0.2743 | 2.9493 | 9.2000e-<br>003 | 1.0969           | 7.4800e-<br>003 | 1.1044        | 0.2920            | 6.8900e-<br>003  | 0.2989      | 0.0000   | 831.7436       | 831.7436       | 0.0201 | 0.0000 | 832.2470       |
| Total    | 0.5438 | 3.6115 | 3.7626 | 0.0197          | 1.3658           | 0.0114          | 1.3772        | 0.3697            | 0.0107           | 0.3804      | 0.0000   | 1,844.236<br>1 | 1,844.236<br>1 | 0.0731 | 0.0000 | 1,846.062<br>9 |

|          | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |          |
| Off-Road | 0.1784 | 1.6273 | 2.0991 | 3.5200e-<br>003 |                  | 0.0689          | 0.0689        |                   | 0.0648           | 0.0648      | 0.0000   | 302.6545  | 302.6545  | 0.0711 | 0.0000 | 304.4331 |
| Total    | 0.1784 | 1.6273 | 2.0991 | 3.5200e-<br>003 |                  | 0.0689          | 0.0689        |                   | 0.0648           | 0.0648      | 0.0000   | 302.6545  | 302.6545  | 0.0711 | 0.0000 | 304.4331 |

CalEEMod Version: CalEEMod.2016.3.2 Page 28 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

# 3.5 Building Construction - 2025 Mitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|----------------|----------------|--------|--------|----------------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |                | MT             | /yr    |        |                |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Vendor   | 0.0848 | 3.3372 | 0.8133 | 0.0105          | 0.2689           | 3.9600e-<br>003 | 0.2729        | 0.0777            | 3.7900e-<br>003  | 0.0815      | 0.0000   | 1,012.492<br>6 | 1,012.492<br>6 | 0.0529 | 0.0000 | 1,013.815<br>9 |
| Worker   | 0.4590 | 0.2743 | 2.9493 | 9.2000e-<br>003 | 1.0969           | 7.4800e-<br>003 | 1.1044        | 0.2920            | 6.8900e-<br>003  | 0.2989      | 0.0000   | 831.7436       | 831.7436       | 0.0201 | 0.0000 | 832.2470       |
| Total    | 0.5438 | 3.6115 | 3.7626 | 0.0197          | 1.3658           | 0.0114          | 1.3772        | 0.3697            | 0.0107           | 0.3804      | 0.0000   | 1,844.236<br>1 | 1,844.236<br>1 | 0.0731 | 0.0000 | 1,846.062<br>9 |

# 3.5 Building Construction - 2026

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|----------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |           | MT        | /yr    |        |          |
| Off-Road | 0.1785 | 1.6273 | 2.0991 | 3.5200e-<br>003 |                  | 0.0689          | 0.0689        |                   | 0.0648           | 0.0648         | 0.0000   | 302.6549  | 302.6549  | 0.0711 | 0.0000 | 304.4335 |
| Total    | 0.1785 | 1.6273 | 2.0991 | 3.5200e-<br>003 |                  | 0.0689          | 0.0689        |                   | 0.0648           | 0.0648         | 0.0000   | 302.6549  | 302.6549  | 0.0711 | 0.0000 | 304.4335 |

CalEEMod Version: CalEEMod.2016.3.2 Page 29 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

# 3.5 Building Construction - 2026 Unmitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|----------------|----------------|--------|--------|----------------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |                | MT             | /yr    |        |                |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Vendor   | 0.0821 | 3.2926 | 0.7860 | 0.0104          | 0.2689           | 3.8000e-<br>003 | 0.2727        | 0.0777            | 3.6300e-<br>003  | 0.0814      | 0.0000   | 1,006.693<br>1 | 1,006.693<br>1 | 0.0523 | 0.0000 | 1,007.999<br>2 |
| Worker   | 0.4295 | 0.2485 | 2.7143 | 8.8400e-<br>003 | 1.0969           | 7.2100e-<br>003 | 1.1041        | 0.2920            | 6.6400e-<br>003  | 0.2986      | 0.0000   | 799.8271       | 799.8271       | 0.0181 | 0.0000 | 800.2783       |
| Total    | 0.5116 | 3.5411 | 3.5003 | 0.0192          | 1.3658           | 0.0110          | 1.3768        | 0.3697            | 0.0103           | 0.3800      | 0.0000   | 1,806.520<br>1 | 1,806.520<br>1 | 0.0703 | 0.0000 | 1,808.277<br>5 |

|          | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |          |
| Off-Road | 0.1784 | 1.6273 | 2.0991 | 3.5200e-<br>003 |                  | 0.0689          | 0.0689        |                   | 0.0648           | 0.0648      | 0.0000   | 302.6545  | 302.6545  | 0.0711 | 0.0000 | 304.4331 |
| Total    | 0.1784 | 1.6273 | 2.0991 | 3.5200e-<br>003 |                  | 0.0689          | 0.0689        |                   | 0.0648           | 0.0648      | 0.0000   | 302.6545  | 302.6545  | 0.0711 | 0.0000 | 304.4331 |

CalEEMod Version: CalEEMod.2016.3.2 Page 30 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

# 3.5 Building Construction - 2026 Mitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|----------------|----------------|--------|--------|----------------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |                | МТ             | /yr    |        |                |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Vendor   | 0.0821 | 3.2926 | 0.7860 | 0.0104          | 0.2689           | 3.8000e-<br>003 | 0.2727        | 0.0777            | 3.6300e-<br>003  | 0.0814      | 0.0000   | 1,006.693<br>1 | 1,006.693<br>1 | 0.0523 | 0.0000 | 1,007.999<br>2 |
| Worker   | 0.4295 | 0.2485 | 2.7143 | 8.8400e-<br>003 | 1.0969           | 7.2100e-<br>003 | 1.1041        | 0.2920            | 6.6400e-<br>003  | 0.2986      | 0.0000   | 799.8271       | 799.8271       | 0.0181 | 0.0000 | 800.2783       |
| Total    | 0.5116 | 3.5411 | 3.5003 | 0.0192          | 1.3658           | 0.0110          | 1.3768        | 0.3697            | 0.0103           | 0.3800      | 0.0000   | 1,806.520<br>1 | 1,806.520<br>1 | 0.0703 | 0.0000 | 1,808.277<br>5 |

#### 3.5 Building Construction - 2027

|          | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |          |
| Off-Road | 0.1265 | 1.1535 | 1.4878 | 2.4900e-<br>003 |                  | 0.0488          | 0.0488        |                   | 0.0459           | 0.0459      | 0.0000   | 214.5255  | 214.5255  | 0.0504 | 0.0000 | 215.7862 |
| Total    | 0.1265 | 1.1535 | 1.4878 | 2.4900e-<br>003 |                  | 0.0488          | 0.0488        |                   | 0.0459           | 0.0459      | 0.0000   | 214.5255  | 214.5255  | 0.0504 | 0.0000 | 215.7862 |

CalEEMod Version: CalEEMod.2016.3.2 Page 31 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

# 3.5 Building Construction - 2027 Unmitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|----------------|----------------|--------|--------|----------------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |                | MT             | /yr    |        |                |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Vendor   | 0.0565 | 2.3035 | 0.5406 | 7.3100e-<br>003 | 0.1906           | 2.6000e-<br>003 | 0.1932        | 0.0551            | 2.4900e-<br>003  | 0.0576      | 0.0000   | 709.6427       | 709.6427       | 0.0366 | 0.0000 | 710.5571       |
| Worker   | 0.2841 | 0.1595 | 1.7739 | 6.0500e-<br>003 | 0.7775           | 4.8100e-<br>003 | 0.7823        | 0.2069            | 4.4300e-<br>003  | 0.2114      | 0.0000   | 546.9450       | 546.9450       | 0.0115 | 0.0000 | 547.2319       |
| Total    | 0.3406 | 2.4630 | 2.3145 | 0.0134          | 0.9681           | 7.4100e-<br>003 | 0.9755        | 0.2620            | 6.9200e-<br>003  | 0.2689      | 0.0000   | 1,256.587<br>7 | 1,256.587<br>7 | 0.0481 | 0.0000 | 1,257.789<br>0 |

|          | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |          |
| Off-Road | 0.1265 | 1.1534 | 1.4878 | 2.4900e-<br>003 |                  | 0.0488          | 0.0488        |                   | 0.0459           | 0.0459      | 0.0000   | 214.5252  | 214.5252  | 0.0504 | 0.0000 | 215.7860 |
| Total    | 0.1265 | 1.1534 | 1.4878 | 2.4900e-<br>003 |                  | 0.0488          | 0.0488        |                   | 0.0459           | 0.0459      | 0.0000   | 214.5252  | 214.5252  | 0.0504 | 0.0000 | 215.7860 |

CalEEMod Version: CalEEMod.2016.3.2 Page 32 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

3.5 Building Construction - 2027

Mitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |                | MT             | /yr    |        |                |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         | 0.0000   | 0.0000         | 0.0000         | 0.0000 | 0.0000 | 0.0000         |
| Vendor   | 0.0565 | 2.3035 | 0.5406 | 7.3100e-<br>003 | 0.1906           | 2.6000e-<br>003 | 0.1932        | 0.0551            | 2.4900e-<br>003  | 0.0576         | 0.0000   | 709.6427       | 709.6427       | 0.0366 | 0.0000 | 710.5571       |
| Worker   | 0.2841 | 0.1595 | 1.7739 | 6.0500e-<br>003 | 0.7775           | 4.8100e-<br>003 | 0.7823        | 0.2069            | 4.4300e-<br>003  | 0.2114         | 0.0000   | 546.9450       | 546.9450       | 0.0115 | 0.0000 | 547.2319       |
| Total    | 0.3406 | 2.4630 | 2.3145 | 0.0134          | 0.9681           | 7.4100e-<br>003 | 0.9755        | 0.2620            | 6.9200e-<br>003  | 0.2689         | 0.0000   | 1,256.587<br>7 | 1,256.587<br>7 | 0.0481 | 0.0000 | 1,257.789<br>0 |

# 3.6 Paving - 2027

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e    |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|---------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |         |
| Off-Road | 0.0348 | 0.3261 | 0.5540 | 8.7000e-<br>004 |                  | 0.0159          | 0.0159        |                   | 0.0146           | 0.0146      | 0.0000   | 76.0732   | 76.0732   | 0.0246 | 0.0000 | 76.6883 |
| Paving   | 0.0000 |        | <br>   | <br>            |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000  |
| Total    | 0.0348 | 0.3261 | 0.5540 | 8.7000e-<br>004 |                  | 0.0159          | 0.0159        |                   | 0.0146           | 0.0146      | 0.0000   | 76.0732   | 76.0732   | 0.0246 | 0.0000 | 76.6883 |

CalEEMod Version: CalEEMod.2016.3.2 Page 33 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

3.6 Paving - 2027

<u>Unmitigated Construction Off-Site</u>

|          | ROG             | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |                 |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |        |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Worker   | 1.6300e-<br>003 | 9.2000e-<br>004 | 0.0102 | 3.0000e-<br>005 | 4.4700e-<br>003  | 3.0000e-<br>005 | 4.5000e-<br>003 | 1.1900e-<br>003   | 3.0000e-<br>005  | 1.2200e-<br>003 | 0.0000   | 3.1469    | 3.1469    | 7.0000e-<br>005 | 0.0000 | 3.1486 |
| Total    | 1.6300e-<br>003 | 9.2000e-<br>004 | 0.0102 | 3.0000e-<br>005 | 4.4700e-<br>003  | 3.0000e-<br>005 | 4.5000e-<br>003 | 1.1900e-<br>003   | 3.0000e-<br>005  | 1.2200e-<br>003 | 0.0000   | 3.1469    | 3.1469    | 7.0000e-<br>005 | 0.0000 | 3.1486 |

|          | ROG    | NOx    | СО     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e    |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|--------|--------|---------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |           | MT        | /yr    |        |         |
| Off-Road | 0.0348 | 0.3261 | 0.5540 | 8.7000e-<br>004 |                  | 0.0159          | 0.0159        |                   | 0.0146           | 0.0146         | 0.0000   | 76.0731   | 76.0731   | 0.0246 | 0.0000 | 76.6882 |
| Paving   | 0.0000 |        |        |                 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000  |
| Total    | 0.0348 | 0.3261 | 0.5540 | 8.7000e-<br>004 |                  | 0.0159          | 0.0159        |                   | 0.0146           | 0.0146         | 0.0000   | 76.0731   | 76.0731   | 0.0246 | 0.0000 | 76.6882 |

CalEEMod Version: CalEEMod.2016.3.2 Page 34 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

3.6 Paving - 2027

Mitigated Construction Off-Site

|          | ROG             | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |                 |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |        |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Worker   | 1.6300e-<br>003 | 9.2000e-<br>004 | 0.0102 | 3.0000e-<br>005 | 4.4700e-<br>003  | 3.0000e-<br>005 | 4.5000e-<br>003 | 1.1900e-<br>003   | 3.0000e-<br>005  | 1.2200e-<br>003 | 0.0000   | 3.1469    | 3.1469    | 7.0000e-<br>005 | 0.0000 | 3.1486 |
| Total    | 1.6300e-<br>003 | 9.2000e-<br>004 | 0.0102 | 3.0000e-<br>005 | 4.4700e-<br>003  | 3.0000e-<br>005 | 4.5000e-<br>003 | 1.1900e-<br>003   | 3.0000e-<br>005  | 1.2200e-<br>003 | 0.0000   | 3.1469    | 3.1469    | 7.0000e-<br>005 | 0.0000 | 3.1486 |

# 3.6 Paving - 2028

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |          |
| Off-Road | 0.1025 | 0.9611 | 1.6327 | 2.5500e-<br>003 |                  | 0.0469          | 0.0469        |                   | 0.0431           | 0.0431      | 0.0000   | 224.2157  | 224.2157  | 0.0725 | 0.0000 | 226.0286 |
| Paving   | 0.0000 |        | <br>   |                 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000   |
| Total    | 0.1025 | 0.9611 | 1.6327 | 2.5500e-<br>003 |                  | 0.0469          | 0.0469        |                   | 0.0431           | 0.0431      | 0.0000   | 224.2157  | 224.2157  | 0.0725 | 0.0000 | 226.0286 |

CalEEMod Version: CalEEMod.2016.3.2 Page 35 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

3.6 Paving - 2028

<u>Unmitigated Construction Off-Site</u>

|          | ROG             | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |                 |        |                 | ton              | s/yr            |               |                   |                  |                 |          |           | MT        | /yr             |        |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Worker   | 4.4700e-<br>003 | 2.4500e-<br>003 | 0.0279 | 1.0000e-<br>004 | 0.0132           | 8.0000e-<br>005 | 0.0133        | 3.5100e-<br>003   | 7.0000e-<br>005  | 3.5800e-<br>003 | 0.0000   | 8.9753    | 8.9753    | 1.8000e-<br>004 | 0.0000 | 8.9797 |
| Total    | 4.4700e-<br>003 | 2.4500e-<br>003 | 0.0279 | 1.0000e-<br>004 | 0.0132           | 8.0000e-<br>005 | 0.0133        | 3.5100e-<br>003   | 7.0000e-<br>005  | 3.5800e-<br>003 | 0.0000   | 8.9753    | 8.9753    | 1.8000e-<br>004 | 0.0000 | 8.9797 |

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |          |
| Off-Road | 0.1025 | 0.9611 | 1.6327 | 2.5500e-<br>003 |                  | 0.0469          | 0.0469        |                   | 0.0431           | 0.0431      | 0.0000   | 224.2154  | 224.2154  | 0.0725 | 0.0000 | 226.0283 |
| Paving   | 0.0000 |        |        |                 |                  | 0.0000          | 0.0000        | <br>              | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000   |
| Total    | 0.1025 | 0.9611 | 1.6327 | 2.5500e-<br>003 |                  | 0.0469          | 0.0469        |                   | 0.0431           | 0.0431      | 0.0000   | 224.2154  | 224.2154  | 0.0725 | 0.0000 | 226.0283 |

CalEEMod Version: CalEEMod.2016.3.2 Page 36 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

3.6 Paving - 2028

Mitigated Construction Off-Site

|          | ROG             | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|-----------------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |                 |        |                 | ton              | s/yr            |               |                   |                  |                 |          |           | MT        | /yr             |        |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Worker   | 4.4700e-<br>003 | 2.4500e-<br>003 | 0.0279 | 1.0000e-<br>004 | 0.0132           | 8.0000e-<br>005 | 0.0133        | 3.5100e-<br>003   | 7.0000e-<br>005  | 3.5800e-<br>003 | 0.0000   | 8.9753    | 8.9753    | 1.8000e-<br>004 | 0.0000 | 8.9797 |
| Total    | 4.4700e-<br>003 | 2.4500e-<br>003 | 0.0279 | 1.0000e-<br>004 | 0.0132           | 8.0000e-<br>005 | 0.0133        | 3.5100e-<br>003   | 7.0000e-<br>005  | 3.5800e-<br>003 | 0.0000   | 8.9753    | 8.9753    | 1.8000e-<br>004 | 0.0000 | 8.9797 |

# 3.7 Architectural Coating - 2028

|                 | ROG             | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|-----------------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category        |                 |        |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |        |        |
| Archit. Coating | 4.5235          |        | <br>   |                 |                  | 0.0000          | 0.0000          | <br>              | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Off-Road        | 3.0800e-<br>003 | 0.0206 | 0.0326 | 5.0000e-<br>005 |                  | 9.3000e-<br>004 | 9.3000e-<br>004 | <br>              | 9.3000e-<br>004  | 9.3000e-<br>004 | 0.0000   | 4.5959    | 4.5959    | 2.5000e-<br>004 | 0.0000 | 4.6021 |
| Total           | 4.5266          | 0.0206 | 0.0326 | 5.0000e-<br>005 |                  | 9.3000e-<br>004 | 9.3000e-<br>004 |                   | 9.3000e-<br>004  | 9.3000e-<br>004 | 0.0000   | 4.5959    | 4.5959    | 2.5000e-<br>004 | 0.0000 | 4.6021 |

CalEEMod Version: CalEEMod.2016.3.2 Page 37 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

# 3.7 Architectural Coating - 2028 <u>Unmitigated Construction Off-Site</u>

|          | ROG    | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e    |
|----------|--------|-----------------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|---------|
| Category |        |                 |        |                 | ton              | s/yr            |               |                   |                  |                 |          |           | MT        | /yr             |        |         |
| Hauling  | 0.0000 | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000  |
| Vendor   | 0.0000 | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000  |
| Worker   | 0.0103 | 5.6200e-<br>003 | 0.0640 | 2.3000e-<br>004 | 0.0302           | 1.7000e-<br>004 | 0.0304        | 8.0500e-<br>003   | 1.6000e-<br>004  | 8.2100e-<br>003 | 0.0000   | 20.5790   | 20.5790   | 4.0000e-<br>004 | 0.0000 | 20.5891 |
| Total    | 0.0103 | 5.6200e-<br>003 | 0.0640 | 2.3000e-<br>004 | 0.0302           | 1.7000e-<br>004 | 0.0304        | 8.0500e-<br>003   | 1.6000e-<br>004  | 8.2100e-<br>003 | 0.0000   | 20.5790   | 20.5790   | 4.0000e-<br>004 | 0.0000 | 20.5891 |

|                 | ROG             | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|-----------------|-----------------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category        |                 |        |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |        |        |
| Archit. Coating | 4.5235          |        |        |                 |                  | 0.0000          | 0.0000          | <br>              | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Off-Road        | 3.0800e-<br>003 | 0.0206 | 0.0326 | 5.0000e-<br>005 |                  | 9.3000e-<br>004 | 9.3000e-<br>004 | <br>              | 9.3000e-<br>004  | 9.3000e-<br>004 | 0.0000   | 4.5959    | 4.5959    | 2.5000e-<br>004 | 0.0000 | 4.6021 |
| Total           | 4.5266          | 0.0206 | 0.0326 | 5.0000e-<br>005 |                  | 9.3000e-<br>004 | 9.3000e-<br>004 |                   | 9.3000e-<br>004  | 9.3000e-<br>004 | 0.0000   | 4.5959    | 4.5959    | 2.5000e-<br>004 | 0.0000 | 4.6021 |

CalEEMod Version: CalEEMod.2016.3.2 Page 38 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

# 3.7 Architectural Coating - 2028 Mitigated Construction Off-Site

|          | ROG    | NOx             | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e    |
|----------|--------|-----------------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|---------|
| Category |        |                 |        |                 | ton              | s/yr            |               |                   |                  |                 |          |           | MT        | /yr             |        |         |
| Hauling  | 0.0000 | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000  |
| Vendor   | 0.0000 | 0.0000          | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000  |
| Worker   | 0.0103 | 5.6200e-<br>003 | 0.0640 | 2.3000e-<br>004 | 0.0302           | 1.7000e-<br>004 | 0.0304        | 8.0500e-<br>003   | 1.6000e-<br>004  | 8.2100e-<br>003 | 0.0000   | 20.5790   | 20.5790   | 4.0000e-<br>004 | 0.0000 | 20.5891 |
| Total    | 0.0103 | 5.6200e-<br>003 | 0.0640 | 2.3000e-<br>004 | 0.0302           | 1.7000e-<br>004 | 0.0304        | 8.0500e-<br>003   | 1.6000e-<br>004  | 8.2100e-<br>003 | 0.0000   | 20.5790   | 20.5790   | 4.0000e-<br>004 | 0.0000 | 20.5891 |

# 3.7 Architectural Coating - 2029

|                 | ROG     | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e    |
|-----------------|---------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|---------|
| Category        |         |        |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |        |         |
| Archit. Coating | 32.7955 |        |        |                 |                  | 0.0000          | 0.0000          | <br>              | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000  |
| Off-Road        | 0.0223  | 0.1495 | 0.2361 | 3.9000e-<br>004 |                  | 6.7200e-<br>003 | 6.7200e-<br>003 | <br> -<br> -      | 6.7200e-<br>003  | 6.7200e-<br>003 | 0.0000   | 33.3200   | 33.3200   | 1.8200e-<br>003 | 0.0000 | 33.3654 |
| Total           | 32.8178 | 0.1495 | 0.2361 | 3.9000e-<br>004 |                  | 6.7200e-<br>003 | 6.7200e-<br>003 |                   | 6.7200e-<br>003  | 6.7200e-<br>003 | 0.0000   | 33.3200   | 33.3200   | 1.8200e-<br>003 | 0.0000 | 33.3654 |

CalEEMod Version: CalEEMod.2016.3.2 Page 39 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

# 3.7 Architectural Coating - 2029 Unmitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|-----------------|--------|----------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr             |        |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000   |
| Worker   | 0.0683 | 0.0369 | 0.4291 | 1.6000e-<br>003 | 0.2192           | 1.1700e-<br>003 | 0.2203        | 0.0583            | 1.0700e-<br>003  | 0.0594      | 0.0000   | 144.7873  | 144.7873  | 2.6300e-<br>003 | 0.0000 | 144.8530 |
| Total    | 0.0683 | 0.0369 | 0.4291 | 1.6000e-<br>003 | 0.2192           | 1.1700e-<br>003 | 0.2203        | 0.0583            | 1.0700e-<br>003  | 0.0594      | 0.0000   | 144.7873  | 144.7873  | 2.6300e-<br>003 | 0.0000 | 144.8530 |

|                 | ROG     | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total  | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e    |
|-----------------|---------|--------|--------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|---------|
| Category        |         |        |        |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |        |         |
| Archit. Coating | 32.7955 |        |        |                 |                  | 0.0000          | 0.0000          | <br>              | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000  |
| Off-Road        | 0.0223  | 0.1495 | 0.2361 | 3.9000e-<br>004 |                  | 6.7200e-<br>003 | 6.7200e-<br>003 | <br>              | 6.7200e-<br>003  | 6.7200e-<br>003 | 0.0000   | 33.3199   | 33.3199   | 1.8200e-<br>003 | 0.0000 | 33.3654 |
| Total           | 32.8178 | 0.1495 | 0.2361 | 3.9000e-<br>004 |                  | 6.7200e-<br>003 | 6.7200e-<br>003 |                   | 6.7200e-<br>003  | 6.7200e-<br>003 | 0.0000   | 33.3199   | 33.3199   | 1.8200e-<br>003 | 0.0000 | 33.3654 |

CalEEMod Version: CalEEMod.2016.3.2 Page 40 of 52 Date: 7/27/2020 1:28 PM

#### Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

# 3.7 Architectural Coating - 2029 Mitigated Construction Off-Site

|          | ROG    | NOx    | CO     | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e     |
|----------|--------|--------|--------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|-----------------|--------|----------|
| Category |        |        |        |                 | ton              | s/yr            |               |                   |                  |                |          |           | MT        | /yr             |        |          |
| Hauling  | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000   |
| Vendor   | 0.0000 | 0.0000 | 0.0000 | 0.0000          | 0.0000           | 0.0000          | 0.0000        | 0.0000            | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000   |
| Worker   | 0.0683 | 0.0369 | 0.4291 | 1.6000e-<br>003 | 0.2192           | 1.1700e-<br>003 | 0.2203        | 0.0583            | 1.0700e-<br>003  | 0.0594         | 0.0000   | 144.7873  | 144.7873  | 2.6300e-<br>003 | 0.0000 | 144.8530 |
| Total    | 0.0683 | 0.0369 | 0.4291 | 1.6000e-<br>003 | 0.2192           | 1.1700e-<br>003 | 0.2203        | 0.0583            | 1.0700e-<br>003  | 0.0594         | 0.0000   | 144.7873  | 144.7873  | 2.6300e-<br>003 | 0.0000 | 144.8530 |

# 3.7 Architectural Coating - 2030

|                 | ROG             | NOx             | CO              | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|-----------------|-----------------|-----------------|-----------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category        | tons/yr         |                 |                 |        |                  |                 |                 |                   |                  |                 |          |           | MT        | /yr             |        |        |
| Archit. Coating | 0.3770          |                 |                 |        |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Off-Road        | 2.0000e-<br>004 | 1.2800e-<br>003 | 2.7000e-<br>003 | 0.0000 |                  | 3.0000e-<br>005 | 3.0000e-<br>005 |                   | 3.0000e-<br>005  | 3.0000e-<br>005 | 0.0000   | 0.3830    | 0.3830    | 2.0000e-<br>005 | 0.0000 | 0.3834 |
| Total           | 0.3772          | 1.2800e-<br>003 | 2.7000e-<br>003 | 0.0000 |                  | 3.0000e-<br>005 | 3.0000e-<br>005 |                   | 3.0000e-<br>005  | 3.0000e-<br>005 | 0.0000   | 0.3830    | 0.3830    | 2.0000e-<br>005 | 0.0000 | 0.3834 |

CalEEMod Version: CalEEMod.2016.3.2 Page 41 of 52 Date: 7/27/2020 1:28 PM

Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

# 3.7 Architectural Coating - 2030 <u>Unmitigated Construction Off-Site</u>

|          | ROG             | NOx             | CO              | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |                 |                 |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |        |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Worker   | 7.2000e-<br>004 | 3.8000e-<br>004 | 4.5800e-<br>003 | 2.0000e-<br>005 | 2.5200e-<br>003  | 1.0000e-<br>005 | 2.5300e-<br>003 | 6.7000e-<br>004   | 1.0000e-<br>005  | 6.8000e-<br>004 | 0.0000   | 1.6196    | 1.6196    | 3.0000e-<br>005 | 0.0000 | 1.6202 |
| Total    | 7.2000e-<br>004 | 3.8000e-<br>004 | 4.5800e-<br>003 | 2.0000e-<br>005 | 2.5200e-<br>003  | 1.0000e-<br>005 | 2.5300e-<br>003 | 6.7000e-<br>004   | 1.0000e-<br>005  | 6.8000e-<br>004 | 0.0000   | 1.6196    | 1.6196    | 3.0000e-<br>005 | 0.0000 | 1.6202 |

|                 | ROG             | NOx             | СО              | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|-----------------|-----------------|-----------------|-----------------|--------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category        |                 | tons/yr         |                 |        |                  |                 |                 |                   |                  |                 |          |           | MT        | /yr             |        |        |
| Archit. Coating | 0.3770          |                 |                 |        |                  | 0.0000          | 0.0000          |                   | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Off-Road        | 2.0000e-<br>004 | 1.2800e-<br>003 | 2.7000e-<br>003 | 0.0000 |                  | 3.0000e-<br>005 | 3.0000e-<br>005 |                   | 3.0000e-<br>005  | 3.0000e-<br>005 | 0.0000   | 0.3830    | 0.3830    | 2.0000e-<br>005 | 0.0000 | 0.3834 |
| Total           | 0.3772          | 1.2800e-<br>003 | 2.7000e-<br>003 | 0.0000 |                  | 3.0000e-<br>005 | 3.0000e-<br>005 |                   | 3.0000e-<br>005  | 3.0000e-<br>005 | 0.0000   | 0.3830    | 0.3830    | 2.0000e-<br>005 | 0.0000 | 0.3834 |

CalEEMod Version: CalEEMod.2016.3.2 Page 42 of 52 Date: 7/27/2020 1:28 PM

Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

# 3.7 Architectural Coating - 2030 Mitigated Construction Off-Site

|          | ROG             | NOx             | CO              | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total   | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total     | Bio- CO2 | NBio- CO2 | Total CO2 | CH4             | N2O    | CO2e   |
|----------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|-------------------|------------------|-----------------|----------|-----------|-----------|-----------------|--------|--------|
| Category |                 |                 |                 |                 | ton              | s/yr            |                 |                   |                  |                 |          |           | MT        | /yr             |        |        |
| Hauling  | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Vendor   | 0.0000          | 0.0000          | 0.0000          | 0.0000          | 0.0000           | 0.0000          | 0.0000          | 0.0000            | 0.0000           | 0.0000          | 0.0000   | 0.0000    | 0.0000    | 0.0000          | 0.0000 | 0.0000 |
| Worker   | 7.2000e-<br>004 | 3.8000e-<br>004 | 4.5800e-<br>003 | 2.0000e-<br>005 | 2.5200e-<br>003  | 1.0000e-<br>005 | 2.5300e-<br>003 | 6.7000e-<br>004   | 1.0000e-<br>005  | 6.8000e-<br>004 | 0.0000   | 1.6196    | 1.6196    | 3.0000e-<br>005 | 0.0000 | 1.6202 |
| Total    | 7.2000e-<br>004 | 3.8000e-<br>004 | 4.5800e-<br>003 | 2.0000e-<br>005 | 2.5200e-<br>003  | 1.0000e-<br>005 | 2.5300e-<br>003 | 6.7000e-<br>004   | 1.0000e-<br>005  | 6.8000e-<br>004 | 0.0000   | 1.6196    | 1.6196    | 3.0000e-<br>005 | 0.0000 | 1.6202 |

# 4.0 Operational Detail - Mobile

#### **4.1 Mitigation Measures Mobile**

CalEEMod Version: CalEEMod.2016.3.2 Page 43 of 52 Date: 7/27/2020 1:28 PM

Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

|             | ROG    | NOx     | CO      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2       | Total CO2       | CH4    | N2O    | CO2e            |
|-------------|--------|---------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------------|-----------------|--------|--------|-----------------|
| Category    |        |         |         |        | ton              | s/yr            |               |                   |                  |             |          |                 | MT              | /yr    |        |                 |
| Mitigated   | 4.9629 | 24.7554 | 55.1400 | 0.1614 | 12.6974          | 0.1687          | 12.8662       | 3.4172            | 0.1585           | 3.5757      | 0.0000   | 14,828.93<br>45 | 14,828.93<br>45 | 0.6650 | 0.0000 | 14,845.56<br>00 |
| Unmitigated | 4.9629 | 24.7554 | 55.1400 | 0.1614 | 12.6974          | 0.1687          | 12.8662       | 3.4172            | 0.1585           | 3.5757      | 0.0000   | 14,828.93<br>45 | 14,828.93<br>45 | 0.6650 | 0.0000 | 14,845.56<br>00 |

#### **4.2 Trip Summary Information**

|                       | Ave       | rage Daily Trip Ra | ate       | Unmitigated | Mitigated  |
|-----------------------|-----------|--------------------|-----------|-------------|------------|
| Land Use              | Weekday   | Saturday           | Sunday    | Annual VMT  | Annual VMT |
| Single Family Housing | 14,815.50 | 14,815.50          | 14815.50  | 34,217,987  | 34,217,987 |
| Total                 | 14,815.50 | 14,815.50          | 14,815.50 | 34,217,987  | 34,217,987 |

#### **4.3 Trip Type Information**

|                       |            | Miles       |            |            | Trip %      |         |          | Trip Purpos | e % |
|-----------------------|------------|-------------|------------|------------|-------------|---------|----------|-------------|-----|
| Land Use              | H-W or C-W | H-O or C-NW | H-W or C-W | H-S or C-C | H-O or C-NW | Primary | Diverted | Pass-by     |     |
| Single Family Housing | 10.80      | 4.80        | 5.70       | 31.00      | 15.00       | 54.00   | 86       | 11          | 3   |

#### 4.4 Fleet Mix

| Land Use              | LDA      | LDT1     | LDT2     | MDV      | LHD1     | LHD2     | MHD      | HHD      | OBUS     | UBUS     | MCY      | SBUS     | MH       |
|-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Single Family Housing | 0.578299 | 0.039453 | 0.169996 | 0.109068 | 0.028307 | 0.006716 | 0.029274 | 0.026666 | 0.003071 | 0.001838 | 0.005325 | 0.000874 | 0.001112 |

### 5.0 Energy Detail

Historical Energy Use: N

CalEEMod Version: CalEEMod.2016.3.2 Page 44 of 52 Date: 7/27/2020 1:28 PM

Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

#### **5.1 Mitigation Measures Energy**

Kilowatt Hours of Renewable Electricity Generated

|                            | ROG    | NOx    | CO     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|----------------------------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|----------------|----------------|--------|--------|----------------|
| Category                   |        |        |        |        | ton              | s/yr            |               |                   |                  |                |          |                | MT             | /yr    |        |                |
| Electricity<br>Mitigated   |        |        |        |        |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 3,601.235<br>3 | 3,601.235<br>3 | 0.1659 | 0.0377 | 3,616.617<br>5 |
| Electricity<br>Unmitigated | <br>   |        |        |        |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000         | 0.0000   | 5,214.301<br>6 | 5,214.301<br>6 | 0.2402 | 0.0546 | 5,236.573<br>8 |
| NaturalGas<br>Mitigated    | 0.4663 | 3.9843 | 1.6955 | 0.0254 |                  | 0.3221          | 0.3221        |                   | 0.3221           | 0.3221         | 0.0000   | 4,614.296<br>1 | 4,614.296<br>1 | 0.0884 | 0.0846 | 4,641.716<br>5 |
| NaturalGas<br>Unmitigated  | 0.4663 | 3.9843 | 1.6955 | 0.0254 |                  | 0.3221          | 0.3221        |                   | 0.3221           | 0.3221         | 0.0000   | 4,614.296<br>1 | 4,614.296<br>1 | 0.0884 | 0.0846 | 4,641.716<br>5 |

CalEEMod Version: CalEEMod.2016.3.2 Page 45 of 52 Date: 7/27/2020 1:28 PM

Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

## 5.2 Energy by Land Use - NaturalGas <u>Unmitigated</u>

|                          | NaturalGa<br>s Use | ROG    | NOx    | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|--------------------------|--------------------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|----------------|----------------|--------|--------|----------------|
| Land Use                 | kBTU/yr            |        |        |        |        | ton              | s/yr            |               |                   |                  |             |          |                | MT             | /yr    |        |                |
| Single Family<br>Housing | 8.64686e<br>+007   | 0.4663 | 3.9843 | 1.6955 | 0.0254 |                  | 0.3221          | 0.3221        |                   | 0.3221           | 0.3221      | 0.0000   | 4,614.296<br>1 | 4,614.296<br>1 | 0.0884 | 0.0846 | 4,641.716<br>5 |
| Total                    |                    | 0.4663 | 3.9843 | 1.6955 | 0.0254 |                  | 0.3221          | 0.3221        |                   | 0.3221           | 0.3221      | 0.0000   | 4,614.296<br>1 | 4,614.296<br>1 | 0.0884 | 0.0846 | 4,641.716<br>5 |

#### **Mitigated**

|                          | NaturalGa<br>s Use | ROG    | NOx    | СО     | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2      | Total CO2      | CH4    | N2O    | CO2e           |
|--------------------------|--------------------|--------|--------|--------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|----------------|----------------|--------|--------|----------------|
| Land Use                 | kBTU/yr            |        |        |        |        | ton              | s/yr            |               |                   |                  |             |          |                | MT             | /yr    |        |                |
| Single Family<br>Housing | 8.64686e<br>+007   | 0.4663 | 3.9843 | 1.6955 | 0.0254 |                  | 0.3221          | 0.3221        |                   | 0.3221           | 0.3221      | 0.0000   | 4,614.296<br>1 | 4,614.296<br>1 | 0.0884 | 0.0846 | 4,641.716<br>5 |
| Total                    |                    | 0.4663 | 3.9843 | 1.6955 | 0.0254 |                  | 0.3221          | 0.3221        |                   | 0.3221           | 0.3221      | 0.0000   | 4,614.296<br>1 | 4,614.296<br>1 | 0.0884 | 0.0846 | 4,641.716<br>5 |

CalEEMod Version: CalEEMod.2016.3.2 Page 46 of 52 Date: 7/27/2020 1:28 PM

Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

## 5.3 Energy by Land Use - Electricity Unmitigated

|                          | Electricity<br>Use | Total CO2      | CH4    | N2O    | CO2e           |
|--------------------------|--------------------|----------------|--------|--------|----------------|
| Land Use                 | kWh/yr             |                | MT     | -/yr   |                |
| Single Family<br>Housing | 2.40694e<br>+007   | 5,214.301<br>6 | 0.2402 | 0.0546 | 5,236.573<br>8 |
| Total                    |                    | 5,214.301<br>6 | 0.2402 | 0.0546 | 5,236.573<br>8 |

#### **Mitigated**

|                          | Electricity<br>Use | Total CO2      | CH4    | N2O    | CO2e           |
|--------------------------|--------------------|----------------|--------|--------|----------------|
| Land Use                 | kWh/yr             |                | МТ     | -/yr   |                |
| Single Family<br>Housing | 1.66235e<br>+007   | 3,601.235<br>3 | 0.1659 | 0.0377 | 3,616.617<br>5 |
| Total                    |                    | 3,601.235<br>3 | 0.1659 | 0.0377 | 3,616.617<br>5 |

#### 6.0 Area Detail

### **6.1 Mitigation Measures Area**

CalEEMod Version: CalEEMod.2016.3.2 Page 47 of 52 Date: 7/27/2020 1:28 PM

Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

|             | ROG     | NOx    | СО      | SO2    | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|-------------|---------|--------|---------|--------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| Category    |         |        |         |        | ton              | s/yr            |               |                   |                  |             |          |           | MT        | /yr    |        |          |
| Mitigated   | 42.8889 | 0.6398 | 47.6349 | 0.0537 |                  | 3.7989          | 3.7989        |                   | 3.7989           | 3.7989      | 378.1552 | 128.9324  | 507.0876  | 0.7495 | 0.0216 | 532.2658 |
| Unmitigated | 42.8889 | 0.6398 | 47.6349 | 0.0537 |                  | 3.7989          | 3.7989        |                   | 3.7989           | 3.7989      | 378.1552 | 128.9324  | 507.0876  | 0.7495 | 0.0216 | 532.2658 |

## 6.2 Area by SubCategory <u>Unmitigated</u>

|                          | ROG     | NOx    | СО      | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5<br>Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4              | N2O    | CO2e     |
|--------------------------|---------|--------|---------|-----------------|------------------|-----------------|---------------|-------------------|------------------|----------------|----------|-----------|-----------|------------------|--------|----------|
| SubCategory              |         |        |         |                 | ton              | s/yr            |               |                   |                  |                |          |           | МТ        | <sup>7</sup> /yr |        |          |
| Architectural<br>Coating | 3.7696  |        |         |                 |                  | 0.0000          | 0.0000        | <br>              | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000           | 0.0000 | 0.0000   |
| Consumer<br>Products     | 20.9140 |        |         |                 |                  | 0.0000          | 0.0000        | <br>              | 0.0000           | 0.0000         | 0.0000   | 0.0000    | 0.0000    | 0.0000           | 0.0000 | 0.0000   |
| Hearth                   | 17.5346 | 0.3843 | 25.4972 | 0.0526          |                  | 3.6769          | 3.6769        | <br> <br> <br>    | 3.6769           | 3.6769         | 378.1552 | 92.8492   | 471.0044  | 0.7145           | 0.0216 | 495.3084 |
| Landscaping              | 0.6707  | 0.2555 | 22.1377 | 1.1700e-<br>003 |                  | 0.1220          | 0.1220        | <br> <br> <br>    | 0.1220           | 0.1220         | 0.0000   | 36.0832   | 36.0832   | 0.0350           | 0.0000 | 36.9574  |
| Total                    | 42.8889 | 0.6398 | 47.6349 | 0.0537          |                  | 3.7989          | 3.7989        |                   | 3.7989           | 3.7989         | 378.1552 | 128.9324  | 507.0876  | 0.7495           | 0.0216 | 532.2658 |

CalEEMod Version: CalEEMod.2016.3.2 Page 48 of 52 Date: 7/27/2020 1:28 PM

Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

### 6.2 Area by SubCategory

#### **Mitigated**

|                          | ROG     | NOx    | CO      | SO2             | Fugitive<br>PM10 | Exhaust<br>PM10 | PM10<br>Total | Fugitive<br>PM2.5 | Exhaust<br>PM2.5 | PM2.5 Total | Bio- CO2 | NBio- CO2 | Total CO2 | CH4    | N2O    | CO2e     |
|--------------------------|---------|--------|---------|-----------------|------------------|-----------------|---------------|-------------------|------------------|-------------|----------|-----------|-----------|--------|--------|----------|
| SubCategory              |         |        |         |                 | ton              | s/yr            |               |                   |                  |             |          |           | MT        | 7/yr   |        |          |
| Architectural<br>Coating | 3.7696  |        |         |                 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000   |
| Consumer<br>Products     | 20.9140 |        |         |                 |                  | 0.0000          | 0.0000        |                   | 0.0000           | 0.0000      | 0.0000   | 0.0000    | 0.0000    | 0.0000 | 0.0000 | 0.0000   |
| Hearth                   | 17.5346 | 0.3843 | 25.4972 | 0.0526          |                  | 3.6769          | 3.6769        |                   | 3.6769           | 3.6769      | 378.1552 | 92.8492   | 471.0044  | 0.7145 | 0.0216 | 495.3084 |
| Landscaping              | 0.6707  | 0.2555 | 22.1377 | 1.1700e-<br>003 |                  | 0.1220          | 0.1220        |                   | 0.1220           | 0.1220      | 0.0000   | 36.0832   | 36.0832   | 0.0350 | 0.0000 | 36.9574  |
| Total                    | 42.8889 | 0.6398 | 47.6349 | 0.0537          |                  | 3.7989          | 3.7989        |                   | 3.7989           | 3.7989      | 378.1552 | 128.9324  | 507.0876  | 0.7495 | 0.0216 | 532.2658 |

### 7.0 Water Detail

## 7.1 Mitigation Measures Water

Apply Water Conservation Strategy

CalEEMod Version: CalEEMod.2016.3.2 Page 49 of 52 Date: 7/27/2020 1:28 PM

Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

|           | Total CO2 | CH4    | N2O    | CO2e     |
|-----------|-----------|--------|--------|----------|
| Category  |           | МТ     | /yr    |          |
| Mitigated | 323.6215  | 5.0655 | 0.1222 | 486.6688 |
|           | 381.3632  | 6.3308 | 0.1525 | 585.0734 |

## 7.2 Water by Land Use <u>Unmitigated</u>

|                          | Indoor/Out<br>door Use | Total CO2 | CH4    | N2O    | CO2e     |
|--------------------------|------------------------|-----------|--------|--------|----------|
| Land Use                 | Mgal                   |           | МТ     | -/yr   |          |
| Single Family<br>Housing | 193.833 /<br>122.199   | 381.3632  | 6.3308 | 0.1525 | 585.0734 |
| Total                    |                        | 381.3632  | 6.3308 | 0.1525 | 585.0734 |

Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

### 7.2 Water by Land Use

#### **Mitigated**

|                          | Indoor/Out<br>door Use | Total CO2 | CH4    | N2O    | CO2e     |
|--------------------------|------------------------|-----------|--------|--------|----------|
| Land Use                 | Mgal                   |           | МТ     | -/yr   |          |
| Single Family<br>Housing | 155.067 /<br>122.199   | 323.6215  | 5.0655 | 0.1222 | 486.6688 |
| Total                    |                        | 323.6215  | 5.0655 | 0.1222 | 486.6688 |

### 8.0 Waste Detail

### 8.1 Mitigation Measures Waste

## Category/Year

|           | Total CO2 | CH4     | N2O    | CO2e           |
|-----------|-----------|---------|--------|----------------|
|           |           | МТ      | √yr    |                |
| Mitigated | 725.4450  | 42.8726 | 0.0000 | 1,797.259<br>4 |
|           | 725.4450  | 42.8726 | 0.0000 | 1,797.259<br>4 |

Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

## 8.2 Waste by Land Use <u>Unmitigated</u>

|                          | Waste<br>Disposed | Total CO2 | CH4     | N2O    | CO2e           |
|--------------------------|-------------------|-----------|---------|--------|----------------|
| Land Use                 | tons              |           | МТ      | -/yr   |                |
| Single Family<br>Housing | 3573.78           | 725.4450  | 42.8726 | 0.0000 | 1,797.259<br>4 |
| Total                    |                   | 725.4450  | 42.8726 | 0.0000 | 1,797.259<br>4 |

#### **Mitigated**

|                          | Waste<br>Disposed | Total CO2 | CH4     | N2O    | CO2e           |
|--------------------------|-------------------|-----------|---------|--------|----------------|
| Land Use                 | tons              | MT/yr     |         |        |                |
| Single Family<br>Housing | 3573.78           | 725.4450  | 42.8726 | 0.0000 | 1,797.259<br>4 |
| Total                    |                   | 725.4450  | 42.8726 | 0.0000 | 1,797.259<br>4 |

## 9.0 Operational Offroad

| Equipment Type | Number | Hours/Day | Days/Year | Horse Power | Load Factor | Fuel Type |
|----------------|--------|-----------|-----------|-------------|-------------|-----------|

Rezoning Sites for Housing Project - Sonoma County - GHG Analysis - Sonoma-San Francisco County, Annual

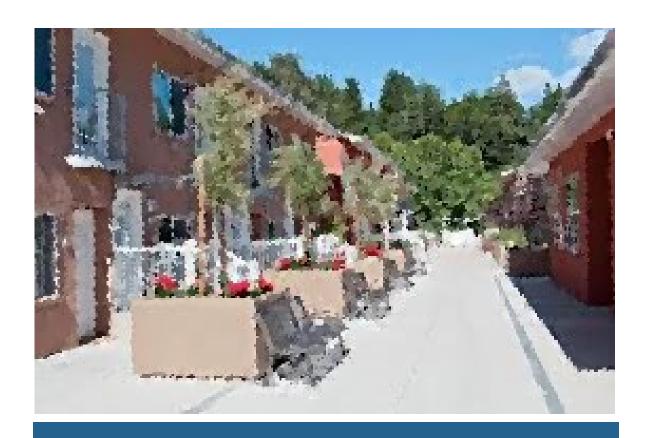
## 10.0 Stationary Equipment

### **Fire Pumps and Emergency Generators**

| Equipment Type | Number | Hours/Day | Hours/Year | Horse Power | Load Factor | Fuel Type |
|----------------|--------|-----------|------------|-------------|-------------|-----------|
|                |        |           |            |             |             |           |

#### **Boilers**

| Equipment Type | Number | Heat Input/Day | Heat Input/Year | Boiler Rating | Fuel Type |
|----------------|--------|----------------|-----------------|---------------|-----------|


### **User Defined Equipment**

| Equipment Type | Number |
|----------------|--------|
|----------------|--------|

## 11.0 Vegetation

# Appendix BIO

Biological Resources Assessment



# Housing Element Update

## Biological Resources Assessment

prepared by

**Sonoma County** 

Permit Sonoma 2550 Ventura Avenue

Santa Rosa, California 95403

Contact: Nina Bellucci

prepared with the assistance of

Rincon Consultants, Inc.

4825 J Street, Suite 200

Sacramento, California 95819

October 2022



# Rezone Sites for Housing Project

## Biological Resources Assessment

prepared by

#### **Sonoma County**

Permit Sonoma 2550 Ventura Avenue

Santa Rosa, California 95403 Contact: Nina Bellucci

prepared with the assistance of

Rincon Consultants, Inc.

4825 J Street, Suite 200 Sacramento, California 95819

October 2022





# **Table of Contents**

| Exe | cutive  | Summary                                              | 1  |
|-----|---------|------------------------------------------------------|----|
| 1   | Intro   | duction                                              | 4  |
|     | 1.1     | Project Location                                     | 4  |
|     | 1.2     | Project Description                                  | 4  |
| 2   | Meth    | odology                                              | 8  |
|     | 2.1     | Regulatory Overview                                  | 8  |
|     | 2.2     | Biological Study Area                                | 9  |
|     | 2.3     | Literature Review                                    | 10 |
|     | 2.4     | Desktop Mapping                                      | 11 |
| 3   | Existi  | ng Conditions                                        | 12 |
|     | 3.1     | Physical Characteristics                             | 12 |
|     | 3.2     | Vegetation and Other Land Cover                      | 15 |
|     | 3.3     | General Wildlife                                     | 23 |
| 4   | Sensi   | tive Biological Resources                            | 25 |
|     | 4.1     | Special Status Species                               | 25 |
|     | 4.2     | Sensitive Plant Communities and Critical Habitats    | 29 |
|     | 4.3     | Jurisdictional Waters and Wetlands                   | 32 |
|     | 4.4     | Wildlife Movement                                    | 32 |
|     | 4.5     | Resources Protected by Local Policies and Ordinances | 33 |
|     | 4.6     | Santa Rosa Plain Conservation Strategy               | 34 |
| 5   | Impa    | ct Analysis and Mitigation Measures                  | 35 |
|     | 5.1     | Special-Status Species                               | 36 |
|     | 5.2     | Sensitive Plant Communities                          | 43 |
|     | 5.3     | Jurisdictional Waters and Wetlands                   | 44 |
|     | 5.4     | Wildlife Movement                                    | 46 |
|     | 5.5     | Local Policies and Ordinances                        | 46 |
|     | 5.6     | Adopted or Approved Plans                            | 47 |
| 6   | Limita  | ations, Assumptions, and Use Reliance                | 48 |
| 7   | Refer   | ences                                                | 49 |
| 8   | List of | f Prenarers                                          | 52 |

# Sonoma County Rezone Sites for Housing Project

## **Tables**

| Table 1 | Total Acreage of 11 Biological Study Areas                                | 10 |
|---------|---------------------------------------------------------------------------|----|
| Table 2 | Soil List for 11 Study Areas                                              | 13 |
| Table 3 | Vegetation Communities and Land Cover Types in the BSAs                   | 16 |
| Table 4 | Federal and State-listed Plant Species with Potential to Occur in the BSA | 26 |
| Table 5 | Special Status Plants Documented in the BSA                               | 27 |
| Table 6 | Federal and State-listed Animals with Potential to Occur in the BSA       | 28 |
| Table 7 | BSA Distance (miles) from Eight Federally Designated Critical Habitats    | 30 |

## **Appendices**

Appendix A Figures

Appendix B Regulatory Framework

Appendix C Special Status Species Evaluation Tables

# **Executive Summary**

The Sonoma County Housing Element Update (project) would update Sonoma County's current Housing Element, including goals, objectives, policies, and implementing programs. The project would rezone up to 59 Rezoning Sites located in designated Urban Service Areas throughout unincorporated Sonoma County. The locations of the Rezoning Sites include Geyserville, Guerneville, Forestville, Larkfield, Graton, Santa Rosa, Penngrove, Petaluma, Glen Ellen, Agua Caliente, and Sonoma. The proposed Rezoning Sites would be located within developed urban areas, surrounded by roads, commercial development, and residential neighborhoods.

The Biological Study Areas (BSAs) examined for this analysis include the minimum boundary of all 59 Rezoning Sites in each of the 11 Urban Service Areas. Following this report, Appendix A presents report figures, and Appendix B outlines the applicable regulatory framework used in this analysis.

Vegetation communities and land cover types within the BSAs were developed based on aerial imagery and information provided by the Sonoma County Water Agency; Sonoma County Agricultural Preservation and Open Space District; and the Sonoma County Vegetation Mapping and LiDAR Program (Sonoma County 2018). A total of 32 vegetation communities and land cover types were identified within the BSAs, ranging from wetlands and waters to grasslands and woodlands.

A total of 78 special status plant species have potential to occur within the BSAs (Appendix C). Those potentially occurring special status plants that are federally and/or State-listed as endangered or threatened, or those presumed present, are included below.

# Federally and/or State-Listed Plant Species Potentially Occurring in the Biological Study Areas

| Sonoma alopecurus                  | Alopecurus aequalis var. sonomensis     |
|------------------------------------|-----------------------------------------|
| Baker's manzanita                  | Arctostaphylos bakeri ssp. bakeri       |
| Marin manzanita                    | Arctostaphylos virgata                  |
| Clara Hunt's milk-vetch            | Astragalus claranus                     |
| Sonoma sunshine                    | Blennosperma bakeri                     |
| Pitkin Marsh paintbrush            | Castilleja uliginosa                    |
| Mason's ceanothus                  | Ceanothus masonii                       |
| Holly-leafed ceanothus             | Ceanothus purpureus                     |
| Pappose tarplant                   | Centromadia parryi ssp. parryi          |
| Vine Hill clarkia                  | Clarkia imbricata                       |
| Baker's larkspur                   | Delphinium bakeri                       |
| Loch Lomond button-celery          | Eryngium constancei                     |
| Boggs Lake hedge-hyssop            | Gratiola heterosepala                   |
| Congested-headed hayfield tarplant | Hemizonia congesta ssp. congesta        |
| Burke's goldfields                 | Lasthenia burkei                        |
| Contra Costa goldfields            | Lasthenia conjugens                     |
| Mason's lilaeopsis                 | Lilaeopsis masonii                      |
| Pitkin Marsh lily                  | Lilium pardalinum ssp. pitkinense       |
| Sebastopol meadowfoam              | Limnanthes vinculans                    |
| few-flowered navarretia            | Navarretia leucocephala ssp. pauciflora |
| Many-flowered navarretia           | Navarretia leucocephala ssp. plieantha  |
| Geysers panicum                    | Panicum acuminatum var. thermale        |
| North Coast semaphore grass        | Pleuropogon hooverianus                 |
| Kenwood Marsh checkerbloom         | Sidalcea oregana ssp. valida            |
| Two-fork clover                    | Trifolium amoenum                       |
| Pacific Grove clover               | Trifolium polyodon                      |
|                                    |                                         |

A total of 39 special status animal species have some potential to occur in the BSAs, including 12 federal- or state-listed species. The federal and state listed species with potential to occur are presented below.

# Federally and/or State-listed Animal Species Potentially Occurring in the Biological Study Areas

| Crotch bumble bee                              | Bombus crotchii                    |
|------------------------------------------------|------------------------------------|
| Western bumble bee                             | Bombus occidentalis                |
| vernal pool fairy shrimp                       | Branchinecta lynchi                |
| California freshwater shrimp                   | Syncaris pacifica                  |
| Coho salmon - central California coast ESU     | Oncorhynchus kisutch pop. 4        |
| Steelhead – central California DPS             | Oncorhynchus mykiss irideus pop. 8 |
| California tiger salamander- Sonoma County DPS | Ambystoma californiense pop. 3     |
| California red-legged frog                     | Rana draytonii                     |
| Foothill yellow-legged frog – north coast DPS  | Rana boylii pop.1                  |
| Tricolored blackbird                           | Agelaius tricolor                  |
| Swainson's hawk                                | Buteo swainsoni                    |
| Northern spotted owl                           | Strix occidentalis cauring         |

The following five sensitive natural communities are known to occur within five miles of the BSAs:

- Northern Vernal Pool
- Coastal and Valley Freshwater Marsh
- Northern Hardpan Vernal Pool
- Valley Needlegrass Grassland
- Coastal Brackish Marsh

No sensitive natural communities were mapped within the BSAs; however, the vegetation communities mapped within the Santa Rosa and Penngrove BSAs include the Western North America Vernal Pool, which may be considered sensitive. Additionally, many of the specific vegetation alliances occurring within the BSAs may be considered sensitive under the revised ranking methodology prepared by the California Department of Fish and Wildlife (CDFW) (CDFW 2022c).

The project could impact special status plant and wildlife species if these species are present at the time of construction. Additionally, the project could impact potential jurisdictional waters of the U.S. and State. Measures to avoid, minimize, and mitigate potential impacts have been developed for all potential impacts.

## 1 Introduction

Rincon Consultants, Inc. (Rincon) has prepared this Biological Resources Assessment (BRA) to document existing conditions, summarize previous biological resource reports and studies, and provide a basis for evaluation of potential impacts to special status and sensitive biological resources from the implementation of the Sonoma County Housing Element Update (project) located in Sonoma County, California (Appendix A, Figure 1). This BRA has been prepared in support of California Environmental Quality Act (CEQA) review of the project. The lead agency for the project is Sonoma County.

## 1.1 Project Location

The proposed project encompasses all of Sonoma County and includes 79 total sites identified in the Housing Element site inventory (Appendix A, Figure 2). Of these 79 sites, there are 59 Rezoning Sites in the urban areas of unincorporated Sonoma County that are viable for rezoning to accommodate new housing. Specifically, the 59 Rezoning Sites are located in designated Urban Service Areas throughout Geyserville, Guerneville, Forestville, Larkfield, Graton, Santa Rosa, Penngrove, Petaluma, Glen Ellen, Agua Caliente, and Sonoma. The Rezoning Sites would be located within developed urban area, surrounded by roads, commercial developments, and residential neighborhoods.

## 1.2 Project Description

The project would update the County's current Housing Element, including goals, objectives, policies, and implementing programs to further the goal of meeting the existing and projected housing needs of all household income levels of the county. Physical changes resulting from project implementation may involve construction of housing on up to 59 Rezoning Sites scattered between 11 Urban Service Areas throughout Sonoma County. Current land use designations for the Rezoning Sites include agricultural, residential, commercial, and industrial uses.

The project would involve rezoning of urban sites for by-right medium-density housing. The project's new housing sites would facilitate compliance with Sonoma County's Regional Housing Needs Assessment (RHNA) allocation for the 2023-2031 planning period (6<sup>th</sup> RHNA cycle). The project would be consistent with current General Plan Policies and Programs, including Policy HE-2f to consider a variety of sites for higher-density and affordable housing, and Housing Element Programs 11 and 20, which encourage the identification of urban sites near jobs and transit that could accommodate additional housing. Overall, the proposed project includes (1) an update to the Sonoma County Housing Element; (2) a General Plan Map amendment as necessary and, where applicable, area plan amendments to change land uses and densities on identified sites; and, (3) rezoning of up to 59 sites to match new General Plan land uses or densities and/or to add the WH (Workforce Housing) Combining District. The analysis contained herein will focus on the 59 sites that will be rezoned, as other Housing Inventory Sites would not change from their baseline condition.

A description of the Urban Service Areas containing the Rezoning Sites is provided below. The BSAs evaluated for this analysis include the minimum bounding rectangle for all Rezoning Sites in each of the 11 Urban Service Areas, along with a 500-foot buffer to encompass potential impacts to biological resources.

#### Geyserville

The Geyserville Urban Service Area (GEY), located in northern Sonoma County, in northern Geyserville, contains four Rezoning Sites: GEY-1, GEY-2, GEY-3, GEY-4. The sites are situated between Highway 101 to the south, Geyserville Avenue to the north, Canyon Road to the west, and urban development to the east. The Rezoning Sites within the BSA are comprised of a fallow field and rural residential areas. Fallow agricultural land is also located north of the BSA. Wood Creek runs through the BSA, between the Rezoning Sites.

#### Guernevillle

The Guerneville Urban Service Area (GUE) is located in Guerneville between Armstrong Redwoods State National Reserve and the Sonoma Coast State Park. Four Rezoning Sites are envisioned for this service area (GUE-1, GUE-2, GUE-3, GUE-4). The BSA is located within urban development, with woodland habitat to the north and east, the Russian River approximately 300 feet to the south, and fallow agricultural land surrounded by woodland habitat to the west. Fife Creek runs through the southeast portion of the BSA. The Rezoning Sites within the BSA are comprised of rural residential areas and undeveloped land.

#### **Forestville**

The Forestville Urban Service Area (FOR) is located in central Sonoma County and contains six Rezoning Sites (FOR-1, FOR-2, FOR-3, FOR-4, FOR-5, FOR-6). The BSA is situated in urban development interspersed with woodland habitat. Urban development, including roads, commercial development, and residential homes, is located to the north and east, fallow agricultural lands are located to the south, and woodland habitat is located to the west of the BSA. Green Valley Creek runs through the buffer zone on the southeast side of the BSA. A freshwater pond is located in the buffer zone to the south. The Rezoning Sites within the BSA are comprised of rural residential areas and undeveloped land.

#### Larkfield

The Larkfield Urban Service Area (LAR), located in central Sonoma County, includes eight Rezoning Sites (LAR-1, LAR-2, LAR-3, LAR-4, LAR-5, LAR-6, LAR-7, LAR-8). The BSA is situated in urban development. All Rezoning Sites are surrounded by urban development, including roads, commercial development, and residential homes. Mark West Creek runs through the southern portion of the BSA's buffer zone. The Rezoning Sites within the BSA are comprised of developed areas, fallow agricultural fields, and undeveloped land.

#### Graton

The Graton Urban Service Area (GRA), located in central Sonoma County, in northeastern Graton, includes five Rezoning Sites (GRA-1, GRA-2, GRA-3, GRA-4, GRA-5). The BSA is situated in an urban setting; all but one site would be surrounded by urban development. The Rezoning Site on the northwest portion of the BSA is situated in riparian habitat, adjacent to Atascadero Creek. Atascadero Creek runs through the BSA's buffer zone on the western portion of the BSA. The western portion of the BSA contains riparian habitat, and the southeastern portion contains lands historically used for agricultural purposes that have since become overgrown with vegetation.

#### Santa Rosa

The Santa Rosa Urban Service Area (SAN), located south of the City of Santa Rosa, contains ten Rezoning Sites (SAN-1, SAN-2, SAN-3, SAN-4, SAN-5, SAN-6, SAN-7, SAN-8, SAN-9, SAN-10). The BSA is situated in an urbanized area, and all rezone sites would be surrounded by urban development, including roads, commercial development, and residential homes. Highway 101 bisects the BSA. The Rezoning Sites within the BSA are comprised of developed areas, fallow agricultural fields, and undeveloped land.

#### **Penngrove**

The Penngrove Urban Service Area (PEN), located between the cities of Santa Rosa and Petaluma in southern Sonoma County, includes nine rezone sites (PEN-1, PEN-2, PEN-3, PEN-4, PEN-5, PEN-6, PEN-7, PEN-8, PEN-9). The BSA is situated in an urbanized area, and all Rezoning Sites are surrounded by urban development, including roads, commercial development, and residential homes. Open, fallow agricultural land is located east of the BSA. Lichau Creek runs through the center/eastern portion of the BSA, connecting to the Petaluma River to the south. The Rezoning Sites within the BSA are comprised of developed and rural residential areas, and undeveloped land.

#### Petaluma

The Petaluma Urban Service Area (PET) is located adjacent to the City of Petaluma in southern Sonoma County and includes four Rezoning Sites (PET-1, PET-2, PET-3, PET-4). The rezone sites would be situated together and surrounded by urban development, with Bodega Ave to the north, commercial and residential developments to the east, Western Ave to the south, and Cleveland Lane to the west. The southern portion of the BSA's buffer zone contains open, fallow agricultural land. The Rezoning Sites within the BSA are comprised of rural residential areas and undeveloped land.

#### Glen Ellen

The Glen Ellen Urban Service Area (GLE) is located in southeastern Sonoma County, situated between Jack London State Historic Park and Sonoma Valley Regional Park. This service area proposes two rezone sites (GLE-1 and GLE-2). The Rezoning Sites would be surrounded by urban development, including Arnold Drive to the west, commercial and residential developments to the north and east, and Carquinez Avenue to the south. Calabazas Creek runs through the western portion of the BSA's buffer zone, where it meets with the Sonoma Creek and continues through the southern portion of the buffer zone. Trees are interspersed throughout the BSA. Sonoma Valley Regional Park is located approximately 0.25 mile northeast of the BSA and includes Suttonfield Lake, located approximately 0.6 mile northeast of the BSA.

#### **Agua Caliente**

The Agua Caliente Urban Service Area (AGU) is located in southeastern Sonoma County, north of the City of Sonoma and proposes three rezone sites (AGU-1, AGU-2, AGU-3). Sonoma Creek and Agua Caliente Creek are located within the BSA on the eastern portion of the site. One of the Rezoning Sites is located in the stream. The remaining Rezoning Sites are located in rural residential areas and undeveloped land. The northern, western, and southern portion of the BSA contains urban development, including roads, commercial development, and residential homes.

#### Sonoma

The Sonoma Urban Service Area (SON) is located on the southern border of the City of Sonoma in southeastern Sonoma County. The study area includes four Rezoning Sites (SON-1, SON-2, SON-3, SON-4). The proposed sites would be located in a developed area, and surrounded by urban development, including Leveroni Road to the north, Broadway to the east, and commercial and residential developments to the south and to the west. The Rezoning Sites within the BSA are comprised of rural residential and developed areas.

# 2 Methodology

## 2.1 Regulatory Overview

Regulated or sensitive resources studied and analyzed herein include special status plant and animal species, nesting birds and raptors, sensitive plant communities, jurisdictional waters and wetlands, wildlife movement, and locally protected resources, such as protected trees. Regulatory authority over biological resources is shared by Federal, State, and local authorities. Primary authority for regulation of general biological resources lies within the land use control and planning authority of local jurisdictions.

#### **Definition of Special Status Species**

For the purposes of this report, special status species include:

- Species listed as threatened or endangered under the Federal Endangered Species Act (FESA);
   species that are under review may be included if there is a reasonable expectation of listing within the life of the project
- Species listed as candidate, threatened, or endangered under the California Endangered Species
   Act (CESA)
- Species designated as Fully Protected, Species of Special Concern, or Watch List by the California Department of Fish and Wildlife (CDFW)
- Species designated as locally important by the Local Agency and/or otherwise protected through ordinance or local policy.
- Species designated with a California Rare Plant Rank (CRPR) of 1B or 2B.

#### **Environmental Statutes**

In this report, potential impacts to biological resources were analyzed based on the following statutes (Appendix B):

- 1. California Environmental Quality Act (CEQA)
- 2. Federal Endangered Species Act (ESA)
- 3. California Endangered Species Act (CESA)
- 4. Federal Clean Water Act (CWA)
- 5. California Fish and Game Code (CFGC) Section 3503
- 6. Migratory Bird Treaty Act (MBTA)
- 7. The Bald and Golden Eagle Protection Act
- 8. Porter-Cologne Water Quality Control Act
- 9. Santa Rosa Plain Conservation Strategy Area
- 10. Sonoma County Zoning Code
- 11. Sonoma County General Plan 2020 (2008, as amended 2016)

#### **Jurisdictional Water Regulations**

Drainage ditches, seasonal wetlands, ephemeral and perennial streams, and seasonally flooded constructed basins in the Study Areas may be jurisdictional waters of the U.S. under CWA Sections 404 and 401, subject to U.S. Army Corps of Engineers (USACE) and Regional Water Quality Control Board (RWQCB) jurisdictions. In addition, the aquatic resources have defined beds, banks, and/or riparian habitats that are potentially under CDFW jurisdiction. Note the final jurisdictional determinations of the boundaries of waters, and riparian habitats, are made by each agency, typically at the time that authorizations to impact such features are requested.

#### **Guidelines for Determining CEQA Significance**

The following threshold criteria, as defined by the CEQA Guidelines Appendix G Initial Study Checklist, were used to evaluate potential environmental effects. Based on these criteria, the project would have a significant effect on biological resources if it would:

- a) Have substantial adverse effects, either directly or through habitat modifications, on any species identified as a candidate, sensitive or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service
- b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, and regulations or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service
- c) Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means
- d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors or impede the use of native wildlife nursery sites
- e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance
- f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Community Conservation Plan, or other approved local, regional, or state habitat conservation plan

## 2.2 Biological Study Area

The BSAs evaluated for this analysis includes the minimum bounding rectangle for all rezone sites in each of the 11 Urban Service Areas plus a 500-foot buffer to encompass potential impacts to biological resources (Appendix A, Figure 2). A summary of the total acreage of each BSA is presented below in Table 1.

Table 1 Total Acreage of 11 Biological Study Areas

| BSA           | Total Acreage |  |
|---------------|---------------|--|
| Geyserville   | 129.4         |  |
| Guerneville   | 367.6         |  |
| Forestville   | 459.9         |  |
| Larkfield     | 212.4         |  |
| Graton        | 368.3         |  |
| Santa Rosa    | 829.1         |  |
| Penngrove     | 306.1         |  |
| Petaluma      | 60.8          |  |
| Glen Ellen    | 30.1          |  |
| Agua Caliente | 156.6         |  |
| Sonoma        | 41.2          |  |

## 2.3 Literature Review

Rincon conducted a literature review to characterize the nature and extent of biological resources on and adjacent to each BSA. The literature review included an evaluation of current and historical aerial photographs of the site (Google Earth 2022, regional and site-specific topographic maps, climatic data, and other available background information.

Queries of the U.S. Fish and Wildlife Service (USFWS) Information for Planning and Consultation system (IPaC; USFWS 2020a), CDFW California Natural Diversity Database (CNDDB; 2022a), and California Native Plant Society (CNPS) online Inventory of Rare and Endangered Plants of California (2022) were conducted to obtain comprehensive information regarding State- and federally-listed species, and other special status species, considered to have potential to occur within the regional vicinity of the Sonoma County BSAs. The results of database queries and lists of special status species were reviewed by Rincon's regional biological experts for accuracy and completeness. The final list of special status biological resources to be evaluated is the result of documented occurrences in the countywide search area for IPaC, in each BSA topographic quadrangle (quad) and eight surrounding quads for CNDDB and the CNPS online Inventory, and species known to occur in the region based on biologists' expert opinions. The results of the species potential-to-occur assessment, including a list of the quads used for database queries, were compiled into a table presented as Appendix C.

Additionally, the vegetation community characterizations for this analysis were based on the classification systems presented in the *United States National Vegetation Classification* (USNVC) and *A Manual of California Vegetation, Second Edition* (Sawyer et al. 2009). The potential for wildlife movement corridors was evaluated based on the California Essential Habitat Connectivity Project commissioned by the California Department of Transportation and CDFW (Spencer et al. 2010).

The following resources were reviewed for additional information on existing conditions relating to biological resources within the BSA:

- United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS) Web Soil Survey (2019a)
- 2. USFWS Critical Habitat Portal (2022a)

- 3. CDFW Biogeographic Information and Observation System (CDFW 2022b)
- 4. CDFW Special Vascular Plants, Bryophytes, and Lichens List (2022c)
- 5. CDFW Special Animals List (2022)

## 2.4 Desktop Mapping

Rincon developed detailed vegetation community and land-cover-type maps based on a review of aerial imagery and existing data on mapped vegetation communities in each of the 11 study areas, including information provided by the Sonoma County Water Agency, Sonoma County Agricultural Preservation and Open Space District, Sonoma County Vegetation Mapping and LiDAR Program (Sonoma County 2018). The purpose of the preliminary desktop mapping was to identify approximate boundaries of vegetation communities and make preliminary assessments of areas likely to support sensitive biological resources.

# 3 Existing Conditions

## 3.1 Physical Characteristics

Elevations in the BSAs range from approximately 40 to 400 feet (12.2 to 121.9 meters) above mean sea level. The climate in this region is generally mild with an annual minimum average temperature of 45.25 degrees Fahrenheit, a maximum temperature of 72.67 degrees Fahrenheit, and an annual total precipitation average of 31.43 inches (National Oceanic and Atmospheric Administration 2022). Urban development and agricultural land uses surround the BSAs. The Larkfield, Graton, Forestville, Santa Rosa, Penngrove, Petaluma, Agua Caliente, and Sonoma BSAs are located on the Sonoma valley floor in central/southern Sonoma County. Additionally, the Geyserville BSA is located on the Sonoma valley floor in northern Sonoma County. The Guerneville and Glen Ellen BSAs are in urban development, but in mountains with interspersed woodland habitats throughout and surrounding the BSA.

#### **Watershed and Drainages**

Seven creeks are located in the BSAs: Sonoma Creek, Atascadero Creek, and Mark West Creek, Lichau Creek, Fife Creek, Sonoma Creek, and Calabazas Creek (U.S. Geologic Survey 2020; USFWS 2020c). The Sonoma Creek sub-watershed is part of the San Pablo watershed and the Atascadero Creek sub-watershed is part of the Russian River watershed. The BSA are located within seven sub-watersheds as follows:

#### Lower Sonoma Creek

Agua Caliente creek connects to Sonoma Creek on the east side of the Agua Caliente BSA.

#### Atascadero Creek

Atascadero Creek crosses the western portion of Graton BSA.

#### Mark West Creek

Mark West Creek crosses the southwest corner of the Larkfield BSA.

#### Lichau Creek

Lichau Creek runs from the northwest corner of the Penngrove BSA down through the south east corner.

#### Fife Creek

Fife Creek runs from the northwest corner of the Guerneville BSA down through the south east corner, and into the Russian River.

#### Calabazas Creek

The confluence of Sonoma Creek and Calabazas Creek occurs along the west side of the Glen Ellen BSA.

#### Fryer Creek

Fryer Creek crosses the southwest corner of the Sonoma BSA.

#### Soils

Based on the most recent NRSC soil survey for Sonoma County (USDA, NRCS 2019a), the 11 study areas contain 48 soil map units (70 total, Table 2). Some of these soils are associated with rare plants, such as serpentine and alkaline soils. However, the Rezoning Sites would be in urban and semi-rural areas, surrounded by a degree of development. These developed areas occur primarily on fill and non-native soils. Of the 48 soil types, 8 soil types primarily make up the predominant soils of the BSA:

- 1. Zamora silty clay loam, moist, 0 to 2 percent slopes, MLRA 14
- 2. Spreckels loam, 2 to 9 percent slopes
- 3. Goldridge fine sandy loam, 2 to 9 percent slopes
- 4. Arbuckle gravelly loam, 0 to 5 percent slopes
- 5. Hugo very gravelly loam, 50 to 75 percent slopes
- 6. Yolo loam, 0 to 10 percent slopes, moist, MLRA 14
- 7. Wright loam, shallow, wet, 0 to 2 percent slopes

The Santa Rosa BSA contains eight soils on the National Hydric Soils List (USDA, NRCS 2019b) (Table 2). While these soils can occur in wetlands under certain conditions, including the presence of surface or groundwater, and feature hydrophytic plants, they may also be located in upland areas.

Table 2 Soil List for 11 Study Areas

| Map Unit Symbol | Map Unit Name                                             | Hydric Soil |
|-----------------|-----------------------------------------------------------|-------------|
| Geyserville     |                                                           |             |
| AkB             | Arbuckle gravelly loam, 0 to 5 percent slopes             | No          |
| JoF             | Josephine loam, 30 to 50 percent slopes                   | No          |
| LmG             | Los Gatos gravelly loam, 30 to 75 percent slopes          | No          |
| StF             | Suther loam, 30 to 50 percent slopes                      | No          |
| YnA             | Yolo loam, 0 to 10 percent slopes, moist, MLRA 14         | Yes         |
| YrB             | Yolo gravelly loam, 0 to 8 percent slopes, MLRA 14        | Yes         |
| Guerneville     |                                                           |             |
| CrA             | Cortina very gravelly sandy loam, 0 to 2 percent slopes   | No          |
| HkF             | Hugo very gravelly loam, 30 to 50 percent slopes          | No          |
| HkG             | Hugo very gravelly loam, 50 to 75 percent slopes          | No          |
| YmB             | Yolo sandy loam, overwash, 0 to 5 percent slopes          | No          |
| YsA             | Yolo silt loam, 0 to 5 percent slopes, MLRA 14            | No          |
| Forestville     |                                                           |             |
| ВсА             | Bulcher fine sandy loam, overwash, 0 to 2 percent slopes  | Yes         |
| GdC             | Goldridge fine sandy loam, 2 to 9 percent slopes          | No          |
| GdD             | Goldridge fine sandy loam, 9 to 15 percent slopes, eroded | No          |
| GdD2            | Hugo very gravelly loam, 50 to 75 percent slopes          | No          |

# Sonoma County Rezone Sites for Housing Project

| Map Unit Symbol | Map Unit Name                                                              | Hydric Soil |
|-----------------|----------------------------------------------------------------------------|-------------|
| HnG             | Hugo-Josephine complex, 50 to 75 percent slopes                            | No          |
| JoE             | Josephine loam, 9 to 30 percent slopes                                     | No          |
| LgF             | Laughlin loam, 30 to 50 percent slopes                                     | No          |
| Larkfield       |                                                                            |             |
| CeA             | Clear Lake clay, sandy substratum, drained, 0 to 2 percent slopes, MLRA 14 | Yes         |
| HcC             | Haire clay loam, 0 to 9 percent slopes                                     | No          |
| HuB             | Huichica loam, ponded, 0 to 5 percent slopes                               | Yes         |
| YnA             | Yolo loam, 0 to 10 percent slopes, moist, MLRA 14                          | No          |
| YsA             | Yolo silt loam, 0 to 5 percent slopes, MLRA 14                             | No          |
| YtA             | Yolo clay loam, 0 to 5 percent slopes, MLRA 14                             | No          |
| Graton          |                                                                            |             |
| BcA             | Blucher fine sandy loam, overwash, 0 to 2 percent slopes                   | Yes         |
| BhB             | Bulcher loam, 2 to 5 percent slopes                                        | No          |
| GdC             | Goldridge fine sandy loam, 2 to 9 percent slopes                           | No          |
| GdD             | Goldridge fine sandy loam, 9 to 15 percent slopes                          | No          |
| GdE             | Goldridge fine sandy loam, 15 to 30 percent slopes                         | No          |
| SbD             | Sebastopol sandy loam, 9 to 15 percent slopes                              | No          |
| SbE             | Sebastopol sandy loam, 15 to 30 percent slopes                             | No          |
| Santa Rosa      |                                                                            |             |
| CcA             | Clear Lake clay loam, 0 to 2 percent slopes                                | Yes         |
| СсВ             | Clear Lake clay loam, 2 to 5 percent slopes                                | Yes         |
| CeA             | Clear Lake clay, sandy substratum, drained, 0 to 2 percent slopes, MLRA 14 | Yes         |
| СеВ             | Clear Lake clay, drained, 2 to 5 percent slopes, MLRA 14                   | Yes         |
| CfA             | Clear Lake clay, ponded, 0 to 2 percent slopes                             | Yes         |
| WgC             | Wright loam, 0 to 9 percent slopes                                         | Yes         |
| WhA             | Wright loam, wet, 0 to 2 percent slopes                                    | Yes         |
| WoA             | Wright loam, shallow wet, 0 to 2 percent slopes                            | Yes         |
| Penngrove       |                                                                            |             |
| CeA             | Clear Lake clay, sandy substratum, drained, 0 to 2 percent slopes, MLRA 14 | Yes         |
| CtC             | Cotati fine sandy loam, 2 to 9 percent slopes                              | No          |
| CtD             | Cotati fine sandy loam, 9 to 15 percent slopes                             | No          |
| CtE             | Cotati fine sandy loam, 15 to 30 percent slopes                            | No          |
| Petaluma        |                                                                            |             |
| CtC             | Cotati fine sandy loam, 2 to 9 percent slopes                              | No          |
| CtD             | Cotati fine sandy loam, 9 to 15 percent slopes                             | No          |
| GID             | Goulding cobbly clay loam, 5 to 15 percent slopes                          | No          |
| Glen Ellen      |                                                                            |             |
| CgD             | Clough gravelly loam, 9 to 15 percent slopes                               | No          |
| SkC             | Spreckels loam, 2 to 9 percent slopes                                      | No          |
| SkE             | Spreckels loam, 15 to 10 percent slopes                                    | No          |

| Map Unit Symbol | Map Unit Name                                                         | Hydric Soil |
|-----------------|-----------------------------------------------------------------------|-------------|
| Agua Caliente   |                                                                       |             |
| CcA             | Clear Lake clay loam, 0 to 2 percent slopes                           | Yes         |
| CgC             | Clough gravelly loam, 2 to 9 percent slopes                           | No          |
| CgD             | Clough gravelly loam, 9 to 15 percent slopes                          | No          |
| LuA             | Los Robles gravelly clay loam, 0 to 2 percent slopes                  | No          |
| LvB             | Los Robles gravelly clay loam, moderately deep, 0 to 5 percent slopes | No          |
| RhD             | Red Hill clay loam, 2 to 15 percent slopes                            | No          |
| SkC             | Spreckels loam, 2 to 9 percent slopes                                 | No          |
| TuC             | Tuscan cobbly clay loam, 0 to 9 percent slopes                        | No          |
| YnA             | Yolo loam, 0 1o 10 percent slopes, moist, MLRA 14                     | No          |
| ZaA             | Zamora silty clay loam, moist, 0 to 2 percent slopes, MLRA 14         | No          |
| Sonoma          |                                                                       |             |
| CcA             | Clear Lake clay loam, 0 to 2 percent slopes                           | Yes         |
| CgC             | Clough gravelly loam, 2 to 9 percent slopes                           | No          |
| CgD             | Clough gravelly loam, 9 to 15 percent slopes                          | No          |
| LuA             | Los Robles gravelly clay loam, 0 to 2 percent slopes                  | No          |
| LvB             | Los Robles gravelly clay loam, moderately deep, 0 to 5 percent slopes | No          |
| RhD             | Red Hill clay loam, 2 to 15 percent slopes                            | No          |
| SkC             | Spreckels loam, 2 to 9 percent slopes                                 | No          |
| TuC             | Tuscan cobbly clay loam, 0 to 9 percent slopes                        | No          |
| YnA             | Yolo loam, 0 1o 10 percent slopes, moist, MLRA 14                     | No          |
| ZaA             | Zamora silty clay loam, moist, 0 to 2 percent slopes, MLRA 14         | No          |

## 3.2 Vegetation and Other Land Cover

Vegetation communities and land cover types in the BSAs were developed based on aerial imagery and the Sonoma County Water Agency, Sonoma County Agricultural Preservation and Open Space District, Sonoma County Vegetation Mapping and LiDAR Program (Sonoma County 2018). Thirty-two vegetation communities and land cover types were identified, ranging from wetlands to grasslands and woodlands. The vegetation communities are described below. The mapping is presented in a land-cover map atlas (Appendix A, Figure 3), and provides a reasonable approximation of the types and acreages of the various vegetation communities and land-cover types that occur within the BSAs. Vegetation communities and land cover types mapped in the BSAs are presented in Table 3 below.

Table 3 Vegetation Communities and Land Cover Types in the BSAs

| Vegetation Community or Land<br>Cover Type                                                                                                          | BSA |      |      |     |      |      |     |       |      |       |     |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|-----|------|------|-----|-------|------|-------|-----|-------|
|                                                                                                                                                     | AGU | FOR  | GEY  | GLE | GRA  | GUE  | LAR | PEN   | PET  | SAN   | SON | Total |
| Pacific madrone ( <i>Arbutus</i> menziesii)                                                                                                         |     |      |      |     |      | 12.8 |     |       |      |       |     | 12.   |
| Barren                                                                                                                                              |     |      | 1.4  |     |      |      |     |       |      | 1.1   |     | 2.    |
| California Annual and Perennial<br>Grassland                                                                                                        | 2.4 | 89.8 | 42.0 | 0.5 | 29.8 | 22.7 | 3.7 | 115.4 | 30.7 | 266.1 | 9.3 | 612.  |
| Deciduous Orchard                                                                                                                                   |     | 15.0 | 0.1  |     | 49.1 | 7.5  |     |       |      |       |     | 71.   |
| Deciduous Orchard, Vineyard,<br>Irrigated Row and Field Crops                                                                                       |     |      |      |     | 2.9  |      |     |       |      |       |     | 2.    |
| Eucalyptus ( <i>Eucalyptus</i> spp.) –<br>tree of heaven ( <i>Ailanthus</i><br><i>altissima</i> ) – black locust<br>( <i>Robinia pseudoacacia</i> ) |     |      |      |     | 2.2  |      |     | 2.3   | 0.4  | 3.6   |     | 8.!   |
| Irrigated Hayfield                                                                                                                                  |     |      |      |     |      | 4.1  |     |       |      | 10.0  |     | 14.   |
| Irrigated Row and Field Crops                                                                                                                       |     |      |      |     |      |      | 0.2 |       |      | 0.2   | 1.0 | 1.    |
| Non-native Forest & Woodland                                                                                                                        |     | 48.6 | 2.6  | 0.3 | 17.1 | 10.1 | 4.5 | 20.4  |      | 7.7   | 1.4 | 112.  |
| Non-native Shrub                                                                                                                                    |     | 2.8  |      |     | 0.7  | 1.8  |     |       |      |       |     | 5.    |
| Tanoak (Notholithocarpus<br>densiflorus)                                                                                                            |     |      |      |     |      | 5.6  |     |       |      |       |     | 5.    |
| Fremont cottonwood ( <i>Populus</i> fremontii)                                                                                                      | 0.0 | 3.1  |      |     |      | 4.1  | 4.3 |       |      |       |     | 11.   |
| Douglas fir (Pseudotsuga<br>menziesii)                                                                                                              |     | 12.0 |      |     | 1.7  | 2.7  |     |       |      |       |     | 16.   |
| Oak (Quercus agrifolia, Q.<br>douglasii, Q. garryana, Q.<br>kelloggii, Q. lobata, Q. wislizeni)                                                     |     | 10.8 |      | 7.9 | 18.2 |      | 0.2 |       |      |       |     | 37.   |
| Coast live oak ( <i>Quercus</i><br>agrifolia)                                                                                                       |     |      | 13.5 |     | 11.1 | 2.4  | 3.8 | 4.7   |      | 0.0   |     | 35.   |
| Blue oak (Quercus douglasii)                                                                                                                        |     |      | 0.1  |     |      |      |     |       |      |       |     | 0.    |
| Oregon oak (Quercus garryana)<br>(tree)                                                                                                             |     | 8.5  |      |     |      |      |     |       |      |       |     | 8.    |
| Valley oak (Quercus lobata)                                                                                                                         | 3.8 | 21.2 |      | 0.0 | 8.4  |      | 1.0 |       |      |       | 3.5 | 38.   |

| Vegetation Community or Land<br>Cover Type                                                                  | BSA   |       |       |      |       |       |       |       |      |       |      |         |
|-------------------------------------------------------------------------------------------------------------|-------|-------|-------|------|-------|-------|-------|-------|------|-------|------|---------|
|                                                                                                             | AGU   | FOR   | GEY   | GLE  | GRA   | GUE   | LAR   | PEN   | PET  | SAN   | SON  | Total   |
| Himalayan blackberry (Rubus<br>armeniacus) - rattlebox<br>(Sesbania punicea) – common<br>fig (Ficus carica) |       | 1.4   |       |      | 0.1   | 2.6   |       | 1.2   |      |       |      | 5.4     |
| Coast redwood (Sequoia sempervirens)                                                                        |       | 1.6   |       |      | 18.2  | 146.7 |       |       |      |       |      | 166.5   |
| Southwestern North American<br>Riparian Evergreen and<br>Deciduous Woodland                                 | 3.3   | 9.6   |       |      |       | 0.4   | 4.8   | 12.1  |      |       |      | 30.1    |
| Southwestern North American<br>Riparian/Wash Scrub                                                          |       | 12.2  |       |      | 27.4  | 1.1   |       |       |      | 2.3   |      | 43.1    |
| Temperate Forest                                                                                            |       | 10.1  | 1.2   | 0.6  | 6.6   | 2.1   | 3.1   | 8.7   | 1.2  | 5.0   | 0.3  | 38.9    |
| California bay ( <i>Umbellularia</i> californica)                                                           | 6.4   | 1.8   |       |      |       |       |       |       |      |       |      | 8.2     |
| Urban                                                                                                       | 126.6 | 163.4 | 47.1  | 16.6 | 148.4 | 104.2 | 177.9 | 140.1 | 28.3 | 525.1 | 23.5 | 1,501.0 |
| Vancouverian Riparian<br>Deciduous Forest                                                                   | 15.3  | 3.5   | 0.6   | 4.2  | 8.3   | 19.0  | 4.5   | 1.5   |      |       |      | 56.9    |
| Vineyard                                                                                                    |       | 42.0  | 21.2  |      | 15.4  | 19.8  | 5.7   | 1.7   | 0.3  |       | 2.3  | 108.5   |
| Water                                                                                                       | 0.1   |       |       | 0.0  |       | 0.0   | 0.0   | 0.1   |      |       |      | 0.2     |
| Water Treatment Pond                                                                                        |       | 2.7   |       |      |       |       |       |       |      |       |      | 2.7     |
| Western North America Vernal<br>Pool                                                                        |       |       |       |      |       |       |       | 0.4   |      | 4.4   |      | 4.8     |
| Western North American Freshwater Aquatic Vegetation                                                        |       | 0.1   |       |      |       |       |       |       |      |       |      | 0.1     |
| Western North American<br>Freshwater Marsh                                                                  |       | 1.4   |       |      | 5.0   | 0.7   |       | 0.2   |      | 5.7   |      | 12.9    |
| Total                                                                                                       | 157.8 | 462.0 | 129.9 | 30.1 | 370.5 | 370.2 | 213.7 | 308.7 | 61.0 | 831.3 | 41.3 | 2,976.5 |

#### **Rezone Sites for Housing Project**

The vegetation community characterizations for this analysis were based on the classification systems presented in the *United States National Vegetation Classification* (USNVC) and *A Manual of California Vegetation, Second Edition* (Sawyer et al. 2009). The *Preliminary Description of Terrestrial Natural Communities of California* (Holland 1986) has been superseded by Sawyer et al. (2009). Many of the vegetation communities discussed below represent large areas which may be geographically isolated from one another, therefore lesser species components and overall cover may be highly variable from one location to the next. Plant species nomenclature and taxonomy used for this BRA follows the treatments within the second edition of *The Jepson Manual* (Baldwin et al. 2012).

#### Pacific Madrone (Arbutus menziesii)

This community most closely resembles the Pacific madrone (*Arbutus menziesii*) Forest - Alliance described by Sawyer et al. (2009). Pacific madrone is dominate or co-dominant in the broadleaf canopy with black oak (*Quercus kelloggii*) and/or bay laurel (*Umbellularia californica*). Douglas fir (*Pseudotsuga menziesii*), toyon (*Heteromeles arbutifolia*), and poison oak (*Toxicodendron diversilobum*) are often present. There are approximately 12.8 acres of *Arbutus menziesii* Alliance in the BSAs.

#### Barren

The BSAs contain approximately 2.6 acres of bare ground. This land cover type is not described in either the USNVC or Sawyer et al. (2009) classification systems, but is described by the California Wildlife Habitat Relationships (CWHR) system (Mayer and Laudenslayer 1988). This land cover type occurs where no vegetation is present and includes bare soil. This land cover type was mapped where bare soils were likely the result of disturbance such as development or construction activities. This land cover type was observed sporadically throughout the BSA.

#### California Annual and Perennial Grassland

This community includes the USNVC California Annual Herb/Grass Group and California Perennial Grasslands Group, including native and non-native grasslands in dry to seasonally moist settings outside of coastal areas. Species include, but are not limited to; oats (*Avena* spp.), mustard (*Brassica* spp.), bromes (*Bromus* spp.), Knapweed (*Centaurea* spp.), dogstail grass (*Cynosurus* spp.), blue wild rye (*Elymus glaucus*), California poppy (*Eschscholzia* spp.), California goldfields (*Lasthenia californica*), bluegrass (*Lolium* spp.), needlegrass (*Nassella* spp.), melic grass (*Melica* spp.), California plantain (*Plantago erecta*), western brackenfern (*Pteridium aquilinum*), fescue (*Vulpia microstachys*), and Rusty haired popcorn flower (*Plagiobothrys nothofulvus*). There are approximately 612.4 acres of California Annual and Perennial Grasslands in the BSAs.

#### **Deciduous Orchard**

This land cover type is not described by the USNVC or Sawyer et al. (2009) but is described by CWHR (Mayer and Laudenslayer 1988). Deciduous orchards include deciduous fruit and nut trees, such as apple (*Malus domestica*) and walnut (*Juglans* spp.), planted for commercial agriculture. They are typically planted in rows with an open, barren understory. There are approximately 71.7 acres of deciduous orchards in the BSAs.

#### Deciduous Orchard, Vineyard, Irrigated Row and Field Crops

This land cover type is not described by the USNVC or Sawyer et al. (2009), but is described by CWHR (Mayer and Laudenslayer 1988), and includes deciduous orchards, vineyards, and irrigated row and field crops. Deciduous orchards are described above and may occur in areas mapped within this land cover type. Vineyards typically include rows of a single species supported on wood and wire trellises. Wine grapes (*Vitis* spp.) are the most commonly cultivated vineyard species in the BSAs. Irrigated row and field crops include cultivated agricultural crops, typically grown in rows. Most are annual species, though some may be perennial. There are approximately 2.9 acres of deciduous orchards, vineyards, and irrigated row and field crops in the BSAs.

Eucalyptus (Eucalyptus spp.) — tree of heaven (Ailanthus altissima) — black locust (Robinia pseudoacacia)

This community is not described by the USNVC or Sawyer et al. (2009) and includes non-native evergreen and deciduous trees. Dominant species include *Eucalyptus* (*globulus*, *camaldulensis*), tree-of-heaven (*Ailanthus altissima*), and black locust (*Robinia pseudoacacia*). These species are non-native and have a California Invasive Plant Counsel rating of Limited, Moderate, and Limited, respectively. There are approximately 8.5 acres of *Eucalyptus* spp. - *Ailanthus altissima* - *Robinia pseudoacacia* in the BSAs.

#### Irrigated Hayfield

This land cover type is not described by the USNVC or Sawyer et al. (2009) but is described by CWHR (Mayer and Laudenslayer 1988). Irrigated hayfields include cultivated agricultural crops, typically monocultures grown in rows. Hayfields include alfalfa fields and grass hayfields. There are approximately 14.1 acres of irrigated hayfields in the BSAs.

#### Irrigated Row and Field Crops

This land cover type is not described by the USNVC or Sawyer et al. (2009), but is described by CWHR (Mayer and Laudenslayer 1988), and is included in the deciduous orchard, vineyard, irrigated row and field crops as described above. Irrigated row and field crops include cultivated agricultural crops, typically grown in rows. Most are annual species, though some may be perennial. There are approximately 1.4 acres of irrigated row and field crops in the BSAs.

#### Non-native Forest & Woodland

Non-native forest & woodlands are dominated by non-native, ornamental, or landscaped trees. The species included in this community are highly variable but may include; American sweetgum (*Liquidambar styraciflua*), Chinese elm (*Ulmus parvifolia*), date palm (*Phoenix dactylifera*), and Italian cypress (*Cupressus sempervirens*). There are approximately 112.8 acres of non-native forest & woodlands in the BSAs.

#### Non-native Shrub

Non-native shrub communities are dominated by non-native, ornamental, or landscaped shrubs. The species included in this community are highly variable but may include; holly (*Ilex aquifolium*), rose of Sharon (*Hibiscus syriacus*), lilac (*Syringa vulgaris*), and rose (*Rosa* spp.). There are approximately 5.4 acres of non-native shrub communities in the BSAs.

#### **Rezone Sites for Housing Project**

#### Tanoak (Notholithocarpus densiflorus)

This community most closely resembles the tanoak (*Notholithocarpus densiflorus*) Forest Alliance described by Sawyer et al. (2009). Tanoak is dominate or co-dominant in the broadleaf canopy with Pacific madrone. There are approximately 5.6 acres of *Notholithocarpus densiflorus* Alliance in the BSAs.

#### Fremont Cottonwood (Populus fremontii)

This community most closely resembles the Fremont cottonwood (*Populus fremontii*) Forest Alliance described by Sawyer et al. (2009). Fremont cottonwood is dominate or co-dominant in the broadleaf canopy with Pacific madrone. There are approximately 11.5 acres of *Populus fremontii* Alliance in the BSAs.

#### Douglas Fir (Pseudotsuga menziesii)

This community most closely resembles the Douglas fir (*Pseudotsuga menziesii*) Forest & Woodland Alliance described by Sawyer et al. (2009). Douglas fir is dominate or co-dominant with Pacific madrone, coast live oak (*Quercus agrifolia*), canyon live oak (*Quercus chrysolepis*), Bay laurel or other hardwoods except tanoak. Oregon white oak (*Quercus garryana*) and California black oak (*Quercus kelloggii*) may also be present at less than 30 percent of relative cover. There are approximately 16.4 acres of *Pseudotsuga menziesii* Alliance in the BSAs.

# Oak (Quercus agrifolia, Q. douglasii, Q. garryana, Q. kelloggii, Q. lobata, Q. wislizeni)

This community most closely resembles the *Quercus* (agrifolia, douglasii, garryana, kelloggii, lobata, wislizeni) Forest & Woodland Alliance described by Sawyer et al. (2009). In this community three or more oak species are present and collectively dominate or co-dominate the broadleaf canopy, making it difficult to assign an alliance defined by one oak species. Oak species may include coast live oak, blue oak (*Quercus douglasii*), Oregon white oak, California black oak, valley oak (*Quercus lobata*), and interior live oak (*Quercus wislizeni*). There are approximately 37.2 acres of *Quercus* (agrifolia, douglasii, garryana, kelloggii, lobata, wislizeni) Alliance in the BSAs.

#### Coast Live Oak (Quercus agrifolia)

This community most closely resembles the coast live oak (*Quercus agrifolia*) Woodland & Forest Alliance described by Sawyer et al. (2009). Coast live oak is dominate or co-dominant with Pacific madrone. The understory often contains a mixture of native and non-native herbs and/or shrubs. There are approximately 35.5 acres of *Quercus agrifolia* Alliance in the BSAs.

#### Blue Oak (Quercus douglasii)

This community most closely resembles the blue oak (*Quercus douglasii*) Forest & Woodland Alliance described by Sawyer et al. (2009). Blue oak and/or *Quercus x eplingii* (the hybrid between blue oak and Oregon white oak) is dominate or co-dominates with coast live oak or Pacific madrone in the broadleaf canopy. The understory is often moderately dense to dense, with a mixture of native and non-native forbs and grasses. There is approximately <0.1 acre of *Quercus douglasii* Alliance in the BSAs.

#### Oregon Oak (Quercus garryana) (tree)

This community most closely resembles the Oregon white oak (*Quercus garryana*) (tree) Forest & Woodland Alliance described by Sawyer et al. (2009). Oregon white oak is dominate or co-dominant with up to two other species. Douglas fir, bay laurel, coast live oak, and California black oak are often present. This community may have a dense canopy with little understory, or a more open canopy with native and non-native herbs such as rough dog's-tail (*Cynosurus echinatus*) and California fescue (*Festuca californica*). There are approximately 8.5 acres of *Quercus garryana* (tree) Alliance in the BSAs.

#### Valley Oak (Quercus lobata)

This community most closely resembles the valley oak (*Quercus lobata*) Forest & Woodland Alliance described by Sawyer et al. (2009). Valley oak is dominate or co-dominant, often with coast live oak or Oregon ash (*Fraxinus latifolia*). The understory commonly includes California wild rose (*Rosa californica*), blackberry (*Rubus* spp.), and poison oak. There are approximately 38.0 acres of *Quercus lobata* Alliance in the BSAs.

Himalayan Blackberry (Rubus armeniacus) - rattlebox (Sesbania punicea) — common fig (Ficus carica)

This community most closely resembles the Himalayan blackberry (*Rubus armeniacus*) – rattlebox (*Sesbania punicea*) – common fig (*Ficus carica*) Shrubland Semi-Natural Alliance described by Sawyer et al. (2009). Himalayan blackberry, rattlebox, or common fig are dominant. this community occurs in riparian, mesic, and disturbed sites. There are approximately 5.4 acres of *Rubus armeniacus* - *Sesbania punicea* - *Ficus carica* Alliance in the BSAs.

#### Coast Redwood (Sequoia sempervirens)

This community most closely resembles the redwood (*Sequoia sempervirens*) Forest & Woodland Alliance described by Sawyer et al. (2009). Coast redwood is dominate or co-dominant, often with big leaf maple (*Acer macrophyllum*), tanoak, Douglas fir, California nutmeg (*Torreya californica*), and bay laurel. There are approximately 166.5 acres of *Sequoia sempervirens* Alliance in the BSAs.

Southwestern North American Riparian Evergreen and Deciduous Woodland

This community is not described by the USNVC or Sawyer et al. (2009). Southwestern north American riparian evergreen and deciduous woodlands includes the boxelder maple (*Acer negundo*) Alliance, California black walnut (*Juglans hindsii*) and Hybrids Alliance, and the polished willow (*Salix laevigata*) Alliance. This community may also include Fremont cottonwood as a minor component and is typically found in riparian areas. There are approximately 30.1 acres of southwestern North American riparian evergreen and deciduous woodland in the BSAs.

#### Southwestern North American Riparian/Wash Scrub

This community is not described by the USNVC or Sawyer et al. (2009). Southwestern north American riparian/wash scrub includes the California coffeeberry (*Frangula californica*) - western azalea (*Rhododendron occidentale*) Alliance, Brewer's willow (*Salix breweri*) Alliance, narrow leaved willow (*Salix exigua*) Alliance, dusky willow (*Salix melanopsis*) Alliance, black elderberry (*Sambucus nigra*) Alliance, Arroyo willow (Salix lasiolepis) Alliance. This community may also include blackberry or coyote brush (*Baccharis pilularis*) and is typically found in riparian areas with permanent soil

#### **Rezone Sites for Housing Project**

saturation. There are approximately 43.1 acres of southwestern North American riparian evergreen and deciduous woodland in the BSAs.

#### Temperate Forest

This community is very broad and is not described by the USNVC or Sawyer et al. (2009). Temperate Forests are found between the subtropical and subarctic climates. Within Sonoma County temperate forests include deciduous and coniferous forests. Species composition within this community is highly variable, and many of the deciduous and coniferous species alliances discussed in this report are considered temperate forests. There are approximately 38.9 acres of temperate forest in the BSAs.

#### California bay (Umbellularia californica)

This community most closely resembles the bay laurel (*Umbellularia californica*) Forest & Woodland Alliance described by Sawyer et al. (2009). Bay laurel is dominate or co-dominant with coast live oak, the canopy cover may be dense to open. There are approximately 8.2 acres of *Umbellularia californica* Alliance in the BSAs.

#### Urban

This land cover type is not described by the USNVC or Sawyer et al. (2009) but is described by CWHR (Mayer and Laudenslayer 1988). The urban land cover type includes fully developed areas that are part of a developed urban core. This includes residential, commercial, and industrial development. There are approximately 1501.0 acres of urban areas in the BSAs.

#### Vancouverian Riparian Deciduous Forest

This community is very broad and is not described by the USNVC or Sawyer et al. (2009). Vancouverian riparian deciduous forest includes the white alder (*Alnus rhombifolia*) Alliance, Oregon alder (*Alnus rubra*) Alliance, Oregon ash (*Fraxinus latifolia*) Alliance, and shining willow (*Salix lucida*) Alliance. Big leaf maple and/or bay laurel may be co-dominant. This community is found in riparian areas. There are approximately 56.9 acres of Vancouverian riparian deciduous woodland in the BSAs.

#### Vineyard

This land cover type is not described by the USNVC or Sawyer et al. (2009) but is described by CWHR (Mayer and Laudenslayer 1988), and is included in the deciduous orchard, vineyard, irrigated row and field crops as described above. Vineyards typically include rows of a single species supported on wood and wire trellises. Wine grapes are the most commonly cultivated vineyard species in the BSAs. There are approximately 108.5 acres of vineyards in the BSAs.

#### Water

This land cover type is not described by the USNVC or Sawyer et al. (2009). Areas mapped as water include ponds and pools, which may be isolated or associated with streams or creeks. There is approximately 0.2 acre of water in the BSAs.

### Water Treatment Pond

This land cover type is not described by the USNVC or Sawyer et al. (2009) and includes the water treatment ponds at the Forestville Water Quality Control Plant. There are approximately 2.7 acres of water treatment ponds in the BSAs.

#### Western North America Vernal Pool

This land cover type is not described by the USNVC or Sawyer et al. (2009). Western north America vernal pool includes vernal pools of the Santa Rosa Plain and adjacent areas. Vernal pools are isolated seasonal wetlands or vernally influenced marshes and are typically dominated by common spikerush (*Eleocharis macrostachya*), smooth goldfields (*Lasthenia glaberrima*), or annual semaphoregrass (*Pleuropogon californicus*). There are approximately 4.8 acres of vernal pools in the BSAs.

### Western North American Freshwater Aquatic Vegetation

This community is not described by the USNVC or Sawyer et al. (2009). Western north America freshwater aquatic vegetation includes floating aquatic vegetation such as mosquito ferns (*Azolla* spp.), watershield (*Brasenia* spp.), hornworts (*Ceratophyllum* spp.), duck weed (*Lemna* spp.), water primrose (*Ludwigia* spp.), or water lily (*Nuphar* spp.). There is approximately 0.1 acre of freshwater aquatic vegetation in the BSAs.

#### Western North American Freshwater Marsh

This community is not described by the USNVC or Sawyer et al. (2009). Western north America freshwater marsh includes marsh and wet meadow habitats. This community is typically dominated by silverweed (*Argentina* spp.), sand dune sedge (*Carex pansa*), slough sedge (*C. obnupta*), California field sedge (*C. praegracilis*), common rush (*Juncus effuses*), dune rush (*J. lescurii*), common rush (*J. patens*), water dropworts (*Oenanthe* spp.), bulrush (*Schoenoplectus* spp.), mountain bog bulrush (*Scirpus microcarpus*), and/or cattails (*Typha* spp.). There are approximately 12.9 acres of freshwater marsh in the BSAs.

### 3.3 General Wildlife

Wildlife that can reasonably be expected to occur in the BSA varies based on habitat type and availability. These BSAs are located largely in developed, urban or semi-rural areas. The Larkfield, Graton, Forestville, Santa Rosa, Penngrove, Petaluma, Agua Caliente, and Sonoma BSAs are located on the Sonoma valley floor in central/southern Sonoma County. Common avian species in and adjacent to urban areas in this region include California quail (*Callipepla californica*), red-tailed hawk (*Buteo jamaicensis*), red-shouldered hawk (*Buteo lineatus*), house finch (*Haemorhous mexicanus*), common raven (*Corvus corax*), red-winged blackbird (*Agelaius phoeniceus*), Cooper's hawk (*Accipiter cooperii*), and California scrub jay (*Aphelocoma californica*). Reptile species known from the region include gopher snake (*Pituphis catenifer*), northwestern fence lizard (*Sceloporus occidentalis occidentalis*), California kingsnake (*Lampropeltis californiae*), and the northern pacific rattlesnake – (*Crotalus oreganus oreganus*). Typical mammalian species include disturbance tolerant species common in urban areas, including gray fox (*Urocyon cinereoargenteus*), common raccoon (*Procyon lotor*), Virginia opossum (*Didelphis virginiana*), western gray squirrel (*Sciurus griseus*), and bobcat (*Lynx rufus*).

#### Sonoma County

### **Rezone Sites for Housing Project**

The Guerneville and Glen Ellen BSAs are in developed areas as well, but in mountains with woodland habitats interspersed throughout and surrounding the BSA. Avian species reasonably be expected to occur in these areas include turkey vulture (*Cathartes aura*), Stellar's jay (*Cyanocitta stelleri*), California scrub jay, red-shouldered hawk, red-tailed hawk, wild turkey (*Meleagris gallopavo*) and barn owl (*Tyto alba*). Reptile species observed include western fence lizard (*Sceloporus occidentalis*), southern alligator lizard (*Elgaria multicarinata*) and western rattlesnake (*Crotalus oreganus*). Mammalian species typical of the area include mule deer (*Odocoileus hermionus*), western gray squirrel, gray fox, mountain lion (*Puma concolor*), dusky-footed woodrat (*Neotoma fuscipes*), Virginia opossum, coyote (*Canis latrans*), common raccoon and bobcat.

The Geyserville BSA is located on the Alexander Valley floor surrounded by development in northern Sonoma County. Avian species in and adjacent to urban areas in this region include red-tailed hawk, California scrub jay, acorn woodpecker (*Melanerpes formicivorus*), and American crow. Mammalian species observed include gray fox, mule deer, and dusky-footed woodrat.

# 4 Sensitive Biological Resources

Local, State, and federal agencies regulate special status species and other sensitive biological resources and require an assessment of their presence or potential presence to be conducted on site prior to the approval of proposed development on a property. This section discusses sensitive biological resources observed on the project site and evaluates the potential for the project site to support additional sensitive biological resources. Assessments for the potential occurrence of special status species are based upon known ranges, habitat preferences for the species, species occurrence records from the CNDDB, species occurrence records from other sites in the vicinity of the survey area, and previous reports for the project site. The potential for each special status species to occur in the study area was evaluated according to the following criteria:

- No Potential. Habitat on and adjacent to the site is clearly unsuitable for the species
  requirements (foraging, breeding, cover, substrate, elevation, hydrology, plant community, site
  history, disturbance regime), and species would have been identifiable on-site if present (e.g.,
  oak trees). Protocol surveys (if conducted) did not detect species.
- Low Potential. Few of the habitat components meeting the species requirements are present, and/or the majority of habitat on and adjacent to the site is unsuitable or of very poor quality. The species is not likely to be found on the site. Protocol surveys (if conducted) did not detect species.
- 3. **Moderate Potential.** Some of the habitat components meeting the species requirements are present, and/or only some of the habitat on or adjacent to the site is unsuitable. The species has a moderate probability of being found on the site.
- 4. **High Potential.** All the habitat components meeting the species requirements are present and/or most of the habitat on or adjacent to the site is highly suitable. The species has a high probability of being found on the site.
- 5. **Present.** Species is observed on the site or has been recorded (e.g., CNDDB, other reports) on the site recently (within the last 5 years).

# 4.1 Special Status Species

### **Special Status Plant Species**

In the region, 160 special status plant species are known to occur, and these were evaluated for their potential to occur in the BSAs (Appendix C). Based on the size of the BSAs and the types and quality of natural vegetation communities there, 82 special status plant species could be excluded based on the lack of species-specific habitat features in the BSAs. The specific habitat features absent from the BSAs include, but are not limited to, coastal dunes, salt marsh, chaparral, and closed-cone coniferous forest. Special status plants generally have a low potential to occur in the BSAs due to the developed nature of most of the sites, but many of the BSAs are adjacent to undeveloped areas and overlap some portion of natural habitats and aquatic features. A total of 78 special status plant species have potential to occur in the BSA (Appendix C). Those plants federally-and/or State-listed as endangered or threatened, or presumed present are listed in Table 4 and Table 5 below. Four species have been documented in the BSAs, including one federally listed species (Table 5). The remaining 52 species with potential to occur have a California Rare Plant Rank (CRPR) of 1B to 2B (Appendix C).

Table 4 Federal and State-listed Plant Species with Potential to Occur in the BSA

| Common Name                 | Scientific Name                                        | Status                                                      | BSA                                                         |  |  |  |
|-----------------------------|--------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--|--|--|
| Low Potential to Occur      |                                                        |                                                             |                                                             |  |  |  |
| Baker's manzanita           | Arctostaphylos bakeri ssp. bakeri                      | SR                                                          | GEY, GUE, LAR, FOR, GRA,<br>SAN, GLE, AGU, PEN, PET,<br>SON |  |  |  |
| Marin manzanita             | Arctostaphylos virgata                                 | FE/SCE                                                      | GUE, GLE                                                    |  |  |  |
| Clara Hunt's milk-vetch     | Astragalus claranus                                    | GEY, GUE, LAR, FOR, GRA,<br>SAN, GLE, AGU, PEN, PET,<br>SON |                                                             |  |  |  |
| Vine Hill clarkia           | Clarkia imbricata                                      | FE/SE GEY, GUE, LAR, FOR, C<br>SAN, GLE, AGU, PEN, I<br>SON |                                                             |  |  |  |
| Baker's larkspur            | Delphinium bakeri                                      | phinium bakeri FE/SE GEY<br>SAN<br>SON                      |                                                             |  |  |  |
| Mason's lilaeopsis          | Lilaeopsis masonii                                     | GEY, GUE, LAR, FOR, GRA,<br>SAN, GLE, AGU, PEN, PET,<br>SON |                                                             |  |  |  |
| Geysers panicum             | Panicum acuminatum var. thermale                       | SE                                                          | GEY, PET, SON                                               |  |  |  |
| North Coast semaphore grass | Pleuropogon hooverianus                                | ST                                                          | GEY, GUE, LAR, FOR, GRA,<br>SAN, GLE, AGU, PEN, PET,<br>SON |  |  |  |
| Two-fork clover             | Trifolium amoenum FE                                   |                                                             | GEY, GUE, LAR, FOR, GRA,<br>SAN, GLE, AGU, PEN, PET,<br>SON |  |  |  |
| Moderate Potential to Occur |                                                        |                                                             |                                                             |  |  |  |
| Sonoma alopecurus           | Alopecurus aequalis var. sonomensis                    | FE                                                          | GUE, LAR, GRA, SAN, GLE,<br>AGU, PEN, SON                   |  |  |  |
| Sonoma sunshine             | Blennosperma bakeri                                    | lennosperma bakeri FE/SE                                    |                                                             |  |  |  |
| Pitkin Marsh paintbrush     | Castilleja uliginosa                                   | SE                                                          | GUE, LAR, FOR, GRA, SAN,<br>GLE, AGU, PEN, SON              |  |  |  |
| Loch Lomond button-celery   | Eryngium constancei                                    | FE/SE                                                       | SAN, PEN                                                    |  |  |  |
| Boggs Lake hedge-hyssop     | Gratiola heterosepala                                  | SE                                                          | GUE, LAR, FOR, GRA, SAN,<br>GLE, AGU, PEN, SON              |  |  |  |
| Burke's goldfields          | Lasthenia burkei                                       | FE/SE                                                       | GUE, LAR, FOR, GRA, SAN,<br>GLE, AGU, PEN, SON              |  |  |  |
| Contra Costa goldfields     | Lasthenia conjugens                                    | jugens FE GUE, LAR, FO<br>GLE, AGU, PE                      |                                                             |  |  |  |
| Pitkin Marsh lily           |                                                        |                                                             | GUE, LAR, FOR, GRA, SAN,<br>GLE, AGU, PEN, SON              |  |  |  |
| Sebastopol meadowfoam       | Limnanthes vinculans                                   | FE/SE                                                       | SAN, PEN                                                    |  |  |  |
| few-flowered navarretia     | Navarretia leucocephala ssp. FE/ST SAN, PEN pauciflora |                                                             | SAN, PEN                                                    |  |  |  |
| Many-flowered navarretia    | Navarretia leucocephala ssp. plieantha                 | FE/SE                                                       | SAN, PEN                                                    |  |  |  |
| Geysers panicum             | Panicum acuminatum var. thermale                       | SE                                                          | GUE, LAR, FOR, GRA, SAN,<br>GLE, AGU, PEN, SON              |  |  |  |

| Common Name                                      | Scientific Name                                        |                               | Status     | BSA  |                                      |
|--------------------------------------------------|--------------------------------------------------------|-------------------------------|------------|------|--------------------------------------|
| Kenwood Marsh checkerbloo                        | om Sidalcea oregana ssp.                               | . valida I                    | FE/SE      | ,    | LAR, FOR, GRA, SAN,<br>AGU, PEN, SON |
| Pacific Grove clover                             | Trifolium polyodon                                     | 9                             | SR         | ,    | LAR, FOR, GRA, SAN,<br>AGU, PEN, SON |
| FP = State Fully Protected SE = State Endangered | FT = Federal Threatened  SCE = State Candidate Endange | FE = Federal Endangered Sered | SR = State | Rare | ST = State Threatened                |

Table 5 Special Status Plants Documented in the BSA

| Common Name                        | Scientific Name                     | Status | BSA           |
|------------------------------------|-------------------------------------|--------|---------------|
| Present                            |                                     |        |               |
| Congested-headed hayfield tarplant | Hemizonia congesta ssp. congesta    | 1B.2   | AGU, PEN, SON |
| Sonoma alopecurus                  | Alopecurus aequalis var. sonomensis | FE     | FOR           |
| Holly-leaved ceanothus             | Ceanothus purpureus                 | 1B.2   | GUE           |
| Pappose tarplant                   | Centromadia parryi ssp. parryi      | 1B.2   | PEN           |

### **Special Status Animal Species**

In the region, 62 special status animal species are known to occur and these were evaluated for their potential to occur in the BSAs (Appendix C). Based on the size of the BSAs and the types and quality of natural vegetation communities there, 26 special status animal species could be excluded based on the lack of species-specific habitat features present in the BSAs. These species generally occur in marine or salt marsh habitats, and the BSAs are outside of the species known range. Special status animals generally have a low potential to occur in the BSAs due to the developed nature of most of the sites; however, many of the BSAs are located adjacent to undeveloped areas and overlap some portion of natural habitats and aquatic features. Thirty-six special status animal species have some potential to occur in the BSA, including 19 federally or State-listed species (Table 6).

### Other Protected Species

### Nesting Birds

Non-game migratory birds protected under the CFGC Section 3503 have the potential to breed throughout the BSA. Native avian species common to oak woodland, riparian and coastal scrub, grasslands, landscaping, developed and ruderal areas have the potential to breed and forage throughout the BSA. Species of birds common to the area that typically occur in the region, including red-tailed hawk, California quail, California scrub jay, black phoebe (*Sayornis nigricans*, Anna's hummingbird (*Calypte anna*), house finch (*Haemorhous mexicanus*), American crow, and turkey vulture, were detected from online database sources, including iNaturalist and eBird. Nesting by a variety of common birds protected by CFGC Section 3503 could occur in virtually any location throughout the BSA.

Table 6 Federal and State-listed Animals with Potential to Occur in the BSA

| Common Name                                        | Scientific Name                        | BSA    |                                                          |  |  |
|----------------------------------------------------|----------------------------------------|--------|----------------------------------------------------------|--|--|
| Low Potential to Occur                             |                                        |        |                                                          |  |  |
| Crotch bumble bee                                  | Bombus crotchii                        | SC     | GEY, GUE, LAR, FOR, GRA, SAN,<br>GLE, AGU, PEN, PET, SON |  |  |
| Western bumble bee                                 | Bombus occidentalis                    | SC     | GEY, GUE, LAR, FOR, GRA, SAN,<br>GLE, AGU, PEN, PET, SON |  |  |
| California freshwater shrimp                       | Syncaris pacifica FE,                  |        | GUE, LAR, GRA, GLE, PEN                                  |  |  |
| Coho salmon - central California coast ESU         | Oncorhynchus kisutch pop. 4            | FE, SE | GLE, AGU, PEN, SON                                       |  |  |
| Steelhead – central California coast DPS           | Oncorhynchus mykiss irideus pop. 8     | FT     | GRA, SON                                                 |  |  |
| California tiger salamander-<br>Sonoma County DPS  | Ambystoma californiense pop. 3         | FT, ST | GUE, LAR, FOR, GRA, GLE, AGU,<br>PET, SON                |  |  |
| California red-legged frog                         | Rana draytonii                         | FT     | GEY, LAR, FOR, GRA, SAN, GLE,<br>AGU, PEN, PET, SON      |  |  |
| Tricolored blackbird                               | Agelaius tricolor                      | ST     | GUE, LAR, FOR, GRA, SAN, GLE,<br>AGU, PEN, SON           |  |  |
| Swainson's hawk                                    | Buteo swainsoni                        | ST     | GEY, GUE, LAR, FOR, GRA, SAN,<br>GLE, AGU, PEN, SON      |  |  |
| northern spotted owl                               | Strix occidentalis cauring             | FT/ST  | GUE, FOR                                                 |  |  |
| Moderate Potential to Occur                        |                                        |        |                                                          |  |  |
| coho salmon – central California<br>coast ESU      | Oncorhynchus kisutch pop. 4 FE, SE GRA |        | GRA                                                      |  |  |
| steelhead – central California<br>coast DPS        | Oncorhynchus mykiss irideus pop. 8     | FT     | LAR, GLE, AGU, PEN                                       |  |  |
| foothill yellow-legged frog – north coast DPS      | Rana boylii pop. 1 SC                  |        | GUE, LAR, PEN                                            |  |  |
| California red-legged frog                         | Rana draytonii                         | FT     | GUE                                                      |  |  |
| High Potential to Occur                            |                                        |        |                                                          |  |  |
| California tiger salamander -<br>Sonoma county DPS | Ambystoma californiense pop. 3         | FT, ST | PEN                                                      |  |  |
| Present                                            |                                        |        |                                                          |  |  |
| California freshwater shrimp                       | Syncaris pacifica                      | FE, SE | AGU                                                      |  |  |
| coho salmon - central California<br>coast ESU      | Oncorhynchus kisutch pop. 4            | FE, SE | GUE, LAR                                                 |  |  |
| steelhead – central California<br>coast DPS        | Oncorhynchus mykiss irideus pop. 8     | FT     | GUE                                                      |  |  |
| California tiger salamander-<br>Sonoma county DPS  | Ambystoma californiense pop. 3         | FT, ST | SAN                                                      |  |  |
| FT = Federal Threatened FE = Fe                    | deral Endangered ST = State Threate    | ened   | SE = State Endangered                                    |  |  |

## 4.2 Sensitive Plant Communities and Critical Habitats

### **Sensitive Natural Communities**

Plant communities are considered sensitive biological resources if they have limited distribution, have high wildlife value, include sensitive species, or are particularly susceptible to disturbance. CDFW ranks sensitive communities as "threatened" or "very threatened" and keeps records of their occurrences in CNDDB. Sensitive natural communities included in the CNDDB follow the original methodology according to *Preliminary Descriptions of the Terrestrial Natural Communities of California* (Holland 1986). The methodology for determining sensitivity continues to be revised and is now based on the *Manual of California Vegetation* (Sawyer et al. 2009). Communities considered sensitive by CDFW are published in the California Sensitive Natural Communities List (CDFW 2022). Vegetation alliances are ranked 1 through 5 based on NatureServe's (2010) methodology, with those alliances ranked globally (G) or statewide (S) as 1 through 3 considered sensitive. Some alliances with the rank of 4 and 5 have also been included in the 2018 sensitive natural communities list under CDFW's revised ranking methodology (CDFW 2022c).

Five sensitive natural communities are known to occur within 5 miles of the BSAs:

- 1. Northern Vernal Pool
- 2. Coastal and Valley Freshwater Marsh
- 3. Northern Hardpan Vernal Pool
- 4. Valley Needlegrass Grassland
- 5. Coastal Brackish Marsh

The vegetation communities mapped in the Santa Rosa and Penngrove BSAs include Western North America Vernal Pool, which may be considered sensitive as a wetland. Additionally, many of the specific vegetation alliances in the BSAs may be considered sensitive under CDFW's revised ranking methodology (CDFW 2022c), including the *Populus fremontii* – Forest Alliance, many *Quercus* sp. alliances, and the *Sequoia sempervirens* Forest & Woodland Alliance.

### **Critical Habitats**

Eight federally designated critical habitats occur within 5 miles of the BSAs:

- 1. Marbled murrelet
- 2. Northern spotted owl
- 3. California tiger salamander
- 4. California red-legged frog
- 5. Coho salmon central California coast Evolutionarily Significant Unit (ESU)
- 6. Steelhead central California DPS
- 7. Green sturgeon southern DPS (Acipenser medirostris)
- 8. Chinook salmon California coastal ESU (Oncorhynchus tshawytscha)

The BSAs distance in miles from each of the eight critical habitats is shown in Table 7 below. Critical habitat for California tiger salamander (CTS), coho salmon, and steelhead occur in some of the BSAs. Descriptions of each federally designated critical habitat are discussed below.

Table 7 BSA Distance (miles) from Eight Federally Designated Critical Habitats

| BSA           | Marbled<br>Murrelet | Northern<br>Spotted<br>Owl | California<br>Tiger<br>Salamander | California<br>Red-legged<br>Frog | Coho<br>Salmon | Steelhead  | Green<br>Sturgeon | Chinook<br>Salmon |
|---------------|---------------------|----------------------------|-----------------------------------|----------------------------------|----------------|------------|-------------------|-------------------|
| Geyserville   | n/a                 | n/a                        | n/a                               | n/a                              | 1.94           | 0.88       | n/a               | 0.38              |
| Guerneville   | 0.88                | n/a                        | n/a                               | n/a                              | Within BSA     | Within BSA | n/a               | n/a               |
| Forestville   | n/a                 | n/a                        | 2.55                              | n/a                              | Within BSA     | 0.16       | n/a               | n/a               |
| Larkfield     | n/a                 | n/a                        | 0.31                              | n/a                              | Within BSA     | Within BSA | n/a               | n/a               |
| Graton        | n/a                 | n/a                        | 1.45                              | n/a                              | Within BSA     | Within BSA | n/a               | n/a               |
| Santa Rosa    | n/a                 | n/a                        | Within BSA                        | 4.29                             | 2.6            | n/a        | n/a               | n/a               |
| Penngrove     | n/a                 | n/a                        | Within BSA                        | 3.22                             | n/a            | 0.09       | n/a               | n/a               |
| Petaluma      | n/a                 | n/a                        | 2.98                              | 0.97                             | n/a            | 1.02       | 2.75              | n/a               |
| Glen Ellen    | n/a                 | n/a                        | n/a                               | 3.26                             | n/a            | Within BSA | n/a               | n/a               |
| Agua Caliente | n/a                 | 3.42                       | n/a                               | 3.61                             | n/a            | Within BSA | n/a               | n/a               |
| Sonoma        | n/a                 | 4.01                       | n/a                               | n/a                              | n/a            | 0.11       | n/a               | n/a               |

### Marbled Murrelet

Marbled murrelet critical habitat unit CA-08-b is in the Armstrong Redwoods State Preserve, approximately 0.88 mile northwest of the Guerneville BSA (USFWS 2011a). Marbled murrelet are known to nest in most of the major types of coniferous forests in the western portions of Washington, Oregon, and California where older forests remain inland of the coast. The critical habitat is designated for potential nesting or roosting areas.

### Northern Spotted Owl

Northern spotted owl critical habitat unit 11: Interior California Coast, subunit ICC-6 is in the Mayacamas Mountain Range. This critical habitat unit is approximately 3.42 miles east of the Agua Caliente BSA and 4.01 miles northeast of the Sonoma BSA. The ICC-6 subunit consists of approximately 2,072 acres of State and federal lands in Napa and Sonoma Counties. The federal register identifies the subunit as an essential conservation area due to its unique oak woodland habitat used by northern spotted owls.

### California Tiger Salamander

The Santa Rosa Plain Unit is a total of 55,800 acres of land designated as critical habitat for CTS in Sonoma County (USFWS 2011b). This critical habitat extends from Penngrove in the south up to Windsor in the north, and includes tributaries, creeks, and streams, such as Pool Creek, Mark West Creek, Santa Rosa Creek, Gossage Creek, Washoe Creek, and Willow Brook. The Santa Rosa Plain Unit is within most of the Penngrove BSA, except for the northern portion and eastern edge of the BSA. Most of the BSA that is within critical habitat is developed, except for Lichau Creek. The critical habitat unit is also within all of the Santa Rosa BSA; however, the BSA is situated in urban development with little natural riparian/aquatic habitat. Threats identified in the federal register for this critical habitat include habitat destruction, degradation, and fragmentation, predation and competition from non-native species, possible commercial overutilization, disease, hybridization with non-native salamanders, various chemical contaminants, road-crossing mortality, and rodent control operations.

### California Red-legged Frog

The BSAs that are within 5 miles of the following California red-legged frog critical habitat units: SON-1, *Annadel*, SON-2, *Sonoma Mountain*, and SON-3, *Petaluma*. The SON-1 unit is comprised of approximately 1,564 acres of land and is located in Trione-Annadel State Park southeast of Santa Rosa. The SON-2 unit is comprised of approximately 4,932 acres of land and is located east of Petaluma in the Sonoma Mountains. The SON-3 unit is comprised of approximately 2,230 acres of land and is located southwest of Petaluma, near West Petaluma Regional Park. All three units contain aquatic habitat for breeding and non-breeding activities and upland habitat for foraging and dispersal activities. The BSAs within 5 miles of the critical habitat include the Santa Rosa BSA, approximately 4.29 miles, the Penngrove BSA, approximately 3.22 miles away, the Petaluma BSA, approximately 0.97 miles away, the Glen Ellen BSA, approximately 3.26 miles away, and the Agua Caliente BSA, approximately 3.61 miles away.

### Coho Salmon

The Atascadero Creek and Russian River and its tributaries, including Mark West Creek, Fife Creek, and Green Valley Creek, are designated critical habitat for central California coast ESU coho salmon. These watersheds provide suitable spawning and rearing sites, with adequate water quality, shade, and submerged logs and debris, which are essential for the conservation of the species. Furthermore, the Russian River preserves genetic and ecological attributes. The Guerneville, Forestville, Larkfield, and Granton BSAs are within coho salmon critical habitat.

### Steelhead

The Sonoma Creek and Russian River and its tributaries, including Mark West Creek and Green Valley Creek, are designated critical habitat for central California DPS steelhead. These watersheds provide suitable spawning and rearing sites, with adequate water quality, shade, and submerged logs and debris, which are essential for the conservation of the species. The Guerneville, Larkfield, Granton, Glen Ellen, and Agua Caliante BSAs are within steelhead critical habitat.

### Green Sturgeon

The San Pablo Bay is designated critical habitat for the green sturgeon southern DPS, including an area approximately 329 square kilometers. The critical habitat provide space for individual and population growth, shelter, sites for breeding, reproduction, rearing of offspring and protection from disturbance. Reduction of potential spawning habitat has been identified as a severe threat by the federal register. The Petaluma BSA is approximately 2.75 miles southeast of the critical habitat.

### Chinook Salmon

The Russian River and its tributaries, including Wood Creek, are designated critical habitat for central California DPS steelhead. The Geyserville BSA is approximately 0.38 miles northeast of the critical habitat but no suitable streams or rivers are present on the BSA. These watersheds provide suitable spawning and rearing sites, with adequate water quality, shade, and submerged logs and debris, which are essential for the conservation of the species.

### 4.3 Jurisdictional Waters and Wetlands

Potentially jurisdictional areas in the BSA include streams located at various locations within the 11 Urban Service Areas. There are 10 streams in the 11 Urban Service Areas: Sonoma Creek, Green Valley Creek, Wood Creek, Calabazas Creek, Atascadero Creek, Fife Creek, Mark West Creek, Petaluma River, Fife Creek and Lichau Creek (U.S. Geological Survey 2020). One freshwater pond is located in the Forestville BSA. There are no jurisdictional waters or wetlands within the Petaluma, Santa Rosa, or Sonoma BSA.

The above-described features are potentially subject to USACE, RWQCB, CDFW, and California Coastal Commission oversight. The lakes and many of the wetlands are permanently wet and have a direct hydrologic connection to the Pacific Ocean (a traditional navigable water as defined by USACE). The USACE is expected to assert jurisdiction under Section 404 of the Clean Water Act (CWA) over stream, lake, and wetland features to the ordinary high water mark, and to the edge of those wetlands with all three criteria that define federal wetlands: hydric soils, hydrophytic vegetation, and wetland hydrology. The RWQCB also has jurisdiction over waters of the U.S. under Section 401 of the CWA. The RWQCB may also assert jurisdiction over waters of the State under the Porter-Cologne Water Quality Control Act.

The CDFW has jurisdiction over lakes, streams, and associated riparian areas under the CGFC Section 1600 et seq. The CDFW has traditionally regulated activities within the bed and bank of lakes and streams, extending to the top of bank or edge of the riparian dripline, under its Lake and Streambed Alteration Program. The CDFW may also regulate activities conducted adjacent to but outside these areas, if the activity results in a substantial alteration of the stream or lakebed downslope of the activity, such as through placement of materials that wash into a water body.

# 4.4 Wildlife Movement

Wildlife movement corridors, or habitat linkages, are generally defined as connections between habitat patches that allow for physical and genetic exchange between otherwise isolated animals populations or those populations that are at risk of becoming isolated. Such linkages may serve a local purpose, such as providing a linkage between foraging and denning areas, or they may be regional in nature. Some habitat linkages may serve as migration corridors, wherein animals periodically move away from an area and then subsequently return. Others may be important as dispersal corridors for young animals. A group of habitat linkages in an area can form a wildlife corridor network. The California Essential Habitat Connectivity Project, commissioned by the California Department of Transportation and CDFW, identifies "natural Landscape Blocks" that support native biodiversity and the "Essential Connectivity Areas" which link them (Spencer et al. 2010).

Wildlife movement corridors can be both large and small in scale. Riparian corridors and waterways including Russian River, Petaluma River, Wood Creek, Mark West Creek, Sonoma Creek, Atascadero Creek, Fife Creek, Green Valley Creek, Calabazas Creek and Lichau Creek provide local scale opportunities for wildlife movement throughout the 11 BSAs. Existing trails and roads within the BSAs also act as corridors for wildlife movement, particularly for relatively disturbance tolerant species such as red fox, coyote, raccoon, skunk, deer, and bobcat. On a larger scale, one of the 11 BSAs is mapped in an Essential Connectivity Area in the Biogeographic Information and Observation System (CDFW 2022b). The Guerneville BSA is mapped within an Essential Connectivity Area connecting two natural land blocks, Armstrong Redwoods State Preserve at the northern extent and

the Sonoma Coast State Park to the south along the coast. The Guerneville BSA is surrounded by a large area of undisturbed natural habitat, including woodland habitat in the southeastern portion of the BSA. Overall, this area represents important natural habitat for a wide range of species and supports genetic connectivity and movement along much of the northern California coast, including into the Mendocino National Forest. None of the other ten BSAs are mapped in an Essential Connectivity Area or Natural Landscape Block. The Glen Ellen BSA lies outside a Natural Landscape Block, the Sonoma Valley Regional Park, approximately 0.2 mile south of the site.

There is potential for movement from local waterways, including the Russian River and Fife Creek in the Guerneville BSA, the Petaluma River and Lichau Creek in the Penngrove BSA, Wood Creek in the Geyserville BSA, Mark West Creek in the Larkfield BSA, Sonoma Creek in the Agua Caliente BSA, Green Valley Creek in the Forestville BSA, Sonoma Creek and Calabazas Creek in the Glen Ellen BSA, and Atascadero Creek in the Graton BSA. The riparian corridors of these waterways are a significant corridor for wildlife movement in Sonoma County. The areas surrounding the rivers and creek are primarily developed areas, including urban residential, commercial, and industrial development. Furthermore, most wildlife species that would utilize such connections are likely urban, disturbance tolerant species such as raccoon, skunk, opossum, and black tailed deer.

Developed areas of the BSA where Rezoning Sites would intersect an urban area do not function as essential connectivity areas or as important wildlife corridors due to previous use and disturbance.

# 4.5 Resources Protected by Local Policies and Ordinances

### **Protected Trees**

The Rezoning Sites fall under the jurisdiction of Sonoma County. The County's General Plan and Municipal Code includes goals, policies, and ordinances intended to protect, preserve, and enhance natural habitats and biological resources to varying degrees. The County Municipal Code requires permitting for tree removal, and some provide additional protection for landmark or heritage trees (Chapter 26D).

Sonoma County Zoning Code Article 88, Section 26-88-010(m) Tree Protection Ordinance requires projects to be designed to minimize the destruction of protected trees that meet size criteria specified in the ordinance. Protected trees of sufficient size and species to require agency permitting may occur within the BSAs, including but not limited to: big leaf maple (*Acer macrophyllum*), black oak, blue oak, coast live oak, interior live oak, madrone, Oracle oak (Q. *morehus*), Oregon oak, redwood, valley oak, and California bay. Additionally, Valley oak is considered a "Protected tree of special significance" (Sec. 25-2).

Chapter 26, Article 67, Valley Oak Habitat Combining District, of the Sonoma County Zoning Code provides for protection and enhancement of oak woodland habitats. Removal of oak trees in this zoning district requires mitigation measures including retention of other oaks, replacement plantings, and an in-lieu fee.

### **Riparian Corridors**

Riparian corridors are protected by Sonoma County zoning ordinance (Sec 26-64). This zoning code protects County designated streams, including the bed, bank, and an adjacent streamside conservation areas as measured from the top of bank or he outer drip line of the riparian trees.

Specific setbacks are determined based on the affected river or stream and site-specific conditions but generally include a 25 to 200 foot setback.

# 4.6 Santa Rosa Plain Conservation Strategy

The Larkfield BSA, Santa Rosa BSA, and portions of the Penngrove BSA are in the Santa Rosa Plain Conservation Strategy Area (2005). The goal of the Conservation Strategy is to aid in the conservation of listed species and vernal pools by providing local governments and developers a way to obtain authorization for incidental take of federally listed species for development. Species covered under the Conservation Strategy Area include CTS, Burke's goldfields, Sonoma sunshine, Sebastopol meadowfoam, and many-flowered navarretia.

# 5 Impact Analysis and Mitigation Measures

The proposed project will identify sites to be added to the County's General Plan Housing Element site inventory to comply with State law and will implement current General Plan Policies and Programs that require the County to identify urban sites near jobs and transit which may appropriately accommodate additional housing. It will also identify appropriate sites on which to place the Workforce Housing Combining Zone, which would allow the development of jobs and/or housing on the same site or within walking distance from one another.

Specifically, project implementation would rezone up to 59 urban sites in designated Urban Service Areas throughout unincorporated Sonoma County for by-right, medium-density housing. The project would add sites to the County's Housing Element site inventory to comply with new inventory requirements in Housing Element law; it would implement current General Plan policies and programs, including Policy HE-2f, to consider a variety of sites for higher-density and affordable housing, and Housing Element programs 11 and 20, which encourage the identification of urban sites near jobs and transit to appropriately accommodate additional housing. The project includes (1) a General Plan Map amendment as necessary to adjust allowable densities on identified sites; (2) a rezone of sites to match new General Plan densities or to add the AH (Affordable Housing) or WH (Workforce Housing) combining zones; and (3) this report to evaluate the potential environmental impacts of the project. The project is intended to facilitate and encourage housing development that would be developed over a 10-year period, with full buildout by 2030.

This impact analysis is based on a review of existing biological conditions within a BSA that represents a significantly larger area than that of each project's impact footprint. The BSAs were designed to support design modifications and provide detail on biological resources in the area surrounding each Proposed Rezone Site. Identification of sensitive resources at this early stage can support avoidance and/or minimization of potential impacts to sensitive biological resources by providing baseline information. We have reported on the acreages of vegetation communities and special status species habitats in the BSAs, but the actual impacts from rezoning would be significantly less than the acres reported for the BSA. Actual impacts to vegetation communities and potential impacts to special status species because of development at the Proposed Rezone Sites and any adjacent staging/mobilization areas will be determined during project development. Impacts to sensitive biological resources are analyzed accordingly and are not considered as permanent or temporary impacts to the entire BSA. Many of the rezone sites occur within previously disturbed or developed areas, but they are adjacent to several natural vegetation communities. Potential for the project to result in significant impacts to special status biological resources is therefore addressed in detail below.

# 5.1 Special-Status Species

The project would have a significant effect on biological resources if it would:

a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Wildlife or U.S. Fish and Wildlife Service.

Known to occur or having the potential to occur are 160 special status plants and 62 special status animals in the BSAs or vicinity (Appendix C). Of these, 78 special status plants have the potential to occur in the BSAs, of which 25 are State or federally listed. There are 36 special status animal species with some potential to occur in the BSAs, including 19 federally or State-listed species (see Appendix C).

Development facilitated by the project for higher density housing will include redevelopment of existing urban structures and loss of some undeveloped habitat. Construction related disturbance may also occur at staging areas and access corridors. These activities could result in significant impacts to special status species through injury or mortality from construction activity. Additionally, construction in the immediate vicinity of creeks or streams could result in loss or degradation of aquatic habitat (e.g. by erosion, sedimentation, pollution, or tampering by the public).

Impacts to CRPR 1B.1 or 1B.2 plant species would only be considered significant if the loss of individuals in the Plan Area represented a population-level impact that resulted in a loss of, or risk to the entire regional population. Given the size of the BSAs, quality of habitat, and small impact area for the types of projects proposed (i.e., re-development of Rezoning Sites), there is low potential for impacts on a population level. Impacts to individuals of State and federally listed species, or population-level adverse effects to non-listed species would be considered significant but can be reduced through the design of project elements to avoid special status plants and sensitive vegetation communities. Impacts to federally or State-listed species from ground disturbing activity or vegetation removal would be considered significant under CEQA.

Special status animal species are most likely to occur in native vegetation communities and natural habitats in the BSAs, but many species may use more disturbed areas as upland or foraging habitat and may occur transiently in the BSAs. Impacts to special status animal species could occur if individuals were present in the BSA at the time of construction through direct injury or mortality. Disturbance may also occur because of construction noise and human presence. Development of Rezoning Sites may also decrease available foraging habitat for some special status birds. These impacts would be considered significant under CEQA.

Given that most of the BSAs are in medium or low density residential and rural areas, impacts due to rezoning are expected to be low, but development that would require ground disturbance or vegetation removal have potential to adversely affect special status species wherever they occur in the BSAs. Avoidance and minimization measures can be applied for a variety of species to reduce the potential impact to less than significant. For projects that are not expected to result in any ground disturbance or very small disturbance (e.g., installation of signage, utility improvements that do not involve ground disturbance outside of paved areas, etc.) and no vegetation removal, no mitigation is required. For those projects that will result in ground disturbance through clearing/grading or vegetation trimming or removal (e.g., demolition of existing buildings and redevelopment construction, etc.), a project-specific biological assessment (Mitigation Measure BIO-1) would be required. Additional mitigation would then be required based on the results of the

project-specific biological analysis and may include one or more of the measures outlined below (Mitigation Measures BIO-2 through BIO-12) to reduce the impact to less than significant.

### BIO-1 Biological Resources Screening and Assessment

For projects in the BSAs that would require ground disturbance through clearing/grading or vegetation trimming, the project applicant shall engage a qualified biologist (having the appropriate education and experience level) to perform a preliminary Biological Resources Screening and Assessment to determine whether the project has any potential to impact special status biological resources, inclusive of special status plants and animals, sensitive vegetation communities, jurisdictional waters (including creeks, drainages, streams, ponds, vernal pools, riparian areas and other wetlands), critical habitat, wildlife movement area, or biological resources protected under regional (County) ordinances or an existing Habitat Conservation Plan (HCP) or Natural Community Conservation Plan, including the Santa Rosa Plain Conservation Strategy. If it is determined that the project has no potential to impact biological resources, no further action is required. If the project would have the potential to impact biological resources, prior to construction, a qualified biologist shall conduct a project-specific biological analysis to document the existing biological resources within a project footprint plus a minimum buffer of 500 feet around the project footprint, as is feasible, and to determine the potential impacts to those resources. The project-specific biological analysis shall evaluate the potential for impacts to all biological resources including, but not limited to special status species, nesting birds, wildlife movement, sensitive plant communities, critical habitats, and other resources judged to be sensitive by local, State, and/or federal agencies. If the project would have the potential to impact these resources, the following mitigation measures (Mitigation Measures BIO-2 through BIO-12) shall be incorporated, as applicable, to reduce impacts to a less than significant. Pending the results of the project-specific biological analysis, design alterations, further technical studies (e.g., protocol surveys) and consultations with the USFWS, National Marine Fisheries Service (NMFS), CDFW, and/or other local, State, and federal agencies may be required. Note that specific surveys described in the mitigation measures below may be completed as part of the project-specific biological analysis where suitable habitat is present.

### BIO-2 Special Status Plant Species Surveys

If the project-specific Biological Resources Screening and Assessment (Mitigation Measure BIO-1) determines that there is potential for significant impacts to federally or state-listed plants or regional population level impacts to species with a CRPR of 1B or 2B from project development, a qualified biologist shall complete surveys for special status plants prior to any vegetation removal, grubbing, or other construction activity (including staging and mobilization). The surveys shall be floristic in nature and shall be seasonally timed to coincide with the target species identified in the project-specific biological analysis. All plant surveys shall be conducted by a qualified biologist during the blooming season prior to initial ground disturbance. All special status plant species identified on site shall be mapped onto a site-specific aerial photograph or topographic map with the use of Global Positioning System unit. Surveys shall be conducted in accordance with the most current protocols established by the CDFW, USFWS, and the local jurisdictions if said protocols exist. A report of the survey results shall be submitted to the County, and the CDFW and/or USFWS, as appropriate, for review and/or approval.

BIO-3 Special Status Plant Species Avoidance, Minimization, and Mitigation

If federally and/or state-listed or CRPR 1B or 2 species are found during special status plant surveys (pursuant to Mitigation Measure BIO-2), and would be directly impacted, or there would be a

population-level impact to non-listed sensitive species, then the project shall be re-designed to avoid impacting those plant species, where feasible. Rare and listed plant occurrences that are not within the immediate disturbance footprint but are located within 50 feet of disturbance limits shall have bright orange protective fencing installed at least 30 feet beyond their extent, or other distance as approved by a qualified biologist, to protect them from harm.

For projects in BSA's located within the Santa Rosa Plain Area, protocol rare plant surveys shall be conducted, and impacts to suitable rare plant habitat mitigated, in accordance with the 2007 USFWS Santa Rosa Plain Programmatic Biological Opinion, as amended in 2020.

### BIO-4 Restoration and Monitoring

Development and/or restoration activities shall be conducted in accordance with a site-specific Habitat Restoration Plan. If federally or state-listed plants or non-listed special status CRPR 1B and 2 plant populations cannot be avoided, and will be impacted by development, all impacts shall be mitigated by the applicant at a ratio not lower than 1:1 and to be determined by the County (in coordination with CDFW and USFWS as and if applicable) for each species as a component of habitat restoration. A qualified biologist shall prepare and submit a restoration plan to the County for review and approval. (Note: if a federally and/or state-listed plant species will be impacted, the restoration plan shall be submitted to the USFWS and/or CDFW for review, and federal and/or state take authorization may be required by these agencies). The restoration plan shall include, at a minimum, the following components:

- 1. Description of the project/impact site (i.e., location, responsible parties, areas to be impacted by habitat type)
- 2. Goal(s) of the compensatory mitigation project (type[s] and area[s] of habitat to be established, restored, enhanced, and/or preserved; specific functions and values of habitat type[s] to be established, restored, enhanced, and/or preserved)
- 3. Description of the proposed compensatory mitigation site (location and size, ownership status, existing functions, and values)
- 4. Implementation plan for the compensatory mitigation site (rationale for expecting implementation success, responsible parties, schedule, site preparation, planting plan)
- 5. Maintenance activities during the monitoring period, including weed removal as appropriate (activities, responsible parties, schedule)
- 6. Monitoring plan for the compensatory mitigation site, including no less than quarterly monitoring for the first year (performance standards, target functions and values, target acreages to be established, restored, enhanced, and/or preserved, annual monitoring reports)
- 7. Success criteria based on the goals and measurable objectives; said criteria to be, at a minimum, at least 80 percent survival of container plants and 30 percent relative cover by vegetation type or other industry standards as determined by a qualified restoration specialist
- 8. An adaptive management program and remedial measures to address any shortcomings in meeting success criteria
- 9. Notification of completion of compensatory mitigation and agency confirmation
- 10. Contingency measures (initiating procedures, alternative locations for contingency compensatory mitigation, funding mechanism)

# BIO-5 Endangered/Threatened Species Habitat Assessments and Protocol Surveys

Specific habitat assessments and survey protocols are established for several federally- and state-endangered or threatened species. If the results of the project-specific biological analysis determine that suitable habitat may be present for any such species, protocol habitat assessments/surveys shall be completed in accordance with CDFW, NMFS, and/or USFWS protocols prior to issuance of any construction permits. If projects are located within the Santa Rosa Plain Area, surveys shall be conducted for CTS in accordance with the Santa Rosa Plain Conservation Strategy (2005). If through consultation with the CDFW, NMFS, and/or USFWS it is determined that protocol habitat assessments/surveys are not required, the applicant shall complete and document this consultation and submit it to the County prior to issuance of any construction permits. Each protocol has different survey and timing requirements. The applicant shall be responsible for ensuring they understand the protocol requirements and shall hire a qualified biologist to conduct protocol surveys.

### BIO-6 Endangered/Threatened Animal Species Avoidance and Minimization

The following measures shall be applied to aquatic and/or terrestrial animal species as determined by the project-specific Biological Resources Screening and Assessment required under Mitigation Measure BIO-1.

- Ground disturbance shall be limited to the minimum necessary to complete the project. A
  qualified biologist shall flag the project limits of disturbance. Areas of special biological concern
  within or adjacent to the limits of disturbance shall have highly visible orange construction
  fencing installed between said area and the limits of disturbance.
- 2. All projects occurring within/adjacent to aquatic habitats (including riparian habitats and wetlands) shall be completed between April 1 and October 31, if feasible, to avoid impacts to sensitive aquatic species. Any work outside these dates would require project-specific approval from the County and may be subject to regulatory agency approval.
- 3. All projects occurring within or adjacent to sensitive habitats that may support federally and/or state-listed endangered/threatened species shall have a CDFW- and/or USFWS-approved biologist present during all initial ground disturbing/vegetation clearing activities. Once initial ground disturbing/vegetation clearing activities have been completed, said biologist shall conduct daily pre-activity clearance surveys for endangered/threatened species. Alternatively, and upon approval of the CDFW, NMFS, and/or USFWS, said biologist may conduct site inspections at a minimum of once per week to ensure all prescribed avoidance and minimization measures are fully implemented.
- 4. No endangered/threatened species shall be captured and relocated without express permission from the CDFW, NMFS, and/or USFWS.
- 5. If at any time during project construction an endangered/threatened species enters the construction site or otherwise may be impacted by the project, all project activities shall cease. A CDFW/USFWS-approved biologist shall document the occurrence and consult with the CDFW and USFWS, as appropriate, to determine whether it was safe for project activities to resume.
- 6. For all projects occurring in areas where endangered/ threatened species may be present and are at risk of entering the project site during construction, the applicant shall install exclusion fencing along the project boundaries prior to start of construction (including staging and mobilization). The placement of the fence shall be at the discretion of the CDFW/USFWS-

approved biologist. This fence shall consist of solid silt fencing placed at a minimum of three feet above grade and two feet below grade and shall be attached to wooden stakes placed at intervals of not more than five feet. The applicant shall inspect the fence weekly and following rain events and high wind events and shall be maintained in good working condition until all construction activities are complete.

- 7. All vehicle maintenance/fueling/staging shall occur not less than 100 feet from any riparian habitat or water body, including seasonal wetland features. Suitable containment procedures shall be implemented to prevent spills. A minimum of one spill kit shall be available at each work location near riparian habitat or water bodies.
- 8. No equipment shall be permitted to enter wetted portions of any affected drainage channel.
- 9. If project activities could degrade water quality, water quality sampling shall be implemented to identify the pre-project baseline, and to monitor during construction for comparison to the baseline.
- 10. If water is to be diverted around work sites, the applicant shall submit a diversion plan (depending upon the species that may be present) to the CDFW, RWQCB, USFWS, and/or NMFS for their review and approval prior to the start of any construction activities (including staging and mobilization). If pumps are used, all intakes shall be completely screened with wire mesh not larger than five millimeters to prevent animals from entering the pump system.
- 11. At the end of each workday, excavations shall be secured with cover or a ramp provided to prevent wildlife entrapment.
- 12. All trenches, pipes, culverts, or similar structures shall be inspected for animals prior to burying, capping, moving, or filling.
- 13. The CDFW/USFWS-approved biologist shall remove invasive aquatic species such as bullfrogs and crayfish from suitable aquatic habitat whenever observed and shall dispatch them in a humane manner and dispose of properly.
- 14. Considering the potential for projects to impact federally and State-listed species and their habitat, the applicant shall contact the CDFW and USFWS to identify mitigation banks within Sonoma County during project development. If the results of the project-specific biological analysis (Mitigation Measure BIO-1) determine that impacts to federally and state threatened or endangered species habitat are expected, the applicant shall explore species-appropriate mitigation bank(s) servicing the region for purchase of mitigation credits. If projects are located within the Santa Rosa Plain Area, mitigation for impacts to CTS shall be implemented in accordance with the Santa Rosa Plain Conservation Strategy (2005).
- 15. For projects occurring in the Petaluma BSA (PET-1 through PET-4), prior to grading and construction in natural areas of containing suitable upland habitat, a qualified biologist shall conduct a preconstruction survey for CTS. The survey should include a transect survey over the entire project disturbance footprint (including access and staging areas), and mapping of burrows that are potentially suitable for salamander occupancy. If any CTS are detected, no work shall be conducted until the individual leaves the site of their own accord, unless federal and state "take" authorization has been issued for CTS relocation. Typical preconstruction survey procedures, such as burrow scoping and burrow collapse, cannot be conducted without federal and state permits. If any life stage of CTS is found within the survey area, the applicant shall consult with the USFWS and CDFW to determine the appropriate course of action to comply with the FESA and CESA, if permits are not already in place at the time of construction.

### BIO-7 Non-Listed Special Status Animal Species Avoidance and Minimization

The project-specific Biological Resources Screening and Assessment (Mitigation Measure BIO-1) shall identify some or all the below measures that will be required and applicable to the individual project:

- 1. For non-listed special status terrestrial amphibians and reptiles, a qualified biologist shall complete coverboard surveys within 14 days of the start of construction. The coverboards shall be at least four feet by four feet and constructed of untreated plywood placed flat on the ground as determined by the project-specific biological assessment (pursuant Mitigation Measure BIO-1). The qualified biologist shall check the coverboards once per week for each week after placement up until the start of vegetation removal. The biologist shall capture all non-listed special status and common animals found under the coverboards and shall place them in five-gallon buckets for transportation to relocation sites. The qualified biologist shall review all relocation sites and those sites shall consist of suitable habitat. Relocation sites shall be as close to the capture site as possible but far enough away to ensure the animal(s) is not harmed by project construction. Relocation shall occur on the same day as capture. The biologist shall submit CNDDB Field Survey Forms to the CFDW for all special status animal species observed.
- 2. Prior to construction, a qualified biologist shall conduct a survey of existing buildings to determine if bats are present. The survey shall be conducted during the non-breeding season (November through March). The biologist shall have access to all structures and interior attics, as needed. If a colony of bats is found roosting in any structure, further surveys shall be conducted sufficient to determine the species present and the type of roost (day, night, maternity, etc.).
- 3. If bats are roosting in the building during the daytime but are not part of an active maternity colony, then exclusion measures must include one-way valves that allow bats to get out but are designed so that the bats may not re-enter the structure. Maternal bat colonies shall not be disturbed.
- 4. A qualified biologist shall conduct pre-construction clearance surveys within 14 days of the start of construction (including staging and mobilization). The surveys shall cover the entire disturbance footprint plus a minimum 200-foot buffer, if feasible, and shall identify all special status animal species that may occur on-site. All non-listed special status species shall be relocated from the site either through direct capture or through passive exclusion. The biologist shall submit a report of the pre-construction survey to the County for their review and approval prior to the start of construction.
- A qualified biologist shall be present during all initial ground-disturbing activities, including vegetation removal to recover special status animal species unearthed by construction activities.
- 6. Project activities shall be restricted to daylight hours.
- 7. Upon completion of the project, a qualified biologist shall prepare a Final Compliance Report documenting all compliance activities implemented for the project, including the preconstruction survey results. The report shall be submitted to the County within 30 days of completion of the project.
- 8. If special status bat species may be present and impacted by the project, a qualified biologist shall conduct, within 30 days of the start of construction, presence/absence surveys for special status bats in consultation with the CDFW where suitable roosting habitat is present. Surveys

shall be conducted using acoustic detectors and by searching tree cavities, crevices, and other areas where bats may roost. If active roosts are located, exclusion devices such as netting shall be installed to discourage bats from occupying the site. If a qualified biologist determines a roost is used by a large number of bats (large hibernaculum), bat boxes shall be installed near the project site. The number of bat boxes installed will depend on the size of the hibernaculum and shall be determined through consultation with CDFW. If a maternity colony has become established, all construction activities shall be postponed within a 500-foot buffer around the maternity colony until it is determined by a qualified biologist that the young have dispersed. Once it has been determined that the roost is clear of bats, the roost shall be removed immediately.

### BIO-8 Western Pond Turtle Avoidance and Minimization

For projects located in the Penngrove BSA (PEN-1 through PEN-9), a qualified biologist shall conduct pre-construction clearance surveys for western pond turtle within 14 days prior to the start of construction (including staging and mobilization) in areas of suitable habitat. The biologist shall flag limits of disturbance for each construction phase. Areas of special biological concern within or adjacent to the limits of disturbance should have highly visible orange construction fencing installed between said area and the limits of disturbance. If western pond turtles are observed they shall be allowed to leave the site on their own.

### BIO-9 American Badger Avoidance and Minimization

For projects located in the Petaluma BSA (PET-1 through PET-4), a qualified biologist shall conduct surveys of the grassland habitat on-site to identify any American badger burrows/dens. These surveys shall be conducted not more than 14 days prior to the start of construction. Impacts to active badger dens shall be avoided by establishing exclusion zones around all active badger dens, within which construction related activities shall be prohibited until denning activities are complete or the den is abandoned. A qualified biologist shall monitor each den once per week in order to track the status of the den and to determine when a den area has been cleared for construction.

# BIO-10 Pre-construction Surveys for Nesting Birds for Construction Occurring within Nesting Season

For projects that require the removal of trees or vegetation, construction activities shall occur outside of the nesting season wherever feasible (September 16 to January 31), and no mitigation activity is required. If construction activities must occur during the nesting season (February 1 to September 15), a qualified biologist shall conduct surveys for nesting birds covered by the CGFC no more than 14 days prior to vegetation removal. The surveys shall include the entire disturbance area plus a 200-foot buffer around the site as feasible. If active nests are located, all construction work shall be conducted outside a buffer zone from the nest to be determined by the qualified biologist. The buffer shall be a minimum of 50 feet for non-raptor bird species and at least 150 feet for raptor species. Larger buffers may be required depending upon the status of the nest and the construction activities occurring in the vicinity of the nest. The buffer area(s) shall be closed to all construction personnel and equipment until the adults and young are no longer reliant on the nest site. A qualified biologist shall confirm that breeding/nesting is completed and young have fledged the nest prior to removal of the buffer. The biologist shall submit a report of these preconstruction nesting bird surveys to the County to document compliance within 30 days of its completion.

### BIO-11 Worker Environmental Awareness Program

If potential impacts to special status species are identified in the project-specific Biological Resources Screening and Assessment (Mitigation Measure BIO-1), prior to initiation of construction activities (including staging and mobilization), all personnel associated with project construction shall attend Worker Environmental Awareness Program training, conducted by a qualified biologist, to aid workers in recognizing special status resources that may occur in the BSAs for the project. The specifics of this program shall include identification of the sensitive species and habitats, a description of the regulatory status and general ecological characteristics of sensitive resources, and review of the limits of construction and mitigation measures required to reduce impacts to biological resources within the work area. A fact sheet conveying this information shall also be prepared for distribution to all contractors, their employers, and other personnel involved with construction of projects. All employees shall sign a form documenting provided by the trainer indicating they have attended the Worker Environmental Awareness Program and understand the information presented to them. The form shall be submitted to the County to document compliance.

### BIO-12 Invasive Weed Prevention and Management Program

For those projects where activity would occur within or adjacent to sensitive habitats, as determined by the project-specific Biological Resources Screening and Assessment (Mitigation Measure BIO-1), prior to start of construction a qualified biologist shall develop an Invasive Weed Prevention and Management Plan to prevent invasion of native habitat by non-native plant species. A list of target species shall be included, along with measures for early detection and eradication. All disturbed areas shall be hydroseeded with a mix of locally native species upon completion of work in those areas. In areas where construction is ongoing, hydroseeding shall occur where no construction activities have occurred within six weeks since ground disturbing activities ceased. If exotic species invade these areas prior to hydroseeding, weed removal shall occur in consultation with a qualified biologist and in accordance with the restoration plan. Landscape species shall not include noxious, invasive, and/or non-native plant species that are recognized on the Federal Noxious Weed List, California Noxious Weeds List, and/or California Invasive Plant Council Moderate and High Risk Lists.

# 5.2 Sensitive Plant Communities

The project would have a significant effect on biological resources if it would:

b) Have a substantial adverse impact on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Wildlife or US Fish and Wildlife Service.

Sensitive natural communities known to occur within the BSA which may be impacted by development facilitated by rezoning include riparian and vernal pool habitat and riparian corridors protected by the Sonoma County zoning ordinance (Section 26-65). Other natural communities included in the California Sensitive Natural Communities List are also likely to be present in the BSAs but have not been mapped on a broad scale. Additionally, federally designated critical habitat units for Steelhead, coho salmon, and CTS occur in the BSAs and may be affected by the project. Direct impacts to sensitive habitats and critical habitats could occur through direct conversion of habitats to development. Projects facilitated by rezoning with potential to adversely affect sensitive or critical habitat are those projects that would include ground disturbance or vegetation removal

adjacent to critical habitat in the Guerneville, Forestville, Larkfield, Graton, Santa Rosa, Penngrove, Petaluma, and Glen Ellen BSAs. Development facilitated by the project would be required to comply with existing County standards and processes, including Section 26-65 protecting riparian corridors. However, significant indirect impacts could also occur through the establishment of non-native invasive species, but implementation of the mitigation measures below would reduce impacts to less than significant. Therefore, impacts would be less than significant with mitigation incorporated.

### BIO-13 Sensitive Natural Community Avoidance

If sensitive natural communities are identified through the project-specific Biological Resources Screening and Assessment (Mitigation Measure BIO-1), the project shall be designed to avoid those communities to the maximum extent possible and all project elements associated with development shall be situated outside of sensitive habitats. Bright orange protective fencing installed at least 30 feet beyond the extent of the sensitive natural community during construction, or other distance as approved by a qualified biologist, to protect them from harm.

### BIO-14 Restoration for Impacts to Sensitive Natural Communities

Impacts to sensitive natural communities (including riparian areas and waters of the state or waters of the U.S. under the jurisdiction of the CDFW, USFWS or RWQCB) shall be mitigated through the funding of the acquisition and in-perpetuity management of similar habitat. The applicant shall provide funding and management of off-site mitigation lands through purchase of credits from an existing, approved mitigation bank or land purchased by the County and placed into a conservation easement or other covenant restricting development (e.g., deed restriction). Internal mitigation lands (internal to the Rezoning Sites), or in lieu funding sufficient to acquire lands, shall provide habitat at a minimum 1:1 ratio for impacted lands, comparable to habitat to be impacted by individual project activity. The applicant shall submit documentation of mitigation funds to the County.

- Restoration and Monitoring. If sensitive natural communities cannot be avoided and will be
  impacted by future projects, a compensatory mitigation program shall be implemented by the
  applicant in accordance with Mitigation Measure BIO-4 and the measures set forth by the
  regulatory agencies during the permitting process. All temporary impacts to sensitive natural
  communities shall be fully restored to natural condition.
- Sudden Oak Death. The applicant shall inspect all nursery plants used in restoration for sudden
  oak death. Vegetation debris shall be disposed of properly and vehicles and equipment shall be
  free of soil and vegetation debris before entering natural habitats. Pruning tools shall be
  sanitized.

# 5.3 Jurisdictional Waters and Wetlands

The project would have a significant effect on biological resources if it would:

c) Have a substantial adverse effect on state or federally protected wetlands (including, but not limited to, marsh, vernal pool, coastal, etc.) through direct removal, filling, hydrological interruption, or other means.

Wetlands and waters cross many of the BSAs and may be affected by implementation of projects facilitated by rezoning that would occur within the limits of, or adjacent to, jurisdictional waters. Rezoning projects are not expected to directly impact jurisdictional features but may include runoff

from construction sites or unintentional spills. There are eight creeks located within the BSAs, Sonoma Creek, Atascadero Creek, and Mark West Creek, Lichau Creek, Fife Creek, Sonoma Creek, and Calabazas Creek. In addition, vernal pool habitat was mapped at the Penngrove and Santa Rosa BSAs. These wetlands and non-wetland waters may be subject to USACE jurisdiction under the CWA, RWQCB jurisdiction under the CWA and Porter-Cologne, and CDFW jurisdiction under the CFGC. Because of the programmatic nature of rezoning, a precise, project-level analysis of the specific impacts associated with individual projects on potential wetlands is not possible at this time and site-specific analysis is needed to verify if wetlands are present. If projects have the potential to impact wetlands, the projects shall either be designed to avoid impacts to federal and State waters or shall be subject to measure BIO-15. If, based on the results of the jurisdictional delineation, it is determined that project activity would result in either direct or indirect impacts to waters of the state or waters of the U.S., then Mitigation Measure BIO-16 shall be implemented to ensure no net loss of wetlands functions and ensure impacts to waters of the state or waters of the U.S. are less than significant. Impacts are less than significant with mitigation incorporated.

### BIO-15 Jurisdictional Delineation

If potentially jurisdictional wetlands are identified by the project-specific Biological Resources Screening and Assessment (Mitigation Measure BIO-1), a qualified biologist shall complete a jurisdictional delineation. The jurisdictional delineation shall determine the extent of the jurisdiction for CDFW, USACE, and/or RWQCB, and shall be conducted in accordance with the requirement set forth by each agency. The result shall be a preliminary jurisdictional delineation report that shall be submitted to the County, USACE, RWQCB, and CDFW, as appropriate, for review and approval. Jurisdictional areas shall be avoided to the maximum extent possible. If jurisdictional areas are expected to be impacted, then the RWQCB would require a Waste Discharge Requirement permit and/or Section 401 Water Quality Certification (depending upon whether the feature falls under federal jurisdiction). If CDFW asserts its jurisdictional authority, then a Lake or Streambed Alteration Agreement pursuant to Section 1600 et seq. of the CFGC would also be required prior to construction within the areas of CDFW jurisdiction. If the USACE asserts its authority, then a permit pursuant to Section 404 of the CWA would be required. Furthermore, a compensatory mitigation program shall be implemented by the applicant in accordance with Mitigation Measure BIO-4 and the measures set forth by the regulatory agencies during the permitting process. Compensatory mitigations for all permanent impacts to waters of the U.S. and waters of the state shall be completed at a ratio as required in applicable permits. All temporary impacts to waters of the U.S. and waters of the state shall be fully restored to natural condition.

### BIO-16 General Avoidance and Minimization

Projects shall be designed to avoid potential jurisdictional features identified in jurisdictional delineation reports. Projects that may impact jurisdictional features shall provide the County with a report detailing how all identified jurisdictional features will be avoided, including groundwater draw down.

- 1. Any material/spoils generated from project activities shall be located away from jurisdictional areas or special-status habitat and protected from storm water run-off using temporary perimeter sediment barriers such as berms, silt fences, fiber rolls (non- monofilament), covers, sand/gravel bags, and straw bale barriers, as appropriate.
- 2. Materials shall be stored on impervious surfaces or plastic ground covers to prevent any spills or leakage from contaminating the ground and generally at least 50 feet from the top of bank.

3. Any spillage of material will be stopped if it can be done safely. The contaminated area will be cleaned, and any contaminated materials properly disposed. For all spills, the project foreman or designated environmental representative will be notified.

## 5.4 Wildlife Movement

The project would have a significant effect on biological resources if it would:

d) Interfere substantially with the movement of any resident or migratory fish or wildlife species or with established resident or migratory wildlife corridors or impede the use of wildlife nursery sites.

The Guerneville BSA is mapped in an Essential Connectivity Area connecting two natural land blocks; however, the project and ensuing development projects would occur in the community of Guerneville in a largely developed area that does not function as a corridor for movement. The remaining BSAs are also located in rural/residential areas with varying degrees of existing development. Additionally, redevelopment under rezoning would not affect the function of creeks and riparian areas in the BSAs as local corridors for wildlife movement; therefore, impacts would be less than significant.

### 5.5 Local Policies and Ordinances

The project would have a significant effect on biological resources if it would:

e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance

The Proposed Rezone Sites fall under the jurisdiction of Sonoma County, which provides protection for biological resources through the implementation of its General Plan and Zoning Code.

The Sonoma County General Plan 2020 (Sonoma County 2008) includes policies to guide decisions on future growth, development, and conservation of resources through 2020. This includes the "Open Space and Resource Conservation Elements" which aims to preserve the natural and scenic resources.

The Sonoma County Zoning Code Chapter 26D, Heritage or Landmark Trees, and Sonoma County Zoning Code Article 88, Section 26-88-010(m), Tree Protection Ordinance, provides for the protection of heritage and landmark trees. Article 67, Valley Oak Habitat Combining District, of the Sonoma County Zoning Code provides protection for oak woodland habitats, and Article 65, Riparian Corridor Combining Zone, of the Sonoma County Zoning Code provides protection for riparian corridors.

Trees to be removed have not yet been identified because individual projects have not been developed yet; however, development of rezone sites would potentially require some tree removal. Additionally, some loss of habitat and biological resources is expected. Development of rezoned sites would be required to comply with these goals policies and measures, including via the application for tree removal permits and compliance with associated requirement (e.g., tree replacement) where applicable. Pursuant to compliance with these regulations, impacts would be less than significant.

# 5.6 Adopted or Approved Plans

The project would have a significant effect on biological resources if it would:

f) Conflict with the provisions of an adopted Habitat Conservation Plan, Natural Conservation Community Plan, or other approved local, regional, or state habitat conservation plan.

The Larkfield BSA, Santa Rosa BSA, and portions of the Penngrove BSA are within the Santa Rosa Plain Conservation Strategy Area (2005). The Larkfield BSA is located outside the Windsor Urban growth boundary, to the south. The Santa Rosa BSA is located at the southern end of the Santa Rosa urban growth boundary, with some edges outside the boundary. The western half of the Penngrove BSA is within the Conservation Strategy Area outside of the Cotati urban growth boundary, to the south. The Conservation Strategy urban growth boundaries were designed to limit development in natural habitats and focus future growth within previously developed areas. The Conservation Strategy does allow for some development outside of the urban growth boundaries as long as it doesn't change land use appreciably, and impacts are adequately mitigated. Because the parcels proposed for rezoning are small and the majority of the BSAs will remain under the current agricultural, residential, commercial, and industrial zoning, rezoning is not likely to change land use appreciably and could be sufficiently mitigated in accordance with the Sonoma County General Plan. The Santa Rosa Plain Conservation Strategy has not been finalized or implemented as of the writing of this report; therefore, impacts from the potential project would be less than significant with mitigation.

The USFWS has issued a programmatic Biological Opinion (BO) to the USACE for projects that may affect listed species on the Santa Rosa Plain (1998) and updated it in 2007 and 2020. In 2016 USFWS issued the Santa Rosa Plain Recovery Plan to provide a framework for the recovery of CTS, Burke's goldfields, Sonoma sunshine, and Sebastopol meadowfoam (USFWS 2016). If projects resulting from rezoning would affect listed species in the Santa Rosa Plain there is potential for conflict with these plans and conservation strategies, which would be considered significant under CEQA. With implementation of mitigation measure BIO-17, impacts would be less than significant with mitigation.

### BIO-17 Consistency with the Santa Rosa Plain Conservation Strategy

For sites SAN-1 through SAN-10, the Biological Resources Screening and Assessment (Mitigation Measure BIO-1) shall assess projects for impacts to listed species included in the Santa Rosa Plain Conservation Strategy. Impacts to these species should be evaluated and mitigated per the mitigation measures included in Chapter 5 of the Conservation Strategy.

# 6 Limitations, Assumptions, and Use Reliance

This Biological Resources Assessment has been performed in accordance with professionally accepted biological investigation practices conducted at this time and in this geographic area. The biological investigation is limited by the scope of work performed. The findings and opinions conveyed in this report are based on findings derived from review of CNDDB RareFind5 and specified historical and literature sources. Standard data sources relied upon during the completion of this report, such as the CNDDB, may vary as to accuracy and completeness. In particular, the CNDDB is compiled from research and observations reported to CDFW that may or may not have been the result of comprehensive or site-specific field surveys. Although Rincon believes the data sources are reasonably reliable, Rincon cannot and does not guarantee the authenticity or reliability of the data sources it has used. Additionally, pursuant to our contract, the data sources reviewed included only those that are practically reviewable without the need for extraordinary research and analysis.

# 7 References

- Baldwin, B.G. (Ed.), D.H. Goldman (Ed.), D. J. Keil (Ed.), R. Patterson (Ed.), T. J. Rosatti (Ed.), D. H. Wilken (Ed.). 2012. The Jepson Manual: Vascular Plants of California, Second Edition, Thoroughly Revised and Expanded. University of California Press. Berkeley, California. [online] http://ucjeps.berkeley.edu/eflora/ Accessed April 2020 and October 2022.
- Calflora. 2022. Information on wild California plants for conservation, education, and appreciation. Berkeley, CA. [online]: www.calflora.org. Accessed April 2020 and October 2022.

California Department of Fish and Wildlife (CDFW). 2022. Special Animals List. Biogeographic Data

- Branch, California Natural Diversity Database. August 2019 and October 2022.

  \_\_\_\_\_\_. 2022a. California Natural Diversity Database, Rarefind V. [online]
  https://wildlife.ca.gov/data/cnddb/maps-and-data Accessed March 2020 and October 2022

  \_\_\_\_\_\_. 2022b. Biogeographic Information and Observation System. [database]
  www.wildlife.ca.gov/data/BIOS Accessed April 2020 and October 2022.
- California Natural Diversity Database. January 2020 and October 2022.
- California Native Plant Society (CNPS). 2022. Inventory of Rare and Endangered Plants. V.7-08c-Interim 8-22-02. [online] www.rareplants.cnps.org Accessed March 2020 and October 2022.

. 2022c. Special Vascular Plants, Bryophytes, and Lichens List. Biogeographic Data Branch,

- Google Earth Pro (Google Earth). 2022. Version 7.3.2.5776 (64-bit). [online] https://www.google.com/earth/ Accessed April 2020 and October 2022.
- Holland, Robert F. 1986. Preliminary Descriptions of the Terrestrial Natural Communities of California. California Department of Fish and Wildlife, Nongame Heritage Program. 156 pgs.
- Mayer, K. E. and W. F. Laudenslayer. 1988. A Guide to Wildlife Habitats of California. State of California, Resources Agency, Department of Fish and Game Sacramento, CA. 166 pp.
- National Oceanic and Atmospheric Administration. 2022. Western U.S. Climate Historical Summaries, Weather Station: Sonoma, California (048351). [online] https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?ca8351. Accessed April 2020.
- \_\_\_\_\_. Climate Sonoma California and Weather averages Sonoma (usclimatedata.com) Accessed October 2022.
- National Marine Fisheries Service (NMFS). 2006. Federal Register. 50 CFR Parts 223 and 224.

  Endangered and Threatened Species: Final Listing Determinations for 10 Distinct Population Segments of West Coast Steelhead; Final Rule.
- \_\_\_\_\_\_. 2009. Federal Register. 50 CFR Part 226. Endangered and Threatened Wildlife and Plants: Final Rulemaking to Designate Critical Habitat for the Threatened Southern Distinct Population Segment of North American Green Sturgeon; Final Rule.
- Petaluma Zoning Code, Tree Preservation, Chapter 17. [online] https://petaluma.municipal.codes/ZoningOrds/17. Accessed March 2020.

- Santa Rosa City Code, Trees, Chapter 71.24. 1990. 17-24.050 Permit category II—Tree alteration, removal or relocation on property proposed for development—Requirements (Ord. 2858 § 1, 1990). [online] https://qcode.us/codes/santarosa/?view=desktop&topic=17-17\_24-iv-17\_24\_050 Accessed April 2020
  Sawyer, J. O., T. Keeler-Wolf, and J.M. Evens. 2009. A Manual of California Vegetation, Second Edition. California Native Plant Society, Sacramento, California. [online] http://vegetation.cnps.org/ Accessed April 2020
  Sonoma, County of. 2008. General Plan 2020. [online] https://sonomacounty.ca.gov/PRMD/Long-
- Range-Plans/General-Plan/. Accessed March 2020.
  \_\_\_\_\_\_. 2018. Sonoma County Water Agency, Sonoma County Agricultural Preservation and Open Space District, Sonoma County Vegetation Mapping and LiDAR Program.
- United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS). 2019a. Web Soil Survey. Soil Survey Area: Sonoma County, California. Soil Survey Data: Version 8, March 9, 2019. [online]
  - https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm. Accessed March 2020.
- \_\_\_\_\_\_. 2019b. Lists of Hydric Soils. National Cooperative Soil Survey, U.S. Department of Agriculture. [online] https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/use/hydric/. Accessed April 2020
- United States Geologic Survey (USGS). 2022. National Hydrography Dataset (NHD) Accessed through the National Map. https://viewer.nationalmap.gov/advanced-viewer/ Accessed March 2020 and October 2022.
- United States Fish and Wildlife Service (USFWS). 1973. The Endangered Species Act of 1973, as amended (16 U.S.C 1531 et seq.).
- \_\_\_\_\_\_. 2000. Guidelines for Conducting and Reporting Botanical Inventories for Federally Listed, Proposed, and Candidate Plants. January 2000.
- \_\_\_\_\_. 2010. Federal Register. 50 CFR Part 17. Endangered and Threatened Wildlife and Plants: Revised Designation of Critical Habitat for California Red-Legged Frog; Final Rule.
- \_\_\_\_\_. 2011a. Federal Register. 50 CFR Part 17. Endangered and Threatened Wildlife and Plants; Final Designation of Critical Habitat for the Marbled Murrelet; Final Rule.
- \_\_\_\_\_. 2011b. Federal Register. 50 CFR Part 17. Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Sonoma County Distinct Population Segment of the California Tiger Salamander.
- \_\_\_\_\_. 2012. Federal Register. 50 CFR Part 17. Endangered and Threatened Wildlife and Plants; Designation of Revised Critical Habitat for the Northern Spotted Owl; Final Rule.
  - \_\_\_\_\_. 2016. Recovery Plan for the Santa Rosa Plain: Blennosperma bakeri (Sonoma sunshine); Lasthenia burkei (Burke's goldfields); Limnanthes vinculans (Sebastopol meadowfoam); California Tiger Salamander Sonoma County Distinct Population Segment (Ambystoma californiense). U.S. Fish and Wildlife Service, Pacific Southwest Region, Sacramento, California. vi + 128 pp.
- \_\_\_\_\_\_. 2020a. Information for Planning and Consultation online project planning tool. [online] https://ecos.fws.gov/ipac/ Accessed March 2020

| <br>. 2022a. Critical Habitat Portal. Last Updated: October 4, 2022 [online] https://ecos.fws.gov/ecp/report/table/critical-habitat.html Accessed April 2020 and October 2022. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>2022b. National Wetlands Inventory. https://www.fws.gov/wetlands/Data/Mapper.html Accessed March 2020 and October 2022.                                                    |

# 8 List of Preparers

# Rincon Consultants, Inc.

# Primary Author

Samantha Kehr, Senior Biologist

### Technical Review

- Craig Lawrence, Senior Biologist
- Sherri Miller, Principal Biologist

## Graphics

Jon Montgomery, GIS Specialist

# Appendix A

Figures

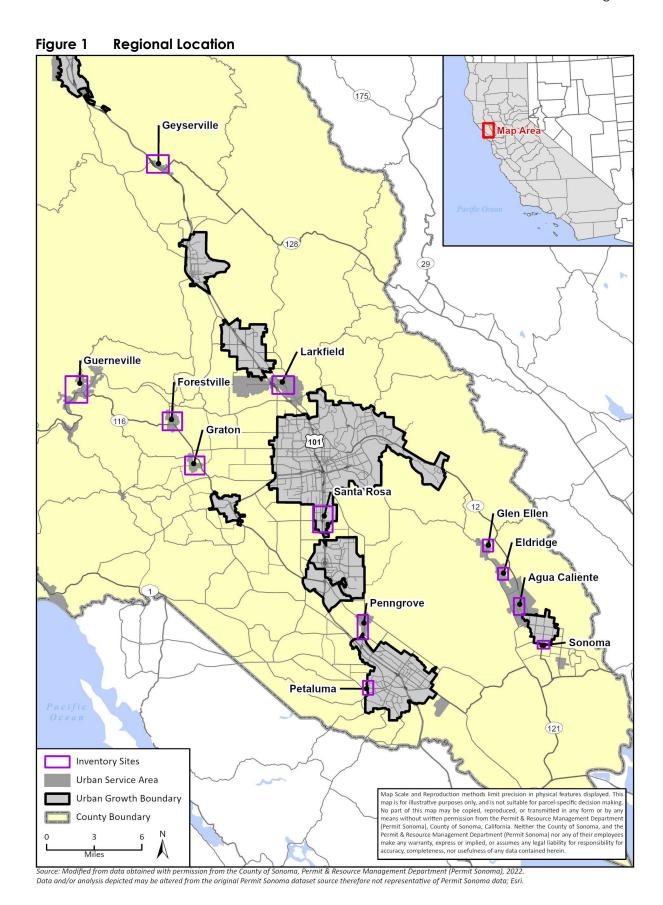
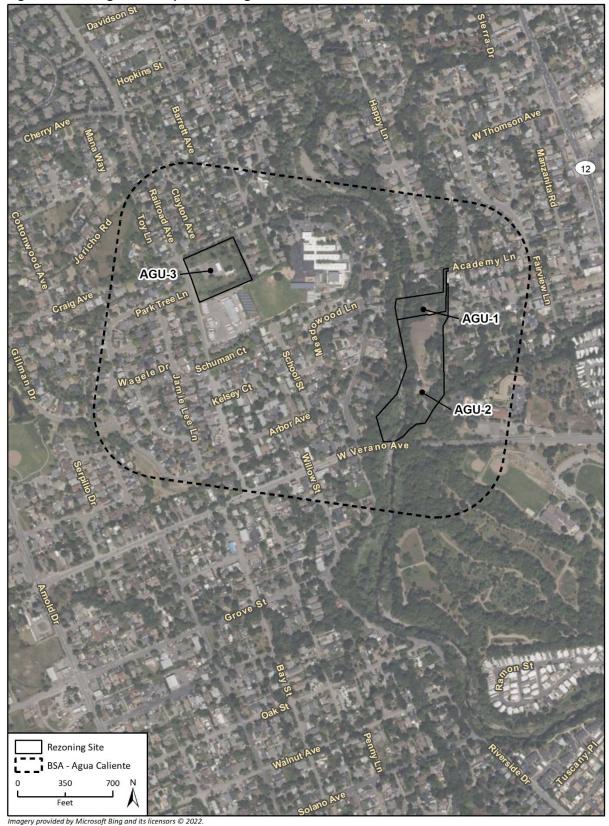




Figure 2a Biological Study Area – Agua Caliente



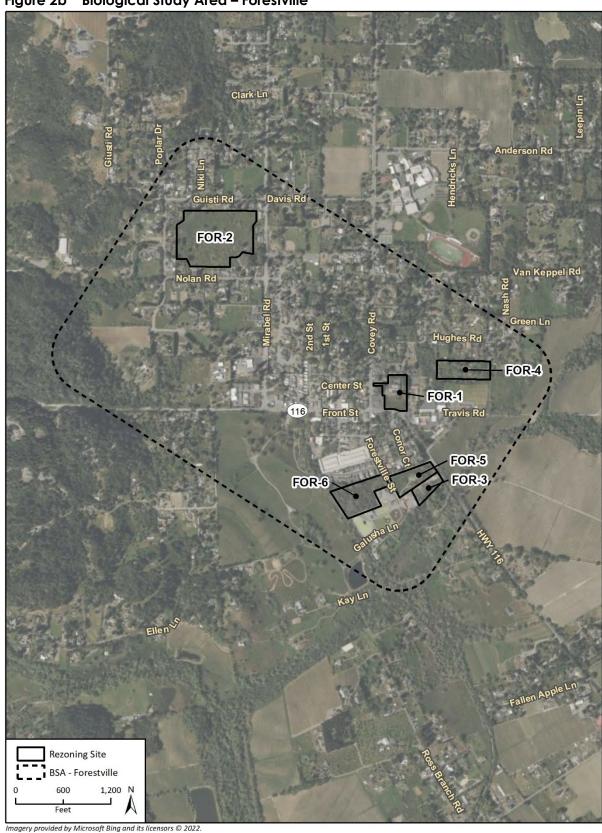



Figure 2b Biological Study Area – Forestville

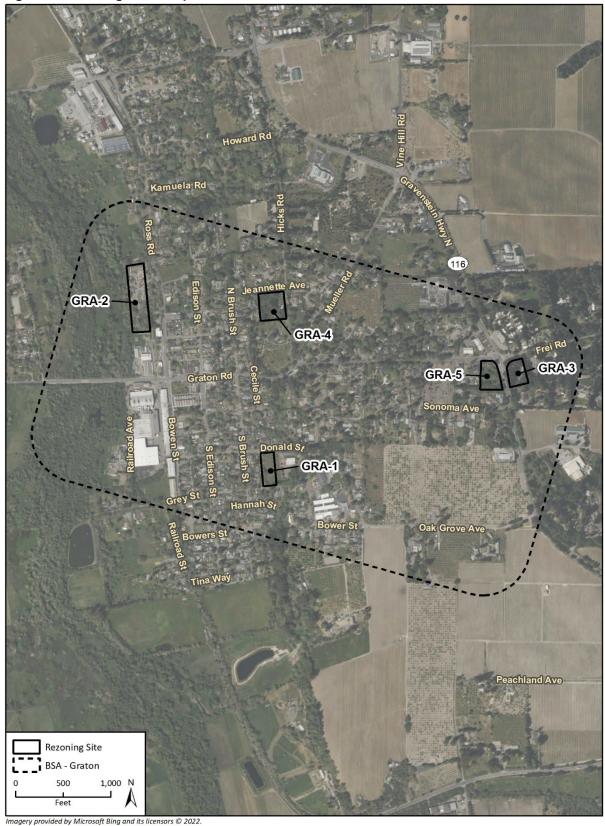

Figure 2c Biological Study Area – Geyserville





Figure 2d Biological Study Area – Glen Ellen

Figure 2e Biological Study Area – Graton



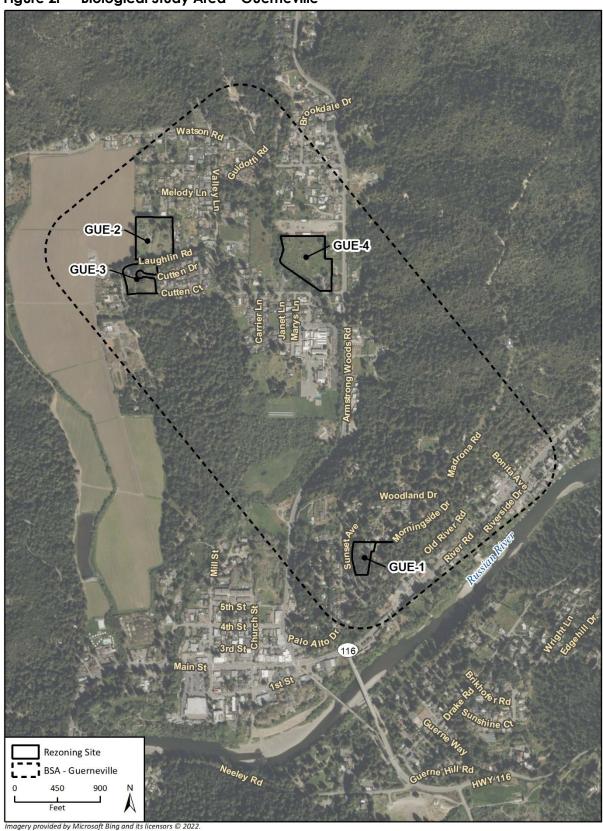



Figure 2f Biological Study Area – Guerneville

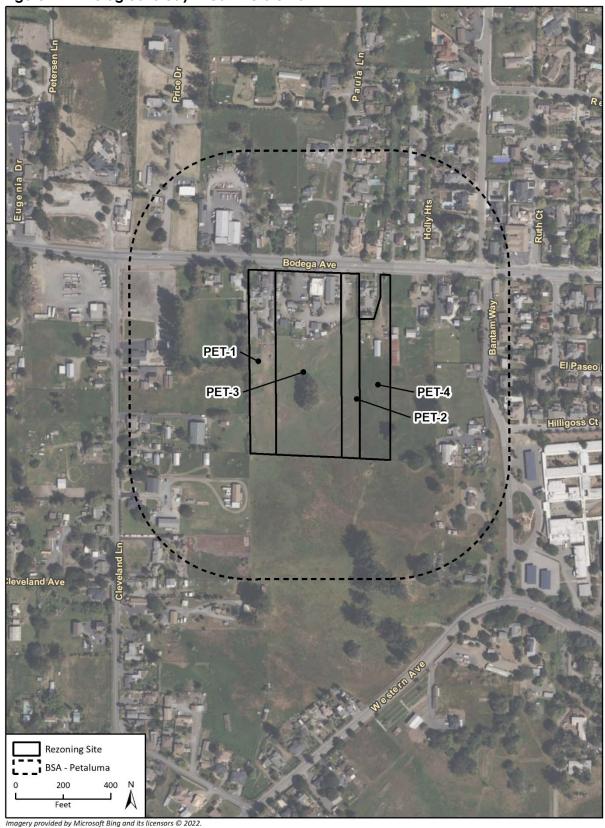

Figure 2g Biological Study Area – Larkfield





Figure 2h Biological Study Area – Penngrove

Figure 2i Biological Study Area – Petaluma



A-10

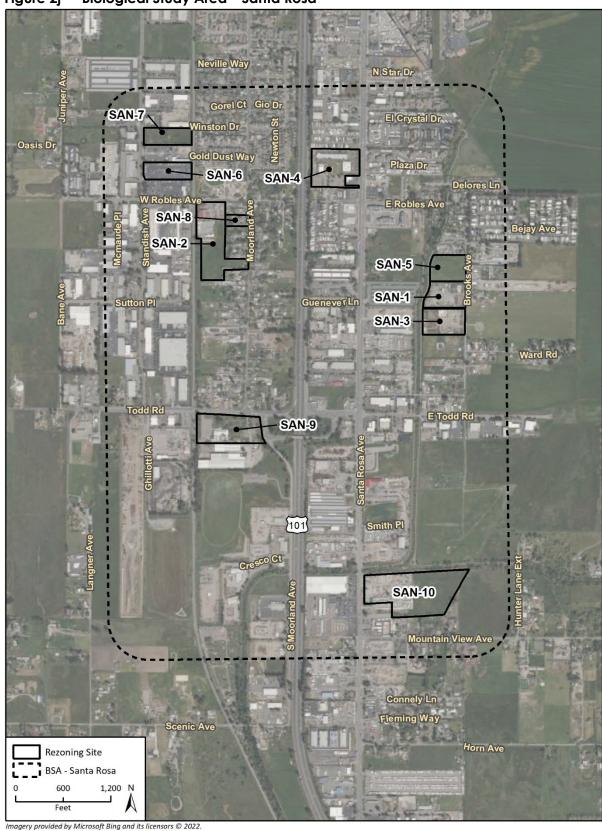
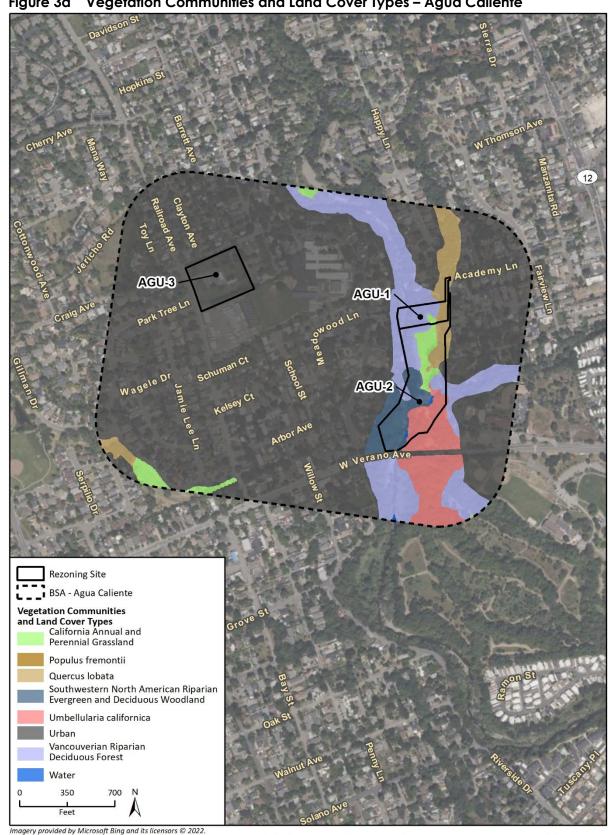
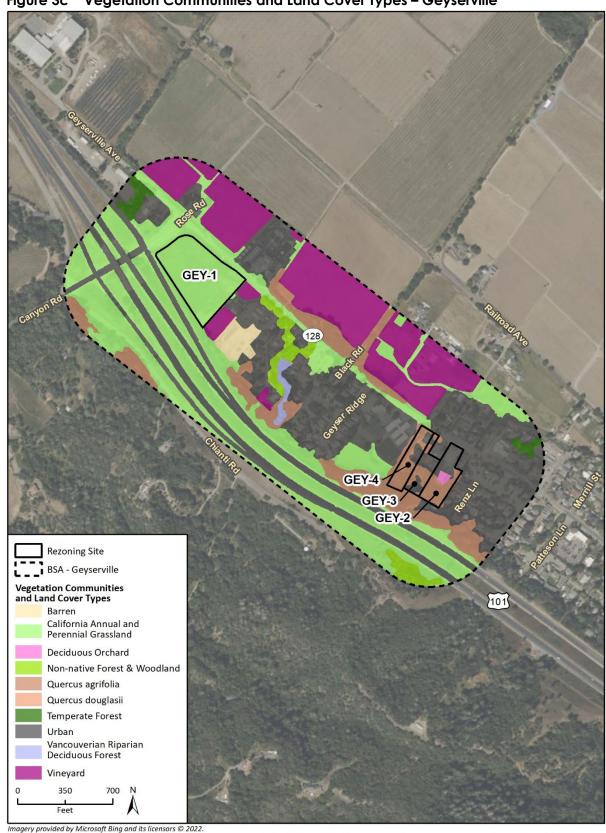




Figure 2j Biological Study Area – Santa Rosa

Figure 2k Biological Study Area – Sonoma






Vegetation Communities and Land Cover Types – Agua Caliente Figure 3a

Additional data provided by Sonoma County Water Agency, Sonoma County Agricultural Preservation and Open Space District, Sonoma County Vegetation Mapping and LiDAR Program.

FOR-2 Van Keppel Rd Hughes Rd Center St FOR-1 Front St Travis Rd FOR-5 FOR-3 FOR-6 Rezoning Site BSA - Forestville **Vegetation Communities and Land Cover Types** California Annual and Quercus garryana (tree) Umbellularia californica Perennial Grassland Urban Quercus lobata Deciduous Orchard Rubus armeniacus - Sesbania Vancouverian Riparian punicea - Ficus carica Deciduous Forest Non-native Forest & Woodland Sequoia sempervirens Vineyard Non-native Shrub Southwestern North American Riparian Water Treatment Pond Populus fremontii Evergreen and Deciduous Woodland Western North American Southwestern North American Riparian/Wash Scrub Pseudotsuga menziesii Freshwater Aquatic Vegetation Quercus (agrifolia, douglasii, Western North American garryana, kelloggii, lobata, wislizeni) Freshwater Marsh Temperate Forest 1,200 N 600

Figure 3b Vegetation Communities and Land Cover Types – Forestville



Additional data provided by Sonoma County Water Agency, Sonoma County Agricultural Preservation and Open Space District, Sonoma County Vegetation Mapping and LiDAR Program.

Figure 3c Vegetation Communities and Land Cover Types – Geyserville

Carquinez Ave O Donnell Ln GLE-2 GLE-1 Arnold Dr Horn Ave ondon Ranch Rd Rezoning Site BSA - Glen Ellen Vegetation Communities and Land Cover Types California Annual and Perennial Grassland Non-native Forest & Woodland Quercus (agrifolia, douglasii, garryana, kelloggii, lobata, wislizeni) Quercus lobata Temperate Forest Vancouverian Riparian Deciduous Forest Water 150 300

Figure 3d Vegetation Communities and Land Cover Types – Glen Ellen

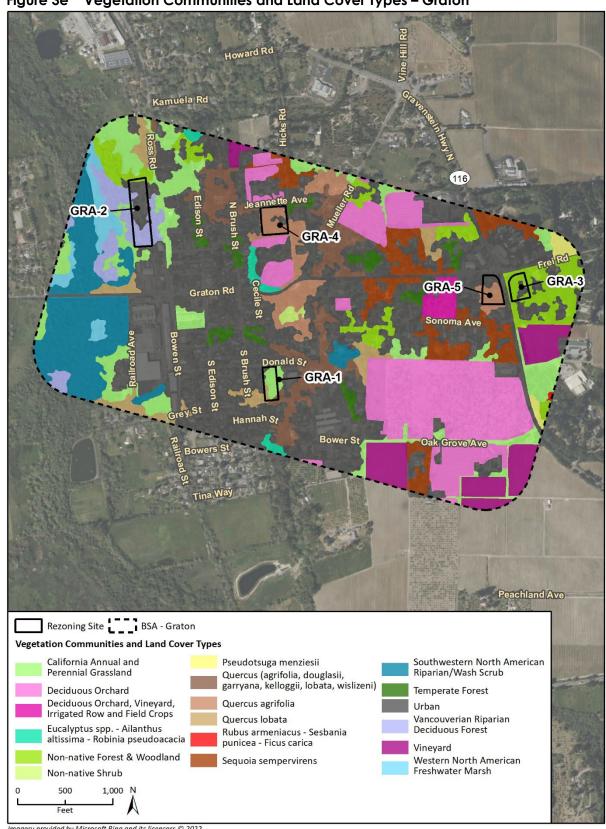



Figure 3e Vegetation Communities and Land Cover Types – Graton

Imagery provided by Microsoft Bing and its licensors © 2022.

Additional data provided by Sonoma County Water Agency, Sonoma County Agricultural Preservation and Open Space District, Sonoma County Vegetation Mapping and LiDAR Program.

GUE-2 GUE-4 GUE-3 Rezoning Site BSA - Guerneville **Vegetation Communities and Land Cover Types** Arbutus menziesii Populus fremontii Southwestern North American California Annual and Perennial Grassland Riparian/Wash Scrub Pseudotsuga menziesii Temperate Forest Quercus agrifolia **Deciduous Orchard** Rubus armeniacus - Sesbania Urban punicea - Ficus carica Vancouverian Riparian Irrigated Hayfield **Deciduous Forest** Non-native Forest & Woodland Sequoia sempervirens Southwestern North American Riparian Vineyard Non-native Shrub Evergreen and Deciduous Woodland Water Notholithocarpus densiflorus Western North American 900 450 Freshwater Marsh

Figure 3f Vegetation Communities and Land Cover Types – Guerneville

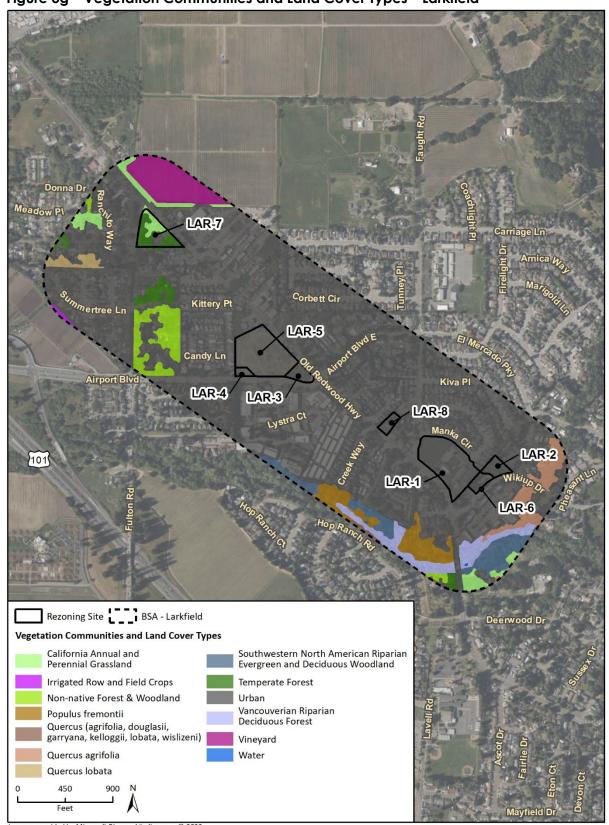


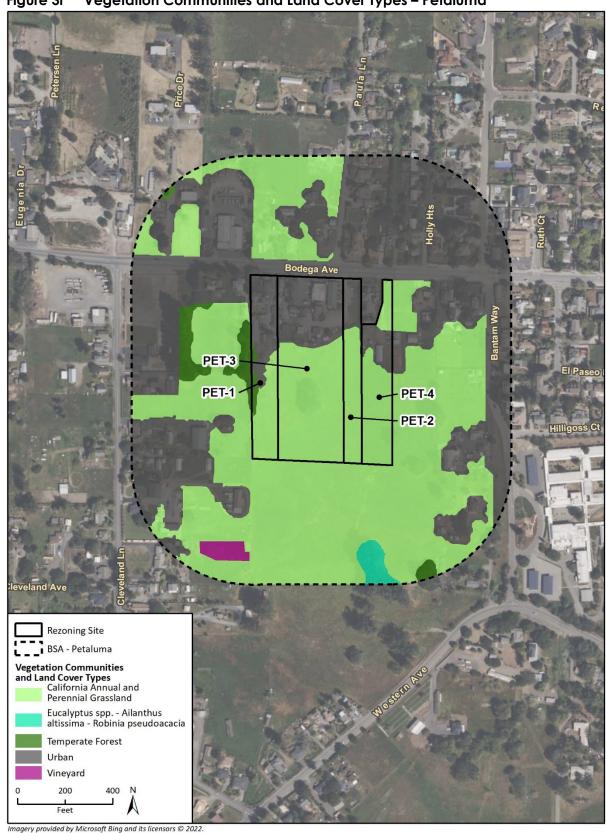
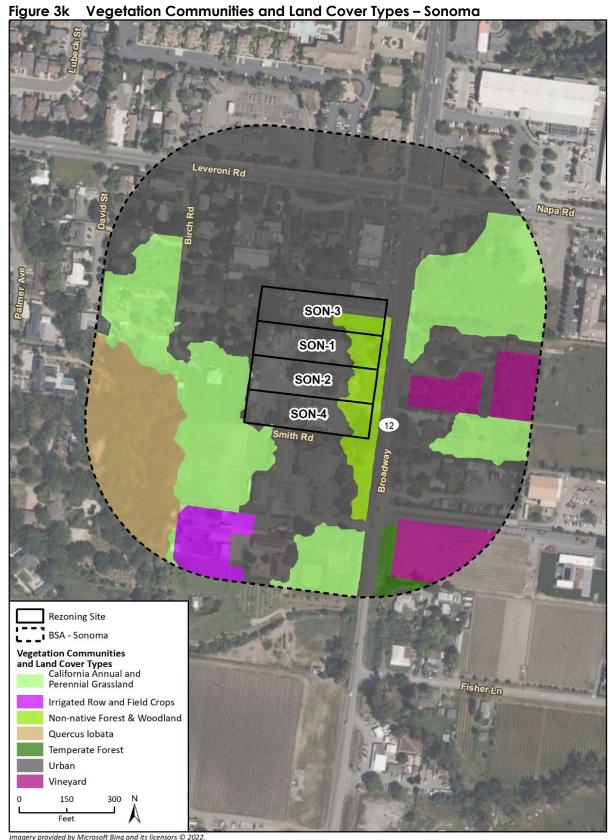

Figure 3g Vegetation Communities and Land Cover Types – Larkfield

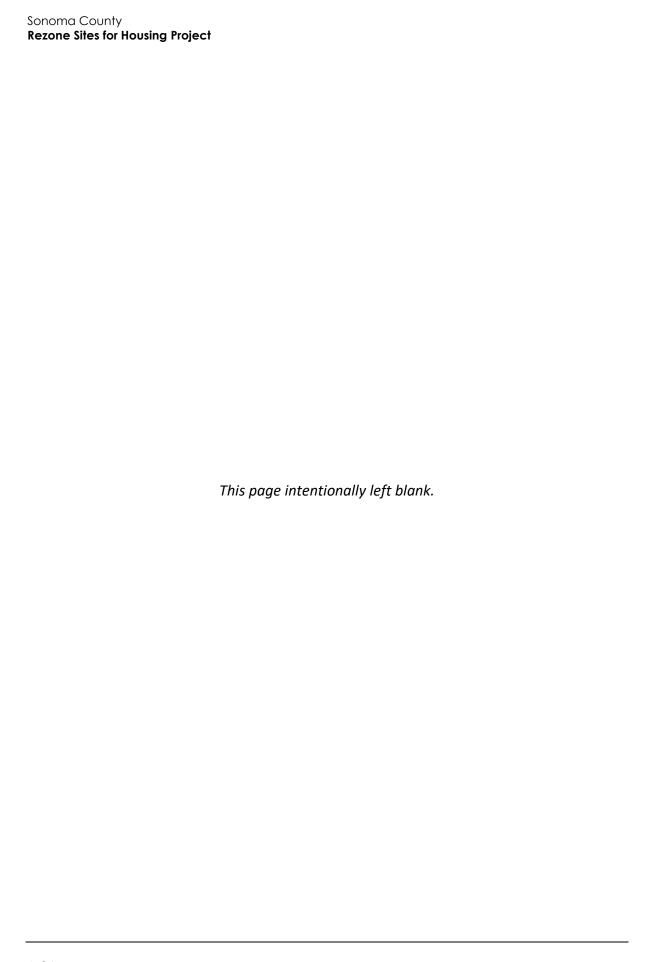
Imagery provided by Microsoft Bing and its licensors © 2022.

Additional data provided by Sonoma County Water Agency, Sonoma County Agricultural Preservation and Open Space District, Sonoma County Vegetation Mapping and LiDAR Program

PEN-6 Adobe Rd Penngrove Ave PEN-5 **Woodward Ave** PEN-3 PEN-1 PEN-8 Phillips Dr PEN-9 Rezoning Site BSA - Penngrove Vegetation Communities and Land Cover Types California Annual and Perennial Grassland Eucalyptus spp. - Ailanthus altissima - Robinia pseudoacacia PEN-7 Non-native Forest & Woodland Quercus agrifolia Rubus armeniacus - Sesbania punicea - Ficus carica Southwestern North American Riparian PEN-2 Evergreen and Deciduous Woodland Temperate Forest PEN-4 Urban Vancouverian Riparian Deciduous Forest Vineyard Water Western North America Vernal Pool Western North American Freshwater Marsh 800 400

Figure 3h Vegetation Communities and Land Cover Types – Penngrove



Figure 3i Vegetation Communities and Land Cover Types – Petaluma

ninger) promises by Microsoft oning unit County Water Agency, Sonoma County Agricultural Preservation and Open Space District, Sonoma County Vegetation Mapping and LiDAR Program.

Neville Way N Star Dr Gorel Ct Gio Dr El Crystal Dr Winston Dr SAN-7 Oasis Dr Gold Dust Way Plaza Dr SAN-6 SAN-4 **Delores Ln** E Robles Ave SAN-8 SAN-2 SAN-5 SAN-1 Guenever Ln Sutton PI SAN-3 Todd Rd SAN-9 101 Smith PI Cresco Ct SAN-10 Rezoning Site BSA - Santa Rosa **Vegetation Communities and Land Cover Types** Barren Irrigated Row and Field Crops Urban Western North America California Annual and Non-native Forest & Woodland Perennial Grassland Vernal Pool Quercus agrifolia Eucalyptus spp. - Ailanthus altissima - Robinia pseudoacacia Western North American Southwestern North American Riparian/Wash Scrub Freshwater Marsh Irrigated Hayfield Temperate Forest 1,200 N 600

Figure 3j Vegetation Communities and Land Cover Types – Santa Rosa





# Appendix B

Regulatory Setting

# **Regulatory Setting**

Special-status habitats are vegetation types, associations, or sub-associations that support concentrations of special-status plant or animal species, are of relatively limited distribution, or are of particular value to wildlife.

Listed species are those taxa that are formally listed as endangered or threatened by the federal government (e.g. U.S. Fish and Wildlife Service [USFWS]), pursuant to the Federal Endangered Species Act (FESA) or as endangered, threatened, or rare (for plants only) by the State of California (i.e. California Fish and Game Commission), pursuant to the California Endangered Species Act or the California Native Plant Protection Act. Some species are considered rare (but not formally listed) by resource agencies, organizations with biological interests/expertise (e.g. Audubon Society, CNPS, The Wildlife Society), and the scientific community.

The following is a brief summary of the regulatory context under which biological resources are managed at the federal, state, and local levels. A number of federal and State statutes provide a regulatory structure that guides the protection of biological resources. Agencies with the responsibility for protection of biological resources within the project sites include:

- 1. U.S. Army Corps of Engineers (wetlands and other waters of the United States);
- 2. North Coast Regional Water Quality Control Board (waters of the State);
- 3. U.S. Fish and Wildlife Service (federally listed species and migratory birds);
- 4. California Department Fish and Wildlife (riparian areas, streambeds, and lakes; State-listed species; Species of Special Concern; nesting birds);
- 5. The County of Sonoma

#### **Federal**

### U.S. Army Corps of Engineers

Under Section 404 of the Clean Water Act, the U.S. Army Corps of Engineers (USACE) has authority to regulate activities that could discharge fill of material into wetlands or other "waters of the United States." Perennial and intermittent creeks are considered waters of the United States if they are hydrologically connected to other jurisdictional waters (typically a navigable water). The USACE also implements the federal policy embodied in Executive Order 11990, which is intended to result in no net loss of wetland value or acres. In achieving the goals of the Clean Water Act, the USACE seeks to avoid adverse impacts and offset unavoidable adverse impacts on existing aquatic resources. Any fill of wetlands that are hydrologically connected to jurisdictional waters would require a permit from the USACE prior to the start of work. Typically, when a project involves impacts to waters of the United States, the goal of no net loss of wetland acres or values is met through avoidance and minimization to the extent practicable, followed by compensatory mitigation involving creation or enhancement of similar habitats.

### Regional Water Quality Control Board

The State Water Resources Control Board (SWRCB) and the local Regional Water Quality Control Board (RWQCB) have jurisdiction over "waters of the State," pursuant to the Porter-Cologne Water Quality Control Act, which are defined as any surface water or groundwater, including saline waters,

#### **Rezone Sites for Housing Project**

within the boundaries of the State. The SWRCB has issued general Waste Discharge Requirements (WDRs) regarding discharges to "isolated" waters of the State (Water Quality Order No. 2004-0004-DWQ, Statewide General Waste Discharge Requirements for Dredged or Fill Discharges to Waters Deemed by the U.S. Army Corps of Engineers to be Outside of Federal Jurisdiction). The RWQCB administers actions under this general order for isolated waters not subject to federal jurisdiction, and is also responsible for the issuance of water quality certifications pursuant to Section 401 of the Clean Water Act for waters subject to federal jurisdiction.

# United States Fish and Wildlife Service

The USFWS implements the Migratory Bird Treaty Act (16 United States Code [USC] Section 703-711) and the Bald and Golden Eagle Protection Act (16 USC Section 668). The USFWS and National Marine Fisheries Service (NMFS) share responsibility for implementing the Federal Endangered Species Act (FESA) (16 USC § 153 et seq.). Generally, the USFWS implements the FESA for terrestrial and freshwater species, while the NMFS implements the FESA for marine and anadromous species. Projects that would result in "take" of any federally threatened or endangered species are required to obtain permits from the USFWS or NMFS through either Section 7 (interagency consultation with a federal nexus) or Section 10 (Habitat Conservation Plan) of the FESA, depending on the involvement by the federal government in permitting and/or funding of the project. The permitting process is used to determine if a project would jeopardize the continued existence of a listed species and what measures would be required to avoid jeopardizing the species. "Take" under federal definition means to harass, harm (which includes habitat modification), pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct. Proposed or candidate species do not have the full protection of the FESA; however, the USFWS and NMFS advise project applicants that they could be elevated to listed status at any time.

# State

# California Department of Fish and Wildlife

The California Department of Fish and Wildlife (CDFW) derives its authority from the Fish and Game Code of California. The California Endangered Species Act (CESA) (Fish and Game Code Section 2050 et. seq.) prohibits take of State-listed threatened or endangered. Take under CESA is restricted to direct mortality of a listed species and the law does not prohibit indirect harm by way of habitat modification. Where incidental take would occur during construction or other lawful activities, CESA allows the CDFW to issue an Incidental Take Permit upon finding, among other requirements, that impacts to the species have been minimized and fully mitigated.

The CDFW also enforces Sections 3511, 4700, 5050, and 5515 of the Fish and Game Code, which prohibits take of species designated as Fully Protected. The CDFW is not allowed to issue an Incidental Take Permit for Fully Protected species; therefore, impacts to these species must be avoided.

CGFC sections 3503, 3503.5, and 3513 describe unlawful take, possession, or destruction of native birds, nests, and eggs. Section 3503.5 of the Code protects all birds-of-prey and their eggs and nests against take, possession, or destruction of nests or eggs. Section 3513 makes it a State-level office to take any bird in violation of the federal Migratory Bird Treaty Act. CDFW administers these requirements.

Species of Special Concern (SSC) is a category used by the CDFW for those species considered to be indicators of regional habitat changes or are considered to be potential future protected species.

Species of Special Concern do not have any special legal status except that which may be afforded by the Fish and Game Code as noted above. The SSC category is intended by the CDFW for use as a management tool to include these species in special consideration when decisions are made concerning the development of natural lands. The CDFW also has authority to administer the Native Plant Protection Act (NPPA) (Fish and Game Code Section 1900 et seq.). The NPPA requires the CDFW to establish criteria for determining if a species, subspecies, or variety of native plant is endangered or rare. Effective in 2015, CDFW promulgated regulations (14 CCR 786.9) under the authority of the NPPA, establishing that the CESA's permitting procedures would be applied to plants listed under the NPPA as "Rare." With this change, there is little practical difference for the regulated public between plants listed under CESA and those listed under the NPPA.

Perennial, intermittent, and ephemeral streams and associated riparian vegetation, when present, also fall under the jurisdiction of the CDFW. Section 1600 *et seq*. of the Fish and Game Code (Lake and Streambed Alteration Agreements) gives the CDFW regulatory authority over activities that divert, obstruct, or alter the channel, bed, or bank of any river, stream or lake.

### Local

# Santa Rosa Plain Conservation Strategy Area

The Santa Rosa Plain Conservation Strategy Area is a long-term agreement between USFWS, CDFW, and other federal and State agencies, and the County of Sonoma, the City of Santa Rosa and other local city governments. The USFWS issued a Programmatic Biological Opinion (BO) for the Conservation Strategy in 1998, which was superseded in 2007. The goal of the Conservation Strategy is to aid in the conservation of listed species and vernal pools by providing local governments and developers a way to obtain authorization for incidental take of federally listed species for development. Species covered under the BO include; California tiger salamander, Burke's goldfield (*Lasthenia burkei*), Sonoma sunshine (*Blennosperma bakeri*), Sebastopol meadowfoam (*Limnanthes vinculans*), and many-flowered navarretia (*Navarretia leucocephala* ssp. *plieantha*). The Conservation Strategy has yet to be finalized; however, the BO is in effect and may be implemented.

## Sonoma County Zoning Code

The Sonoma County Zoning Code Chapter 26D, *Heritage or Landmark Trees*, provides for the protection of heritage and landmark trees. The County defines a heritage tree as a tree or grove of trees designated by the Planning Commission as having historical interest or significance. A landmark tree is protected due to their outstanding characteristics in terms of size, age, rarity, shape, or location. The code requires a permit for the removal of or possible damage to a heritage or landmark tree, including application for a building, grading or demolition permit.

Sonoma County Zoning Code Article 88, Section 26-88-010(m), *Tree Protection Ordinance*, requires projects to be designed to minimize the removal of protected trees that meet size and species criteria specified in the ordinance, and replanting for tress removed.

Additionally, Valley oak woodlands in the Valley Oak Habitat Combining District (Article 67) are protected, and special mitigation measures. For removal of any large valley oak, or any small valley oaks having a cumulative diameter at breast height (DBH) greater than 20 inches (large), or 60 inches (small) at DBH, 16 replacement trees and up to \$50 of in-lieu fees are required, additionally 1 tree with the same, or greater, cumulative DBH must be retained. If small valley oaks with a cumulative DBH between 80 to 100 inches will be removed mitigation will include 20 replacement trees and/or a \$75 in-lieu fee.

#### Sonoma County

#### **Rezone Sites for Housing Project**

Riparian corridors are also protected by Article 65, *Riparian Corridor Combining Zone*. This combining zone protects County-designated streams, including the bed, bank, and an adjacent streamside conservation areas as measured from the top of bank or the outer drip line of the riparian trees. Specific setbacks for agricultural cultivation are determined based on the affected river or stream and site-specific conditions but generally include a 25-200 foot setback. This ordinance also outlines allowed activities such as, but not limited to, levee maintenance, invasive plant removal, and maintenance of existing landscaped areas.

# Sonoma County General Plan 2020

The Sonoma County General Plan 2020 (Sonoma County 2008, amended 2016) includes policies to guide decisions on future growth, development, and conservation of resources through 2020. This includes the "Open Space and Resource Conservation Elements" which aims to preserve the natural and scenic resources that contribute to the general welfare and quality of life for the residents of the county and maintains its tourist industry.



**Special Status Species Evaluation Tables** 

#### Special Status Plant and Lichen Species in the Regional Vicinity of the Project Site

| Scientific Name                                                | Status Fed/                                   |                                                                                                                                                                   | ,                                                                                                            |                                                                                                              |                                                                                                              |                                                                                                                              |                                                                                                              |                                                                                                              | 0.5                                                                                                          |                                                                                                              |                                                                                                              |                                                                                                              |                                                                                                              |
|----------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Common Name Abronia umbellatavar. breviflora pink sand-verbena | None/None<br>G4G5T2/S2<br>1B.1                | Habitat Requirements  Coastal dunes. 0 - 10 m. perennial herb. Blooms Jun- Oct                                                                                    | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                                   | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                   | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                   | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                   | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                   | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                   | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                   | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                   |
| Agrostis blasdalei<br>Blasdale's bent grass                    | None/None<br>G2/S2<br>1B.2                    | Coastal bluff scrub, Coastal<br>dunes, Coastal prairie. 0 -<br>150 m.perennial<br>rhizomatous herb.<br>Blooms May-Jul                                             | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                   | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                   | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present                                    | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present                                                    | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present                                    | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present                                    | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present                                    | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present                                    | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present                                    | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present                                    | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present                                    |
| Allium peninsularevar.<br>franciscanum<br>Franciscan onion     | None/None<br>G5T2/S2<br>1B.2                  | Cismontane woodland,<br>Valley and foothill grassland.<br>clay, volcanic, often<br>serpentinite. 52 -305 m.<br>perennial bulbiferous herb.<br>Blooms (Apr)May-Jun | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present.                 | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present. | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present. | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present. | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present. | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present. | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present. | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present. |
| Alopecurus aequalisvar.<br>sonomensis<br>Sonoma alopecurus     | FE/None<br>G5T1/S1<br>1B.1                    | Marshes and swamps<br>(freshwater), Riparian scrub.<br>5 -365 m. perennial herb.<br>Blooms May-Jul                                                                | Not Expected;<br>suitable wetland<br>habitats and<br>vegetation<br>communities are<br>not present.           | Moderate Potential; freshwater aquati habitatsare present.                                                   | Moderate Potential; c freshwater aquati habitatsare present.                                                 | Present;<br>freshwater aquatic<br>habitatsare<br>present; a<br>presumed extant<br>occurrence is<br>mapped within<br>the BSA. |                                                                                                              | Moderate Potential; c freshwater aquati habitatsare present.                                                 | Not Expected;<br>suitable wetland<br>c habitats and<br>vegetation<br>communities are<br>not present.         | Moderate<br>Potential;<br>freshwater aquatic<br>habitats are<br>present.                                     |
| Amorpha californica var.<br>napensis<br>Napa false indigo      | None/None<br>G4T2/S2<br>1B.2                  | Broadleafed upland forest<br>(openings), Chaparral,<br>Cismontane woodland. 120 -<br>2000 m. perennial deciduous<br>shrub. Blooms Apr-Jul                         |                                                                                                              | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                      | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                      | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                                      | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                      | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                      | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                      | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                      | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                      | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                      | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                      |
| Amsinckia lunaris<br>bent-flowered fiddleneck                  | None/None<br>G3/S3<br>1B.2                    | Coastal bluff scrub,<br>Cismontane woodland,<br>Valley and foothill grassland.<br>3 - 500 m. annual herb.<br>Blooms Mar-Jun                                       | Low Potential;<br>Cismontane<br>woodland, Valley<br>and foothill<br>grasslands are<br>present.               | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                      | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                      | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                                      | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                      | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                      | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                      | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                      | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                      | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                      | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present.                                      |
| Arctostaphylos bakeri<br>ssp. bakeri<br>Baker's manzanita      | None/SR<br>G2T1/S1<br>1B.1                    | Broadleafed upland forest,<br>Chaparral. often<br>serpentinite. 75<br>- 300 m. perennial evergreen<br>shrub. Blooms Feb-Apr                                       | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present.                 | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present. | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present. | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present. | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present. | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present. | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present. | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present. |
| Arctostaphylos bakeri<br>ssp. sublaevis<br>Cedars manzanita    | None/SR<br>G2T2/S2<br>1B.2<br>BLM_S-Sensitive | Closed-cone coniferous<br>forest, Chaparral.<br>serpentinite seeps. 185 - 760<br>m. perennial evergreen<br>shrub. Blooms Feb, Apr, May                            | communities are                                                                                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                   | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                   | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                                   | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                   | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                   | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                   | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                   | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                   | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                   | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                   |

#### Sonoma County

#### Rezone Sites for Housing Project

| Scientific Name                             | Status Fed/    |                                                           |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |
|---------------------------------------------|----------------|-----------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Common Name                                 | State ESA CRPR | Habitat Requirements                                      |                                      | GUE                                  | LAR                                  | FOR                                  | GRA                                  | SAN                                  | GLE                                  | AGU                                  | PEN                                  | PET                                  | SON                                  |
| Arctostaphylosdensiflora                    | None/SE        | Chaparral (acid marine sand).                             |                                      | Not Expected;                        |
| Vine Hill manzanita                         | G1/S1<br>1B.1  | 50-120 m. perennial<br>evergreenshrub. Blooms             | suitable<br>vegetation               | suitable                             |
|                                             | 18.1           | evergreensnrub. Blooms<br>Feb-Apr                         | 0                                    | vegetation communities and           | vegetation communities and           | vegetation<br>communities and        | vegetation<br>communities and        | vegetation<br>communities and        | vegetation<br>communities and        | vegetation<br>communities and        | vegetation<br>communities and        | vegetation<br>communities and        | vegetation<br>communities and        |
|                                             |                | reb-Api                                                   | soils are not                        |
|                                             |                |                                                           | present.                             |
| Arctostaphylosmanzanita                     | None/None      | Chaparral, Cismontane                                     | •                                    | Low Potential:                       | Not Expected:                        | Low Potential:                       |
| ssp. elegans                                | G5T3/S3        | woodland. Lower montane                                   | suitable                             |
| Konocti manzanita                           | 1B.3           | coniferous forest, volcanic.                              | vegetation                           |
| nonest manzama                              | 20.0           | 395-1615 m. perennial                                     | 0                                    | communities are                      |
|                                             |                | evergreen shrub. Blooms                                   |                                      | present, suitable                    | not present.                         | present, suitable                    |
|                                             |                | (Jan)Mar- May(Jul)                                        |                                      | soils may be                         |                                      | soils may be                         |
|                                             |                |                                                           | present.                             |                                      | present.                             |
| Arctostaphylos montana                      | None/None      | Perennial evergreen shrub.                                | Not Expected;                        | Not Expected:                        | Not Expected;                        |
| ' '                                         | G3T3/S3        | Chaparral, valley and foothill                            | suitable vegetation                  |                                      | suitable                             |
| Mt. Tamalpais manzanita                     | 1B.3           | grassland. Rocky,                                         | communities and                      | vegetation                           |
|                                             |                | serpentinite. Elevations:                                 | soils are not                        | communities and                      |
|                                             |                | 525-2495ft. (160-760m.)                                   | present.                             | soils are not                        |
|                                             |                | Blooms Feb-Apr.                                           |                                      | present.                             |
| Arctostaphylos stanfordiana                 | None/None      | Chaparral (rhyolitic),                                    | Low Potential;                       |
| ssp. decumbens Rincon                       | G3T1/S1        | Cismontane woodland.                                      | suitable vegetatior                  |                                      | suitable                             |
| Ridge manzanita                             | 1B.1           | 75370m. perennial                                         | communities are                      | vegetation                           |
|                                             |                | evergreen shrub. Blooms                                   | present, suitable                    | communities are                      |
|                                             |                | Feb-Apr(May)                                              | soils may be                         | present, suitable                    |
|                                             |                |                                                           | present                              | soils may be                         |
|                                             |                |                                                           |                                      | present                              |
| Arctostaphylos stanfordiana<br>ssp. raichei | G2/S2          | Perennial evergreen shrub. Chaparral, lower montane       | Not Expected;<br>suitable vegetation | Not Expected;                        | Not Expected;<br>suitable            |
| Raiche's manzanita                          | 1B.1           | coniferous forest. Rocky.                                 | communities and                      | vegetation                           |
| Naiche 3 manzanta                           | 10.1           | serpentinite (often).                                     | soils are not                        | communities and                      |                                      | 0                                    | communities and                      |
|                                             |                | Elevations: 1475-3395ft.                                  | present.                             | soils are not                        |
|                                             |                | (450-1035m.) Blooms Feb-                                  | p. 000                               | present.                             |
|                                             |                | Apr.                                                      |                                      |                                      | <b>,</b>                             |                                      | <b>,</b>                             |                                      | <b>.</b>                             |                                      |                                      |                                      | ,                                    |
| Arctostaphylos virgata                      | FE/SCE         | Perennial evergreen shrub.                                | Not Expected;                        | Low Potential;                       | Not Expected;                        | Not Expected;                        | Not Expected;                        | Not Expected;                        | Low Potential;                       | Not Expected;                        | Not Expected;                        | Not Expected;                        | Not Expected;                        |
| Marin manzanita                             | G1/S1          | Broadleafed upland forest,                                | suitable vegetation                  | n suitable                           | suitable                             | suitable                             | suitable                             | suitable                             | suitable                             | suitable                             | suitable                             | suitable                             | suitable                             |
|                                             | 1B.2           | chaparral, closed-cone                                    | communities and                      | vegetation                           |
|                                             |                | coniferous forest, north coast                            | soils are not                        | communities are                      | communities and                      | communities and                      | communities and                      | communities and                      | communities are                      | communities and                      | communities and                      | communities and                      | communities and                      |
|                                             |                | coniferous forest. Granitic                               | present.                             | present, suitable                    | soils are not                        | soils are not                        | soils are not                        | soils are not                        | present, suitable                    | soils are not                        | soils are not                        | soils are not                        | soils are not                        |
|                                             |                | (sometimes), sandstone                                    |                                      | soils may be                         | present.                             | present.                             | present.                             | present.                             | soils may be                         | present.                             | present.                             | present.                             | present.                             |
|                                             |                | (sometimes). Elevations:                                  |                                      | present                              |                                      |                                      |                                      |                                      | present                              |                                      |                                      |                                      |                                      |
|                                             |                | 195-2295ft. (60-700m.)                                    |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |
|                                             |                | Blooms Jan-Mar.                                           |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |
| Astragalus claranus                         | FE/ST          | Chaparral (openings),                                     | Low Potential;                       |
| Clara Hunt's milk- vetch                    | G1/S1          | Cismontane woodland, Valley                               |                                      |                                      | suitable                             |
|                                             | 1B.1           | and foothill grassland.                                   | communities are                      | vegetation                           |
|                                             |                | serpentinite or volcanic,<br>rocky,clay. 75-275 m. annual | present, suitable<br>soils may be    | communities are<br>present, suitable |
|                                             |                | herb. Blooms Mar-May                                      | present                              | soils may be                         |
|                                             |                | ners. blooms war-way                                      | present                              |
|                                             |                |                                                           |                                      | present                              | ргезепс                              | present                              | present                              | present                              | ргезепт                              | ргезепт                              | ргезепт                              | present                              | present                              |

| Scientific Name Common Name                                                | Status Fed/<br>State ESA CRPR | Habitat Requirements                                                                                                                                                                                            | GEY                                                                                                      | GUE                                                                                                         | LAR                                                                                                         | FOR                                                                                                         | GRA                                                                                                         | SAN                                                                                                         | GLE                                                                                                         | AGU                                                                                                         | PEN                                                                                                         | PET                                                                                                         | SON                                                                                                         |
|----------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Astragalus pycnostachyus<br>var. pycnostachyus<br>coastal marsh milk-vetch | None/None<br>G2T2/S2<br>1B.2  | Perennial herb. Coastal dunes, coastal scrub, marshes and swamps. Mesic sites in dunes or along streams or coastal salt marshes. Elevations: 0-100ft. (0-30m.) Blooms (Apr)Jun-Oct.                             | Not Expected;                                                                                            | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Moderate Potential; suitable vegetation communitiesare present.                                             | Not Expected;                                                                                               | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Moderate Potential; suitable vegetation communitiesare present.                                             | Not Expected;                                                                                               | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     |
| Astragalus rattanii<br>var. jepsonianus<br>Jepson's milk-vetch             | None/None<br>G4T3/S3<br>1B.2  | Chaparral, Cismontane<br>woodland, Valley and foothill<br>grassland. often serpentinite.<br>295-700m. annual herb.<br>Blooms Mar-Jun                                                                            | Not Expected;<br>suitable vegetation<br>communities and<br>soils are not<br>present.                     | Not Expected;<br>a suitable<br>vegetation<br>communities and<br>soils are not<br>present.                   | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.                     | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.                     | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.                     | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.                     | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.                     | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.                     | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.                     | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.                     | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.                     |
| Astragalus tener<br>var. tener<br>alkali milk-vetch                        | None/None<br>G2T1/S1<br>1B.2  | Playas, Valley and foothill<br>grassland (adobe clay), Vernal<br>pools. alkaline. 1-60 m.<br>annualherb. Blooms Mar-Jun                                                                                         | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.  | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Moderate Potential; suitable vegetation communitiesare present.                                             | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Moderate Potential; suitable vegetation communities are present.                                            | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     |
| Balsamorhizamacrolepis<br>big-scale balsamroot                             | None/None<br>G2/S2<br>1B.2    | Chaparral, Cismontane<br>woodland, Valley and foothill<br>grassland. sometimes<br>serpentinite. 45-1555 m.<br>perennial herb. Blooms Mar-<br>Jun                                                                | Not Expected;<br>suitable vegetation<br>communities and<br>soils are not<br>present.                     | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.                     |
| Blennospermabakeri<br>Sonoma sunshine                                      | FE/SE<br>G1/S1<br>1B.1        | Valley and foothill grassland<br>(mesic), Vernal pools.<br>10-110m. annual herb.<br>Blooms Mar-May                                                                                                              | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.  | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal                                                                           | Not Expected;<br>suitable, vernal                                                                           | Moderate Potential; suitable                                                                                | Not Expected;                                                                                               | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Moderate Potential; suitable vegetation communitiesare present.                                             | Not Expected;                                                                                               | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     |
| Brodiaea leptandra<br>narrow-anthered brodiaea                             | None/None<br>G3?/S3?<br>1B.2  | Broadleafed upland forest,<br>Chaparral, Cismontane<br>woodland, Lower montane<br>coniferous forest, Valley and<br>foothill grassland. volcanic.<br>110-915 m. perennial<br>bulbiferous herb. Blooms<br>May-Jul | Low Potential;<br>suitable vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present |
| Calamagrostis crassiglumis<br>Thurber's reed grass                         | None/None<br>G3Q/S2<br>2B.1   | Coastal scrub (mesic),<br>Marshesand swamps<br>(freshwater). 10-60 m.<br>perennial rhizomatous herb.<br>Blooms May-Aug                                                                                          | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present        | Moderate Potential; freshwater habitats are present.                                                        | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate Potential; freshwater habitats are present.                                                        | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate Potential; freshwater habitats are present.                                                        | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present           | Moderate Potential; freshwater aquatic habitatsare present.                                                 |
| Calochortus raichei<br>Cedars fairy-lantern                                | None/None<br>G2/S2<br>1B.2    | Closed-cone coniferous<br>forest,Chaparral.<br>serpentinite. 200-490 m.<br>perennial bulbiferous herb.<br>Blooms May-Aug                                                                                        | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  |

| Scientific Name<br>Common Name                                              | Status Fed/<br>State ESA CRPR    | Habitat Requirements                                                                                                                                                                                       | GEY                                                                                               | GUE                                                                                                           | LAR                                                                                                         | FOR                                                                                                         | GRA                                                                                                         | SAN                                                                                                         | GLE                                                                                                         | AGU                                                                                                         | PEN                                                                                                         | PET                                                                                                         | SON                                                                                                         |
|-----------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Calystegia collina<br>ssp. tridactylosa<br>three-fingered morning-<br>glory | None/None<br>G4T1/S1<br>1B.2     | Perennial rhizomatous herb.<br>Chaparral, cismontane<br>woodland. Gravelly,<br>openings, rocky, serpentinite.<br>Elevations: 0-1970ft.<br>(0-600m.) Blooms Apr-Jun.                                        | Low Potential;<br>suitable vegetation<br>communities are                                          | Low Potential;<br>a suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present |
| Calystegia purpurata ssp. saxicola coastal bluff morning-glory              | None/None<br>G4T2T3/S2S3<br>1B.2 | Coastal bluff scrub, Coastal<br>dunes, Coastal scrub, North<br>Coast coniferous forest.<br>0-105m. perennial herb.<br>Blooms(Mar)Apr-Sep                                                                   | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                           | Not Expected;<br>n suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  |
| Campanula californica<br>swamp harebell                                     | None/None<br>G3/S3<br>1B.2       | Bogs and fens, Closed-cone coniferous forest, Coastal prairie, Meadows and seeps, Marshes and swamps (freshwater), North Coast coniferous forest. mesic. 1-405m. perennial rhizomatous herb.Blooms Jun-Oct | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present | Low Potential;<br>freshwater<br>habitats are<br>present.                                                      | Low Potential;<br>freshwater<br>habitats are<br>present.                                                    | Low Potential;<br>freshwater<br>habitats are<br>present.                                                    | Low Potential;<br>freshwater<br>habitats are<br>present.                                                    | Low Potential;<br>freshwater<br>habitats are<br>present.                                                    | Low Potential;<br>freshwater<br>habitats are<br>present.                                                    | Low Potential;<br>freshwater<br>habitats are<br>present.                                                    | Low Potential;<br>freshwater<br>habitats are<br>present.                                                    | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present           | Moderate Potential; freshwater aquatic habitatsare present.                                                 |
| Cardamine angulate seaside bittercress                                      | None/None<br>G4G5/S3<br>2B.1     | Perennial herb. Lower<br>montane coniferous forest,<br>north coast coniferous forest.<br>Streambanks. Elevations:<br>50-3000ft. (15-915m.) Blooms<br>(Jan)Mar-Jul.                                         | not present.                                                                                      | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                    | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected; suitable vegetation communities are not present.                                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  |
| Carex comosa<br>bristly sedge                                               | None/None<br>G5/S2<br>2B.1       | Coastal prairie, Marshes and<br>swamps (lake margins), Valley<br>and foothill grassland.<br>0-625m.perennial<br>rhizomatous herb. Blooms<br>May-Sep                                                        | Not Expected; r suitable aquatic habitats and vegetation communities are not present              | Moderate Potential; freshwater habitats are present.                                                          | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate Potential; freshwater habitats are present.                                                        | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate Potential; freshwater habitats are present.                                                        | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present           | Moderate Potential; freshwater aquatic habitatsare present.                                                 |
| Carex lyngbyei<br>Lyngbye's sedge                                           | None/None<br>G5/S3<br>2B.2       | Perennial rhizomatous herb.<br>Marshes and swamps.<br>Elevations: 0-35ft. (0-10m.)<br>Blooms Apr-Aug.                                                                                                      | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present | Moderate Potential; freshwater habitats are present.                                                          | Moderate Potential; freshwater habitats are present.                                                        | Moderate Potential; freshwater habitats are present.                                                        | Moderate Potential; freshwater habitats are present.                                                        | Moderate Potential; freshwater habitats are present.                                                        | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present           | Moderate Potential; freshwater aquatic habitatsare present.                                                 |
| Carex saliniformis<br>deceiving sedge                                       | None/None<br>G2/S2<br>1B.2       | Coastal prairie, Coastal scrub,<br>Meadows and seeps,<br>Marshes and swamps (coastal<br>salt). mesic. 3-230 m.<br>perennial rhizomatous herb.<br>Blooms May-Jun (Jul)                                      | suitable aquatic                                                                                  | Moderate Potential; freshwater habitats are present.                                                          | Moderate Potential; freshwater habitats are present.                                                        | Moderate Potential; freshwater habitats are present.                                                        | Moderate Potential; freshwater habitats are present.                                                        | Moderate Potential; freshwater habitats are present.                                                        | Moderate Potential; freshwater habitats are present.                                                        | Moderate Potential; freshwater habitats are present.                                                        | Moderate Potential; freshwater habitats are present.                                                        | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present           | Moderate Potential; freshwater aquatic habitatsare present.                                                 |
| Castilleja affinis<br>var. neglecta<br>Tiburon paintbrush                   | FE/ST<br>G4G5T1T2/S1S2<br>1B.2   | Perennial herb<br>(hemiparasitic). Valley and<br>foothill grassland. Rocky<br>serpentine sites. Elevations:<br>195-1310ft. (60-400m.)<br>Blooms Apr-Jun.                                                   | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                           | Not Expected;<br>a suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  |

| Scientific Name<br>Common Name                                         | Status Fed/<br>State ESA CRPR | Habitat Requirements                                                                                                                                                                                                                     | GEY                                                                                                      | GUE                                                                                                         | LAR                                                                                                         | FOR                                                                                                         | GRA                                                                                                         | SAN                                                                                                         | GLE                                                                                                         | AGU                                                                                                         | PEN                                                                                                         | PET                                                                                                         | SON                                                                                                         |
|------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Castilleja ambigua<br>var. humboldtiensis<br>Humboldt Bay owl's-clover | None/None<br>G4T2/S2<br>1B.2  | Annual herb (hemiparasitic). Marshes and swamps. In coastal saltmarsh with Spartina, Distichlis, Salicornia, Jaumea. Elevations: 0-10ft. (0-3m.) Blooms Apr-Aug.                                                                         | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present        | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present           | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present           | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present           | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present           | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present           | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present           | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present           | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present           | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present           | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present           |
| Castilleja ambigua<br>var. meadii<br>Mead's owls-clover                | None/None<br>G4T1/S1<br>1B.1  | Annual herb (hemiparasitic). Meadows and seeps, vernal pools. Clay, gravelly, volcanic. Elevations: 1475-1560ft. (450-475m.) Blooms Apr-May.                                                                                             | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected; suitable vegetation communities are not present.                                              | Not Expected; suitable vegetation communities are not present.                                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected; suitable vegetation communities are not present.                                              |
| Castilleja uliginosa<br>Pitkin Marsh paintbrush                        | None/SE<br>GXQ/SX<br>1A       | Marshes and swamps<br>(freshwater). 240-240 m.<br>perennial herb<br>(hemiparasitic).Blooms Jun-<br>Jul                                                                                                                                   | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present        | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate Potential; freshwater habitats are present.                                                        | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present           | Moderate Potential; freshwater aquation habitatsare present.                                                |
| Ceanothus confusus<br>Rincon Ridge ceanothus                           | None/None<br>G1/S1<br>1B.1    | Closed-cone coniferous forest, Chaparral, Cismontane woodland. volcanic or serpentinite. 75-1065 m. perennial evergreen shrub. Blooms Feb-Jun                                                                                            | Low Potential;<br>suitable vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present |
| Ceanothusdivergens<br>Calistoga ceanothus                              | None/None<br>G2/S2<br>1B.2    | Chaparral (serpentinite or<br>volcanic, rocky). 170-950 m.<br>perennial evergreen shrub.<br>Blooms Feb-Apr                                                                                                                               | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                                  | Not Expected;                                                                                               | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  |
| Ceanothus foliosus<br>var. vineatus<br>Vine Hill ceanothus             | None/None<br>G3T1/S1<br>1B.1  | Chaparral. 45-305 m.<br>perennialevergreen shrub.<br>Blooms Mar- May                                                                                                                                                                     | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  |
| Ceanothus gloriosus<br>var. porrectus<br>Mt. Vision ceanothus          | None/None<br>G4T2/S2<br>1B.3  | Perennial evergreen shrub. Closed-cone coniferous forest, coastal prairie, coastal scrub, valley and foothill grassland. Low shrub in a variety of habitats on Pt. Reyes; sandy soils. Elevations: 80-1000ft. (25-305m.) Blooms Feb-May. | not present.                                                                                             | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected; suitable vegetation communities are not present.                                              |
| Ceanothus masonii<br>Mason's ceanothus                                 | None/SR<br>G1/S1<br>1B.2      | Perennial evergreen shrub.<br>Chaparral. Serpentine ridges<br>or slopes in chaparral or<br>transition zone. Elevations:<br>755-1640ft. (230-500m.)<br>Blooms Mar-Apr.                                                                    | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected; suitable vegetation communities are not present.                                              |

| Scientific Name                                                             | Status Fed/                  | Habitat Damilianus                                                                                                                                                                                        | CEV                                                                                                      | CUE                                                                                     | LAD                                                                                           | FOR                                                                                                         | CDA                                                                                           | CAN                                                                                                         | CLE                                                                                                         | ACII                                                                                                        | DEN                                                                                                         | DET                                                                                                         | CON                                                                                                         |
|-----------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Common Name  Ceanothus purpureus holly-leavedceanothus                      | None/None<br>G2/S2<br>1B.2   | Habitat Requirements Chaparral, Cismontane woodland. volcanic, rocky. 120-640 m. perennial evergreen shrub. Blooms Feb-Jun                                                                                | Low Potential;<br>suitable vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Present; suitable                                                                       | LAR Low Potential; suitable vegetation communities are present, suitable soils may be present | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | CRA Low Potential; suitable vegetation communities are present, suitable soils may be present | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present |
| Ceanothus sonomensis<br>Sonoma ceanothus                                    | None/None<br>G2/S2<br>1B.2   | Chaparral (sandy,<br>serpentinite orvolcanic). 215<br>800 m. perennialevergreen<br>shrub. Blooms Feb- Apr                                                                                                 | Not Expected; - suitable vegetation communities are not present.                                         | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                    | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                    | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  |
| Centromadia parryi<br>ssp. parryi<br>pappose tarplant                       | None/None<br>G3T2/S2<br>1B.2 | Chaparral, Coastal prairie,<br>Meadows and seeps,<br>Marshes and swamps<br>(coastal salt), Valleyand<br>foothill grassland (vernally<br>mesic). often alkaline.<br>0-420m. annual herb.<br>Blooms May-Nov | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present        | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                        | Moderate Potential; freshwater habitats are present.                                          | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate Potential; freshwater habitats are present.                                          | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Present; A presumed extant occurrence is mapped withinthe BSA.                                              | Not Expected;<br>suitable aquatic<br>habitats and                                                           | Moderate Potential; freshwater aquatic habitatsare present.                                                 |
| Chlorogalum pomeridianum var.minus dwarf soaproot                           | None/None<br>G5T3/S3<br>1B.2 | Chaparral (serpentinite).<br>305-1000 m. perennial<br>bulbiferousherb. Blooms<br>May-Aug                                                                                                                  | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                    | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                    | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  |
| Chloropyron maritimum ssp.<br>palustre<br>Point Reyes salty bird's-beak     | G4?T2/S2                     | Marshes and swamps (coasta<br>salt). 0-10 m. annual herb<br>(hemiparasitic). Blooms Jun-<br>Oct                                                                                                           | Not Expected;<br>suitable salt marsh<br>habitatsare not<br>present                                       | Not Expected;<br>suitable salt<br>marsh habitatsare<br>not present                      | Not Expected;<br>suitable salt                                                                | Not Expected;<br>suitable salt                                                                              | Not Expected;<br>suitable salt                                                                | Not Expected;<br>suitable salt                                                                              | Not Expected;<br>suitable salt                                                                              | Not Expected;<br>suitable salt<br>marsh habitatsare<br>not present                                          | Not Expected;<br>suitable salt<br>marsh habitatsare<br>not present                                          | Not Expected;<br>suitable salt<br>marsh habitatsare<br>not present                                          | Not Expected;<br>suitable salt                                                                              |
| Chloropyron mole<br>ssp. mole<br>soft salty bird's-beak                     | FE/SR<br>G2T1/S1<br>1B.2     | Marshes and swamps (coasta<br>salt). 0-3 m. annual herb<br>(hemiparasitic). Blooms Jun-<br>Nov                                                                                                            | •                                                                                                        | Not Expected;<br>suitable salt                                                          | Not Expected;<br>suitable salt                                                                | Not Expected;<br>suitable salt                                                                              | Not Expected;<br>suitable salt                                                                | Not Expected;<br>suitable salt                                                                              | Not Expected;<br>suitable salt<br>marsh habitatsare<br>not present                                          | Not Expected;<br>suitable salt                                                                              | Not Expected;<br>suitable salt                                                                              | Not Expected;<br>suitable salt                                                                              | Not Expected;<br>suitable salt                                                                              |
| Chorizanthe cuspidata var.<br>cuspidate<br>San Francisco Bay<br>spineflower | None/None<br>G2T1/S1<br>1B.2 | Coastal bluff scrub, Coastal<br>dunes, Coastal prairie,<br>Coastal scrub. sandy.<br>3-215m. annualherb. Blooms<br>Apr-Jul (Aug)                                                                           | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                                   | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                  | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                        | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                                      | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                        | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                                      | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                                      | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                                      | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                                      | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                                      | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                                      |
| Chorizanthe cuspidata var.<br>villosa<br>woolly-headedspineflower           | G2T2/S2<br>1B.2              | Coastal dunes, Coastal<br>prairie,Coastal scrub. sandy.<br>3-60 m.annual herb. Blooms<br>May-Jul (Aug)                                                                                                    | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                                   | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                  | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                        | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                                      | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                        | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                                      | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                                      | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                                      | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                                      | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                                      | Not Expected;<br>suitable coastal<br>dune habitats are<br>not present.                                      |
| Chorizanthe valida<br>Sonoma spineflower                                    | FE/SE<br>G1/S1<br>1B.1       | Coastal prairie (sandy).<br>10-305m. annual herb.<br>Blooms Jun-Aug                                                                                                                                       | Not Expected;<br>suitable vegetation<br>communities and<br>soils are not<br>present.                     | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present. | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.       | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.                     | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.       | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.                     | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.                     | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.                     | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.                     | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.                     | Not Expected;<br>suitable<br>vegetation<br>communities and<br>soils are not<br>present.                     |

| Scientific Name<br>Common Name | Status Fed/<br>State ESA CRPR | Habitat Requirements                                | GEY                           | GUE                        | LAR                        | FOR                        | GRA                        | SAN                        | GLE                        | AGU                        | PEN                        | PET                        | SON                        |
|--------------------------------|-------------------------------|-----------------------------------------------------|-------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Cirsium andrewsii              | None/None                     | Broadleafed upland forest,                          | Low Potential;                | Low Potential;             | Low Potential;             | Low Potential;             | Low Potential;             | Low Potential;             | Low Potential;             | Low Potential;             | Low Potential;             | Low Potential;             | Low Potential;             |
| Franciscan thistle             | G3/S3                         | Coastal bluff scrub, Coastal                        | suitable vegetation           |                            | suitable                   |
|                                | 1B.2                          | prairie, Coastal scrub. mesic,                      | communities are               | vegetation                 |
|                                |                               | sometimes serpentinite.                             | present, suitable             | communities are            |
|                                |                               | 0-150m. perennial herb.                             | soils may be                  | present, suitable          |
|                                |                               | Blooms Mar-Jul                                      | present                       | soils may be               |
|                                |                               |                                                     |                               | present                    |
| Cirsium hydrophilum            | None/None                     | Perennial herb. Broadleafed                         | Not Expected;                 | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              |
| var. vaseyi                    | G2T1/S1<br>1B.2               | upland forest, chaparral,                           | suitable vegetation           |                            | suitable                   |
| Mt. Tamalpais thistle          | 16.2                          | meadows and seeps. Seeps, serpentinite. Elevations: | communities and soils are not | vegetation communities and |
|                                |                               | 785-2035ft. (240-620m.)                             | present.                      | soils are not              |
|                                |                               | Blooms May-Aug.                                     | present.                      | present.                   | present.                   | present.                   | present.                   | present.                   | present.                   | present.                   | present.                   | present.                   | present.                   |
| Clarkia imbricata              | FE/SE                         | Chaparral, Valley and foothill                      | Low Dotontial:                | Low Potential;             | Low Potential:             | Low Potential;             | Low Potential:             | Low Potential;             | Low Potential:             | Low Potential;             | Low Potential;             | Low Potential:             | Low Potential;             |
| Vine Hill clarkia              | G1/S1                         | grassland, acidic sandy loam.                       | suitable vegetation           | •                          | suitable                   |
| VIIIe I IIII Clai Kia          | 1B.1                          | 50-75 m. annual herb. Blooms                        | U                             | vegetation                 |
|                                | 10.1                          | Jun-Aug                                             | present, suitable             | communities are            |
|                                |                               | Juli Aug                                            | soils may be                  | present, suitable          |
|                                |                               |                                                     | present                       | soils may be               |
|                                |                               |                                                     | present                       | present                    | present                    | present                    | present                    | present                    | present                    | present                    | present                    | present                    | present                    |
| Cordylanthus tenuis            | FE/SR                         | Closed-cone coniferous                              | Not Expected;                 | Not Expected:              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected:              | Not Expected;              |
| ssp. capillaris                | G4G5T1/S1                     | forest, Chaparral.                                  | suitable vegetation           | ,                          | suitable                   |
| Pennell's bird's-beak          | 1B.2                          | serpentinite. 45-305m.                              | communities are               | vegetation                 |
|                                |                               | annual herb (hemiparasitic).                        | not present.                  | communities are            |
|                                |                               | Blooms Jun-Sep                                      |                               | not present.               |
| Cryptantha dissita             | None/None                     | Chaparral (serpentinite).                           | Not Expected;                 | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              |
| serpentine cryptantha          | G2/S2                         | 395-580 m. annual herb.                             | suitable vegetation           |                            | suitable                   |
|                                | 1B.2                          | Blooms Apr-Jun                                      | communities are               | vegetation                 |
|                                |                               | ·                                                   | not present.                  | communities are            |
|                                |                               |                                                     |                               | not present.               |
| Cuscuta obtusifloravar.        | None/None                     | Marshes and swamps                                  | Not Expected;                 | Moderate                   | Not Expected;              | Moderate                   |
| glandulosa                     | G5T4?/SH                      | (freshwater). 15-280 m.                             | suitable aquatic              | Potential;                 | suitable aquatic           | Potential;                 |
| Peruvian dodder                | 2B.2                          | annualvine (parasitic).                             | habitats and                  | freshwater                 | habitats and               | freshwater aquation        |
|                                |                               | Blooms Jul-Oct                                      | vegetation                    | habitats are               | vegetation                 | habitatsare                |
|                                |                               |                                                     | communities are               | present.                   | communities are            | present.                   |
|                                |                               |                                                     | not present                   |                            |                            |                            |                            |                            |                            |                            |                            | not present                |                            |
| Cuscuta pacifica var.          | None/None                     | Coastal dunes (interdune                            | Not Expected;                 | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;              |
| papillata Mendocino dodder     | r G5T1/S1                     | depressions). 0-50 m. annual                        | suitable coastal              | suitable coastal           | suitable coastal           | suitable coastal           | suitable coastal           | suitable coastal           | suitable coastal           | suitable coastal           | suitable coastal           | suitable coastal           | suitable coastal           |
|                                | 1B.2                          | vine (parasitic). Blooms                            | dune habitats are             | dune habitats are          | dune habitats are          | dune habitats are          | dune habitats are          | dune habitats are          | dune habitats are          | dune habitats are          | dune habitats are          | dune habitats are          | dune habitats are          |
|                                |                               | (Jun)Jul-Oct                                        | not present.                  | not present.               | not present.               | not present.               | not present.               | not present.               | not present.               | not present.               | not present.               | not present.               | not present.               |
| Delphinium bakeri              | FE/SE                         | Broadleafed upland forest,                          | Low Potential;                | Low Potential;             | Low Potential;             | Low Potential;             | Low Potential;             | Low Potential;             | Low Potential;             | Low Potential;             | Low Potential;             | Low Potential;             | Low Potential;             |
| Baker's larkspur               | G1/S1                         | Coastal scrub, Valley and                           | suitable vegetation           | suitable                   |
|                                | 1B.1                          | foothillgrassland.                                  | communities are               | vegetation                 |
|                                |                               | decomposed shale, often                             | present, suitable             | communities are            |
|                                |                               | mesic. 80-305 m. perennial                          | soils may be                  | present, suitable          |
|                                |                               | herb. Blooms Mar- May                               | present                       | soils may be               |
|                                |                               |                                                     |                               |                            |                            |                            |                            |                            |                            |                            |                            |                            |                            |

| Scientific Name<br>Common Name                      | Status Fed/<br>State ESA CRPR | Habitat Requirements                                                                                                                                                                                                                                  | GEY                                                                                                     | GUE                                                                                                         | LAR                                                                                                         | FOR                                                                                                         | GRA                                                                                                         | SAN                                                                                                         | GLE                                                                                                         | AGU                                                                                                         | PEN                                                                                                         | PET                                                                                                         | SON                                                                                                         |
|-----------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| <i>Delphinium luteum</i><br>golden larkspur         | FE/SR<br>G1/S1<br>1B.1        | Chaparral, Coastal prairie,<br>Coastal scrub. rocky. 0-100m.<br>perennial herb. Blooms Mar-<br>May                                                                                                                                                    | Not Expected;                                                                                           | Not Expected;                                                                                               | Not Expected;<br>suitable<br>vegetation<br>communities and                                                  | Not Expected;<br>suitable<br>vegetation<br>communities and                                                  | Not Expected;<br>suitable<br>vegetation<br>communities and                                                  | Not Expected;<br>suitable<br>vegetation<br>communities and                                                  | Not Expected;<br>suitable<br>vegetation<br>communities and<br>rocky habitats are<br>notpresent.             | Not Expected;<br>suitable<br>vegetation<br>communities and                                                  | Not Expected;<br>suitable<br>vegetation<br>communities and<br>rocky habitats are<br>notpresent.             | Not Expected;<br>suitable<br>vegetation<br>communities and<br>rocky habitats are<br>notpresent.             | Not Expected;<br>suitable<br>vegetation<br>communities and<br>rocky habitats are<br>notpresent.             |
| Dirca occidentalis<br>western leatherwood           | None/None<br>G2/S2<br>1B.2    | Broadleafed upland forest,<br>Closed-cone coniferous<br>forest, Chaparral, Cismontane<br>woodland, North Coast<br>coniferous forest, Riparian<br>forest, Riparian woodland.<br>mesic. 25-425 m. perennial<br>deciduous shrub. Blooms Jan-<br>Mar(Apr) | present, suitable<br>soils may be<br>present                                                            | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present |
| Downingia pusilla<br>dwarf downingia                | None/None<br>GU/S2<br>2B.2    | Valley and foothill grassland<br>(mesic), Vernal pools.<br>1-445m.annual herb. Blooms<br>Mar-May                                                                                                                                                      | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present. | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | communitiesare                                                                                              | Not Expected;<br>e suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.   | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Moderate Potential; suitable vegetation communitiesare present.                                             | Not Expected;<br>e suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.   | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     |
| Entosthodon kochii<br>Koch's cord moss              | None/None<br>G1/S1<br>1B.3    | Moss. Cismontane woodland.<br>Moss growing on soil on river<br>banks. Elevations: 590-<br>3280ft. (180-1000m.)                                                                                                                                        | · '                                                                                                     | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  |
| Eriastrum brandegeeae<br>Brandegee's eriastrum      | None/None<br>G1Q/S1<br>1B.1   | Annual herb. Chaparral, cismontane woodland. On barren volcanic soils; often in open areas. Elevations: 1395-2755ft. (425-840m.) Blooms Apr-Aug.                                                                                                      | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                                 | Not Expected;                                                                                               | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  |
| Erigeron greenei<br>Greene's narrow-leaved<br>daisy | None/None<br>G3/S3<br>1B.2    | Chaparral (serpentinite or<br>volcanic). 80-1005 m.<br>perennial herb. Blooms May-<br>Sep                                                                                                                                                             | suitable vegetation                                                                                     | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  |
| Erigeron serpentinus serpentine daisy               | None/None<br>G2/S2<br>1B.3    | Chaparral (serpentinite,<br>seeps).60-670 m. perennial<br>herb. Blooms May-Aug                                                                                                                                                                        | Not Expected;<br>suitable, wetland<br>habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, wetland<br>habitats and<br>vegetation<br>communities are<br>not present.         | Not Expected;<br>suitable, wetland<br>habitats and<br>vegetation<br>communities are<br>not present.         | Not Expected;<br>suitable, wetland<br>habitats and<br>vegetation<br>communities are<br>not present.         | Not Expected;<br>suitable, wetland<br>habitats and<br>vegetation                                            | Not Expected;<br>suitable, wetland<br>habitats and<br>vegetation<br>communities are<br>not present.         |
| Eriogonumcedrorum<br>Cedarsbuckwheat                | None/None<br>G1/S1<br>1B.3    | Closed-cone coniferous<br>forest. serpentinite.<br>365-550m. perennial herb.<br>Blooms Jun-Sep                                                                                                                                                        | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                                 | Not Expected;                                                                                               | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  |

| Scientific Name<br>Common Name                                 | Status Fed/<br>State ESA CRPR | Habitat Requirements                                                                                                                                                                                                                  | GEY                                                                                                      | GUE                                                                                                         | LAR                                                                                                         | FOR                                                                                                         | GRA                                                                                                         | SAN                                                                                                         | GLE                                                                                                         | AGU                                                                                                         | PEN                                                                                                         | PET                                                                                                         | SON                                                                                                         |
|----------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Eriogonum luteolumvar.<br>caninum<br>Tiburon buckwheat         | None/None<br>G5T2/S2<br>1B.2  | Chaparral, Cismontane woodland, Coastal prairie, Valleyand foothill grassland. serpentinite, sandy to gravelly. 0-700m. annual herb. BloomsMay-Sep                                                                                    | Low Potential;<br>suitable vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present |
| Eriogonum nervulosum<br>Snow Mountainbuckwheat                 | None/None<br>G2/S2<br>1B.2    | Chaparral (serpentinite).<br>300-2105 m. perennial<br>rhizomatousherb. Blooms<br>Jun-Sep                                                                                                                                              | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  |
| Eryngium constancei<br>Loch Lomondbutton-celery                | FE/SE<br>G1/S1<br>1B.1        | Vernal pools. 460-855m.<br>annual/perennial herb.<br>BloomsApr-Jun                                                                                                                                                                    | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.  | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Moderate Potential; suitable vegetation communitiesare present.                                             | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Moderate Potential; suitable vegetation communitiesare present.                                             | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     |
| Eryngium jepsonii<br>Jepson's coyote-thistle                   | None/None<br>G2/S2<br>1B.2    | Perennial herb. Valley and<br>foothill grassland, vernal<br>pools. Clay. Elevations:<br>10-985ft. (3-300m.) Blooms<br>Apr-Aug.                                                                                                        | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.  | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Moderate Potential; suitable vegetation communitiesare present.                                             | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.     | Moderate Potential; suitable vegetation communitiesare present.                                             | Not Expected;<br>e suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present.   | vegetation                                                                                                  |
| Erysimum concinnum<br>bluff wallflower                         | None/None<br>G3/S2<br>1B.2    | Coastal bluff scrub, Coastal<br>dunes, Coastal prairie.<br>0-185m.annual/perennial<br>herb. Blooms Feb-Jul                                                                                                                            | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  |
| Extriplex joaquinana<br>San Joaquin spearscale                 | None/None<br>G2/S2<br>1B.2    | Annual herb. Chenopod scrub, meadows and seeps, playas, valley and foothill grassland. In seasonal alkali wetlands or alkali sink scrub with Distichlis spicata, Frankenia, etc. Elevations: 5-2740ft. (1-835m.) Blooms Apr-Oct.      | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected; suitable, vegetation communities are not present.                                             | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 |
| Fissidens pauperculus minute pocket moss                       | None/None<br>G3?/S2<br>1B.2   | North Coast coniferous forest<br>(damp coastal soil).<br>10-1024m. moss. Blooms                                                                                                                                                       | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                                  | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                  |
| Fritillaria lanceolata var.<br>tristulis<br>Marin checker lily | None/None<br>G5T2/S2<br>1B.1  | Perennial bulbiferous herb. Coastal bluff scrub, coastal prairie, coastal scrub. Occurrences reported from canyons and riparian areas as well as rock outcrops; often on serpentine. Elevations: 50-490ft. (15-150m.) Blooms Feb-May. | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 |

| Scientific Name<br>Common Name                                               | Status Fed/<br>State ESA CRPR | Habitat Requirements                                                                                                                                                      | GEY                                                                                                      | GUE                                                                                                         | LAR                                                                                                         | FOR                                                                                                         | GRA                                                                                                         | SAN                                                                                                         | GLE                                                                                                         | AGU                                                                                                         | PEN                                                                                                         | PET                                                                                                         | SON                                                                                                         |
|------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Fritillaria liliacea<br>fragrant fritillary                                  | None/None<br>G2/S2<br>1B.2    | Cismontane woodland,<br>Coastal prairie, Coastal scrub,<br>Valley andfoothill grassland.<br>Often serpentinite. 3-410 m.<br>perennial bulbiferous herb.<br>Blooms Feb-Apr | Low Potential;<br>suitable vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present |
| Gilia capitata<br>ssp. chamissonis<br>blue coast gilia                       | None/None<br>G5T2/S2<br>1B.1  | Coastal dunes, Coastal scrub.<br>2-200m. annual herb. Blooms<br>Apr-Jul                                                                                                   | • ′                                                                                                      | Not Expected;<br>suitable coastal<br>vegetation<br>communities are<br>not present.                          |
| Gilia capitata<br>ssp. pacifica<br>Pacific gilia                             | None/None<br>G5T3/S2<br>1B.2  | Coastal bluff scrub, Chaparral<br>(openings), Coastal prairie,<br>Valley and foothill grassland.<br>5-1665 m. annual herb.<br>Blooms Apr-Aug                              | ·                                                                                                        | Low Potential;                                                                                              | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;<br>suitable<br>vegetation                                                                    | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;<br>suitable<br>vegetation                                                                    | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present |
| Gilia capitata<br>ssp. tomentosa<br>woolly-headed gilia                      | None/None<br>G5T2/S2<br>1B.1  | Coastal bluff scrub, Valley<br>and foothill grassland.<br>Serpentinite,rocky, outcrops.<br>10-220 m. annual herb.<br>Blooms May-Jul                                       | Not Expected;<br>suitable, wetland<br>habitats and<br>vegetation<br>communities are<br>not present.      | Not Expected;<br>suitable, wetland<br>habitats and<br>vegetation<br>communities are<br>not present.         | Not Expected;<br>suitable, wetland<br>habitats and<br>vegetation<br>communities are<br>not present.         | Not Expected;                                                                                               | Not Expected;<br>suitable, wetland<br>habitats and<br>vegetation<br>communities are<br>not present.         | Not Expected;<br>suitable, wetland<br>habitats and<br>vegetation                                            | Not Expected;<br>suitable, wetland<br>habitats and<br>vegetation<br>communities are<br>not present.         |
| Gilia millefoliata<br>dark-eyed gilia                                        | None/None<br>G2/S2<br>1B.2    | Coastal dunes. 2-30 m.<br>annual herb. Blooms Apr-Jul                                                                                                                     | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                            | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               |
| Gratiola heterosepala<br>Boggs Lake hedge-hyssop                             | None/SE<br>G2/S2<br>1B.2      | Marshes and swamps (lake<br>margins), Vernal pools. clay.<br>10 -2375 m. annual herb.<br>Blooms Apr-Aug                                                                   | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present        | Moderate Potential; freshwater habitats are present.                                                        | Moderate Potential; freshwater habitats are present.                                                        | Moderate Potential; freshwater habitats are present.                                                        | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate Potential; freshwater habitats are present.                                                        | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present           | Moderate Potential; freshwater aquatic habitatsare present.                                                 |
| Harmonia hallii<br>Hall's harmonia                                           | None/None<br>G2?/S2?<br>1B.2  | Annual herb. Chaparral. Serpentine hills and ridges. Open, rocky areas within chaparral. Elevations: 1000-3200ft. (305-975m.) Blooms (Mar)Apr-Jun.                        | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 |
| Hemizonia congesta<br>ssp. congesta<br>congested-headed hayfield<br>tarplant | None/None<br>G5T2/S2<br>1B.2  | Valley and foothill grassland.<br>sometimes roadsides.<br>20-560m. annual herb.<br>Blooms Apr-Nov                                                                         | Low Potential;<br>suitable vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | • •                                                                                                         | Present; A presumed extant occurrence is mapped withinthe BSA.                                              | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Present; A presumed extant occurrence is mapped withinthe BSA.                                              |
| Hesperevax sparsiflora var.<br>brevifolia<br>short-leaved evax               | None/None<br>G4T3/S2<br>1B.2  | Coastal bluff scrub (sandy),<br>Coastal dunes, Coastal<br>prairie. 0-215 m. annual herb<br>BloomsMar-Jun                                                                  | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                            | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               |

| Scientific Name<br>Common Name                           | Status Fed/<br>State ESA CRPR  | Habitat Requirements                                                                                                                                                                                        | GEY                                                                                                      | GUE                                                                         | LAR                                                                                                         | FOR                                                                                                         | GRA                                                                                                         | SAN                                                                                                         | GLE                                                                                                         | AGU                                                                                                         | PEN                                                                                                         | PET                                                                                                         | SON                                                                                                         |
|----------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Hesperolinon adenophyllum<br>glandular western flax      | None/None<br>G2G3/S2S3<br>1B.2 | Annual herb. Chaparral, cismontane woodland, valley and foothill grassland. Serpentine soils; generally found in sepentine chaparral. Elevations: 490-4315ft. (150-1315m.) Blooms May-Aug.                  | vegetation communities are                                                                               | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present. | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected; suitable, vegetation communities are not present.                                             |
| Hesperolinon bicarpellatum<br>two-carpellatewestern flax |                                | Chaparral (serpentinite).<br>60 -1005m. annual herb.<br>Blooms May-Jul                                                                                                                                      | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present. | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 |
| Hesperolinon congestum<br>Marin western flax             | FT/ST<br>G1/S1<br>1B.1         | Annual herb. Chaparral, valley and foothill grassland. In serpentine barrens and in serpentine grassland and chaparral. Elevations: 15-1215ft. (5-370m.) Blooms Apr-Jul.                                    | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present. | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 |
| Hesperolinon sharsmithiae<br>Sharsmith's western flax    | None/None<br>G2Q/S2<br>1B.2    | Annual herb. Chaparral.<br>Serpentine substrates.<br>Elevations: 885-985ft. (270-<br>300m.) Blooms May-Jul.                                                                                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present. | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 |
| Heteranthera dubia<br>water star-grass                   | None/None<br>G5/S2<br>2B.2     | Perennial herb (aquatic). Marshes and swamps. Alkaline, still or slow-moving water. Requires a pH of 7 or higher, usually in slightly eutrophic waters. Elevations: 100-4905ft. (30-1495m.) Blooms Jul-Oct. | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present. | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable,<br>vegetation<br>communities are<br>not present.                                 |
| Horkelia marinensis<br>Point Reyes horkelia              | None/None<br>G2/S2<br>1B.2     | Coastal dunes, Coastal<br>prairie, Coastal scrub. sandy.<br>5 - 755 m. perennial herb.<br>Blooms May-Sep                                                                                                    | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                            | Not Expected;<br>coastal dune<br>habitats are not<br>present.               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                               |
| Horkelia parryi<br>Parry's horkelia                      | None/None<br>G2/S2<br>1B.2     | Perennial herb. Chaparral, cismontane woodland. Openings in chaparral or woodland; especially known from the lone formation in Amador County. Elevations: 260-3510ft. (80-1070m.) Blooms Apr-Sep.           | Low Potential;<br>suitable vegetation<br>communities are<br>present, suitable<br>soils may be<br>present | Low Potential;                                                              | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable<br>soils may be<br>present |
| Horkelia tenuiloba<br>thin-lobed horkelia                | None/None<br>G2/S2<br>1B.2     | Broadleafed upland forest,<br>Chaparral, Valley and foothill<br>grassland. mesic openings,<br>sandy. 50-500 m. perennial<br>herb. Blooms May-Jul(Aug)                                                       | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present        | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.            | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                            | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present           | Moderate Potential; freshwater aquation habitatsare present.                                                |

| Scientific Name               | Status Fed/    |                                                          |                                  |                              |                              |                              |                            |                                  |                            |                            |                            |                                  |                                  |
|-------------------------------|----------------|----------------------------------------------------------|----------------------------------|------------------------------|------------------------------|------------------------------|----------------------------|----------------------------------|----------------------------|----------------------------|----------------------------|----------------------------------|----------------------------------|
| Common Name                   | State ESA CRPR | <u> </u>                                                 | GEY                              | GUE                          | LAR                          | FOR                          | GRA                        | SAN                              | GLE                        | AGU                        | PEN                        | PET                              | SON                              |
| Hypogymnia schizidiata        | None/None      | Foliose lichen. Chaparral,                               | Not Expected;                    | Not Expected;                | Not Expected;                | Not Expected;                | Not Expected;              | Not Expected;                    | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;                    | Not Expected;                    |
| island tube lichen            | G2G3/S2        | closed-cone coniferous                                   | suitable vegetation              |                              | suitable                     | suitable                     | suitable                   | suitable                         | suitable                   | suitable                   | suitable                   | suitable                         | suitable                         |
|                               | 1B.3           | forest. On bark and wood of hardwoods and conifers.      | communities are                  | vegetation                   | vegetation                   | vegetation                   | vegetation communities are | vegetation                       | vegetation communities are | vegetation communities are | vegetation communities are | vegetation                       | vegetation communities are       |
|                               |                | Elevations: 1180-1330ft.                                 | not present.                     | communities are not present. | communities are not present. | communities are not present. | not present.               | communities are not present.     | not present.               | not present.               | not present.               | communities are not present.     | not present.                     |
|                               |                | (360-405m.)                                              |                                  | not present.                 | not present.                 | not present.                 | not present.               | not present.                     | not present.               | not present.               | not present.               | not present.                     | not present.                     |
| Kopsiopsis hookeri            | None/None      | North Coast coniferous                                   | Not Expected;                    | Low Potential;               | Not Expected;                | Low Potential;               | Low Potential;             | Not Expected;                    | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;                    | Not Expected;                    |
| small groundcone              | G4?/S1S2       | forest.90-885 m. perennial                               | suitable vegetation              | n suitable                   | suitable                     | suitable                     | suitable                   | suitable                         | suitable                   | suitable                   | suitable                   | suitable                         | suitable                         |
|                               | 2B.3           | rhizomatous herb (parasitic).                            | communities are                  | vegetation                   | vegetation                   | vegetation                   | vegetation                 | vegetation                       | vegetation                 | vegetation                 | vegetation                 | vegetation                       | vegetation                       |
|                               |                | Blooms Apr-Aug                                           | not present                      | communities are              | communities are              | communities are              | communities are            |                                  | communities are            | communities are            | communities are            | communities are                  | communities are                  |
|                               |                |                                                          |                                  | present, suitable            | not present                  | present, suitable            | present, suitable          | not present                      | not present                | not present                | not present                | not present                      | not present                      |
|                               |                |                                                          |                                  | soils may be<br>present      |                              | soils may be<br>present      | soils may be<br>present    |                                  |                            |                            |                            |                                  |                                  |
| Lasthenia burkei              | FE/SE          | Meadows and seeps (mesic),                               | Not Expected;                    | Moderate                     | Moderate                     | Moderate                     | Moderate                   | Moderate                         | Moderate                   | Moderate                   | Moderate                   | Not Expected;                    | Moderate                         |
| Burke's goldfields            | G1/S1          | Vernal pools. 15-600 m.                                  | suitable aquatic                 | Potential;                   | Potential;                   | Potential;                   | Potential;                 | Potential;                       | Potential;                 | Potential;                 | Potential;                 | suitable aquatic                 | Potential;                       |
| G                             | 1B.1           | annualherb. Blooms Apr-Jun                               | habitats and                     | freshwater                   | freshwater                   | freshwater                   | freshwater                 | freshwater                       | freshwater                 | freshwater                 | freshwater                 | habitats and                     | freshwater aquatic               |
|                               |                |                                                          | vegetation                       | habitats are                 | habitats are                 | habitats are                 | habitats are               | habitats are                     | habitats are               | habitats are               | habitats are               | vegetation                       | habitatsare                      |
|                               |                |                                                          | communities are                  | present.                     | present.                     | present.                     | present.                   | present.                         | present.                   | present.                   | present.                   | communities are                  | present.                         |
|                               |                |                                                          | not present                      |                              |                              |                              |                            |                                  |                            |                            |                            | not present                      |                                  |
| Lasthenia californica ssp.    | None/None      | Closed-cone coniferous                                   | Not Expected;                    | Moderate                     | Moderate                     | Moderate                     | Moderate                   | Moderate                         | Moderate                   | Moderate                   | Moderate                   | Not Expected;                    | Moderate                         |
| bakeri<br>Bakar's goldfields  | G3T1/S1        | forest (openings), Coastal                               | suitable aquatic                 | Potential;                   | Potential;                   | Potential;                   | Potential;                 | Potential;                       | Potential;                 | Potential;                 | Potential;                 | suitable aquatic                 | Potential;                       |
| Baker's goldfields            | 1B.2           | scrub, Meadows and seeps, Marshes and swamps.            | habitats and vegetation          | freshwater<br>habitats are   | freshwater<br>habitats are   | freshwater<br>habitats are   | freshwater<br>habitats are | freshwater<br>habitats are       | freshwater<br>habitats are | freshwater<br>habitats are | freshwater<br>habitats are | habitats and<br>vegetation       | freshwater aquatic habitatsare   |
|                               |                | 60-520m. perennial herb.                                 | communities are                  | present.                     | present.                     | present.                     | present.                   | present.                         | present.                   | present.                   | present.                   | communities are                  |                                  |
|                               |                | Blooms Apr-Oct                                           | not present                      | present.                     | present.                     | present.                     | present.                   | present.                         | present.                   | present.                   | present.                   | not present                      | present.                         |
| Lasthenia californica         | None/None      | Coastal bluff scrub, Coastal                             | Not Expected;                    | Not Expected;                | Not Expected;                | Not Expected;                | Not Expected;              | Not Expected;                    | Not Expected;              | Not Expected;              | Not Expected;              | Not Expected;                    | Not Expected;                    |
| ssp. macrantha                | G3T2/S2        | dunes, Coastal scrub.                                    | suitable vegetation              | n suitable                   | suitable                     | suitable                     | suitable                   | suitable                         | suitable                   | suitable                   | suitable                   | suitable                         | suitable                         |
| perennial goldfields          | 1B.2           | 5-520m.perennial herb.                                   | communities are                  | vegetation                   | vegetation                   | vegetation                   | vegetation                 | vegetation                       | vegetation                 | vegetation                 | vegetation                 | vegetation                       | vegetation                       |
|                               |                | Blooms Jan-Nov                                           | not present.                     | communities are              | communities are              | communities are              | communities are            | communities are                  | communities are            | communities are            | communities are            | communities are                  | communities are                  |
|                               |                |                                                          |                                  | not present.                 | not present.                 | not present.                 | not present.               | not present.                     | not present.               | not present.               | not present.               | not present.                     | not present.                     |
| Lasthenia conjugens           | FE/None        | Cismontane woodland,                                     | Not Expected;                    | Moderate                     | Moderate                     | Moderate                     | Moderate                   | Moderate                         | Moderate                   | Moderate                   | Moderate                   | Not Expected;                    | Moderate                         |
| Contra Costa goldfields       | G1/S1<br>1B.1  | Playas (alkaline), Valley and foothill grassland, Vernal | suitable aquatic<br>habitats and | Potential;<br>freshwater     | Potential;<br>freshwater     | Potential;<br>freshwater     | Potential;<br>freshwater   | <b>Potential</b> ;<br>freshwater | Potential;<br>freshwater   | Potential;<br>freshwater   | Potential;<br>freshwater   | suitable aquatic<br>habitats and | Potential;<br>freshwater aquatic |
|                               | 16.1           | pools. mesic. 0-470 m. annua                             |                                  | habitats are                 | habitats are                 | habitats are                 | habitats are               | habitats are                     | habitats are               | habitats are               | habitats are               | vegetation                       | habitatsare                      |
|                               |                | herb. BloomsMar-Jun                                      | communities are                  | present.                     | present.                     | present.                     | present.                   | present.                         | present.                   | present.                   | present.                   | communities are                  |                                  |
|                               |                |                                                          | not present                      | p. 200                       | p. 200                       | p. 200                       | p. 200                     | p. 333                           | p. 555                     | p. 555                     | p. 555                     | not present                      | p                                |
| Lathyrus jepsonii va:jepsonii | None/None      | Marshes and swamps                                       | Not Expected;                    | Moderate                     | Moderate                     | Moderate                     | Moderate                   | Moderate                         | Moderate                   | Moderate                   | Moderate                   | Not Expected;                    | Moderate                         |
| Delta tule pea                | G5T2/S2        | (freshwater and brackish).                               | suitable aquatic                 | Potential;                   | Potential;                   | Potential;                   | Potential;                 | Potential;                       | Potential;                 | Potential;                 | Potential;                 | suitable aquatic                 | Potential;                       |
|                               | 1B.2           | 0-5m. perennial herb. Blooms                             |                                  | freshwater                   | freshwater                   | freshwater                   | freshwater                 | freshwater                       | freshwater                 | freshwater                 | freshwater                 | habitats and                     | freshwater aquatic               |
|                               |                | May-Jul(Aug-Sep)                                         | vegetation                       | habitats are                 | habitats are                 | habitats are                 | habitats are               | habitats are                     | habitats are               | habitats are               | habitats are               | vegetation                       | habitatsare                      |
|                               |                |                                                          | communities are                  | present.                     | present.                     | present.                     | present.                   | present.                         | present.                   | present.                   | present.                   | communities are                  | present.                         |
| Lathyrus palustris            | None/None      | Bogs and fens, Coastal                                   | not present  Not Expected;       | Moderate                     | Moderate                     | Moderate                     | Moderate                   | Moderate                         | Moderate                   | Moderate                   | Moderate                   | not present  Not Expected;       | Moderate                         |
| marsh pea                     | G5/S2          | prairie, Coastal scrub, Lower                            | •                                | Potential;                   | Potential;                   | Potential;                   | Potential;                 | Potential;                       | Potential;                 | Potential;                 | Potential;                 | suitable aquatic                 | Potential;                       |
| marsh pea                     | 2B.2           | montane coniferous forest,                               | habitats and                     | freshwater                   | freshwater                   | freshwater                   | freshwater                 | freshwater                       | freshwater                 | freshwater                 | freshwater                 | habitats and                     | freshwater aquatic               |
|                               | = <b>=:=</b>   | •                                                        |                                  | habitats are                 | habitats are                 | habitats are                 | habitats are               | habitats are                     | habitats are               | habitats are               | habitats are               | vegetation                       | habitatsare                      |
|                               |                | Coast coniferousforest.                                  | communities are                  | present.                     | present.                     | present.                     | present.                   | present.                         | present.                   | present.                   | present.                   | communities are                  |                                  |
|                               |                | mesic. 1-100 m. perennial                                | not present                      |                              |                              |                              |                            |                                  |                            |                            |                            | not present                      |                                  |
|                               |                | herb. Blooms Mar-Aug                                     |                                  |                              |                              |                              |                            |                                  |                            |                            |                            |                                  |                                  |

| Scientific Name<br>Common Name                  | Status Fed/<br>State ESA CRPR | Habitat Requirements                           | GEY                                   | GUE               | LAR               | FOR               | GRA                               | SAN                 | GLE                               | AGU                        | PEN                 | PET                        | SON                        |
|-------------------------------------------------|-------------------------------|------------------------------------------------|---------------------------------------|-------------------|-------------------|-------------------|-----------------------------------|---------------------|-----------------------------------|----------------------------|---------------------|----------------------------|----------------------------|
| Layia septentrionalis                           | None/None                     | Chaparral, Cismontane                          | Not Expected;                         | Not Expected;     | Not Expected;     | Not Expected;     | Not Expected;                     | Not Expected;       | Not Expected;                     | Not Expected;              | Not Expected;       | Not Expected;              | Not Expected;              |
| Colusa layia                                    | G2/S2                         | woodland, Valley and foothill                  | suitable vegetation                   | suitable          | suitable          | suitable          | suitable                          | suitable            | suitable                          | suitable                   | suitable            | suitable                   | suitable                   |
|                                                 | 1B.2                          | grassland. sandy,                              | communities and                       | vegetation        | vegetation        | vegetation        | vegetation                        | vegetation          | vegetation                        | vegetation                 | vegetation          | vegetation                 | vegetation                 |
|                                                 |                               | serpentinite.100-1095 m.                       | soils are not                         | communities and   | communities and   | communities and   | communities and                   | communities and     | communities and                   | communities and            | communities and     | communities and            | communities and            |
|                                                 |                               | annual herb. Blooms Apr-                       | present.                              | soils are not     | soils are not     | soils are not     | soils are not                     | soils are not       | soils are not                     | soils are not              | soils are not       | soils are not              | soils are not              |
|                                                 |                               | May                                            |                                       | present.          | present.          | present.          | present.                          | present.            | present.                          | present.                   | present.            | present.                   | present.                   |
| Legenere limosa                                 | None/None                     | Vernal pools. 1-880 m.                         | Not Expected;                         | Not Expected;     | Not Expected;     | Not Expected;     | Not Expected;                     | Moderate            | Not Expected;                     | Not Expected;              | Moderate            | Not Expected;              | Not Expected;              |
| legenere                                        | G2/S2                         | annualherb. Blooms Apr-Jun                     | suitable, vernal                      | suitable, vernal  | suitable, vernal  | suitable, vernal  | suitable, vernal                  | Potential; suitable | suitable, vernal                  | suitable, vernal           | Potential; suitable | suitable, vernal           | suitable, vernal           |
|                                                 | 1B.1                          |                                                | pool habitats and                     | pool habitats and | pool habitats and | pool habitats and | pool habitats and                 | vegetation          | pool habitats and                 | pool habitats and          | vegetation          | pool habitats and          | pool habitats and          |
|                                                 |                               |                                                | vegetation                            | vegetation        | vegetation        | vegetation        | vegetation                        | communitiesare      | vegetation                        | vegetation                 | communitiesare      | vegetation                 | vegetation                 |
|                                                 |                               |                                                | communities are                       | communities are   | communities are   | communities are   | communities are                   | present.            | communities are                   | communities are            | present.            | communities are            | communities are            |
|                                                 |                               |                                                | not present.                          | not present.      | not present.      | not present.      | not present.                      |                     | not present.                      | not present.               |                     | not present.               | not present.               |
| Leptosiphon jepsonii                            | None/None                     | Chaparral, Cismontane                          | Low Potential;                        | Low Potential;    | Low Potential;    | Low Potential;    | Low Potential;                    | Low Potential;      | Low Potential;                    | Low Potential;             | Low Potential;      | Low Potential;             | Low Potential;             |
| Jepson's leptosiphon                            | G2G3/S2S3                     | woodland, Valley and foothill                  | suitable vegetation                   | suitable          | suitable          | suitable          | suitable                          | suitable            | suitable                          | suitable                   | suitable            | suitable                   | suitable                   |
|                                                 | 1B.2                          | grassland. usually volcanic.                   | communities are                       | vegetation        | vegetation        | vegetation        | vegetation                        | vegetation          | vegetation                        | vegetation                 | vegetation          | vegetation                 | vegetation                 |
|                                                 |                               | 100 -500 m. annual herb.                       | present, suitable                     | communities are   | communities are   | communities are   | communities are                   | communities are     | communities are                   | communities are            | communities are     | communities are            | communities are            |
|                                                 |                               | Blooms Mar-May                                 | soils may be                          | present, suitable | present, suitable | present, suitable | present, suitable                 | present, suitable   | present, suitable                 | present, suitable          | present, suitable   | present, suitable          | present, suitable          |
|                                                 |                               | •                                              | present                               | soils may be      | soils may be      | soils may be      | soils may be                      | soils may be        | soils may be                      | soils may be               | soils may be        | soils may be               | soils may be               |
|                                                 |                               |                                                | •                                     | present           | present           | present           | present                           | present             | present                           | present                    | present             | present                    | present                    |
| Leptosiphonrosaceus                             | None/None                     | Coastal bluff scrub. 0-100 m.                  | Not Expected;                         | Not Expected;     | Not Expected;     | Not Expected;     | Not Expected;                     | Not Expected;       | Not Expected;                     | Not Expected;              | Not Expected;       | Not Expected;              | Not Expected;              |
| rose leptosiphon                                | G1/S1                         | annual herb. Blooms Apr-Jul                    | suitable vegetation                   |                   | suitable          | suitable ,        | suitable                          | suitable            | suitable                          | suitable                   | suitable            | suitable                   | suitable                   |
|                                                 | 1B.1                          |                                                | communities are                       | vegetation        | vegetation        | vegetation        | vegetation                        | vegetation          | vegetation                        | vegetation                 | vegetation          | vegetation                 | vegetation                 |
|                                                 |                               |                                                | not present.                          | communities are   | communities are   | communities are   | communities are                   | communities are     | communities are                   | communities are            | communities are     | communities are            | communities are            |
|                                                 |                               |                                                |                                       | not present.      | not present.      | not present.      | not present.                      | not present.        | not present.                      | not present.               | not present.        | not present.               | not present.               |
| Lessingia arachnoidea                           | None/None                     | Cismontane woodland,                           | Low Potential;                        | Low Potential;    | Low Potential;    | Low Potential;    | Low Potential;                    | Low Potential;      | Low Potential;                    | Low Potential;             | Low Potential;      | Low Potential;             | Low Potential;             |
| Crystal Springslessingia                        | G2/S2                         | Coastalscrub, Valley and                       | suitable vegetation                   | ,                 | suitable          | suitable          | suitable                          | suitable            | suitable                          | suitable                   | suitable            | suitable                   | suitable                   |
| o. your opgo.coog.a                             | 1B.2                          | foothill grassland.                            | communities are                       | vegetation        | vegetation        | vegetation        | vegetation                        | vegetation          | vegetation                        | vegetation                 | vegetation          | vegetation                 | vegetation                 |
|                                                 |                               | serpentinite, often roadsides.                 |                                       | communities are   | communities are   | communities are   | communities are                   | communities are     | communities are                   | communities are            | communities are     | communities are            | communities are            |
|                                                 |                               | 60-200m. annual herb.                          | soils may be                          | present, suitable | present, suitable | present, suitable | present, suitable                 | present, suitable   | present, suitable                 | present, suitable          | present, suitable   | present, suitable          | present, suitable          |
|                                                 |                               | Blooms Jul-Oct                                 | present                               | soils may be      | soils may be      | soils may be      | soils may be                      | soils may be        | soils may be                      | soils may be               | soils may be        | soils may be               | soils may be               |
|                                                 |                               | 21001113341 000                                | present                               | present           | present           | present           | present                           | present             | present                           | present                    | present             | present                    | present                    |
| Lessingia micradenia var.                       | None/None                     | Annual herb. Chaparral,                        | Low Potential;                        | Low Potential;    | Low Potential:    | Low Potential;    | Low Potential;                    | Low Potential;      | Low Potential;                    | Low Potential;             | Low Potential;      | Low Potential;             | Low Potential;             |
| micradenia                                      | G2T2/S2                       | valley and foothill grassland.                 | suitable vegetation                   | ,                 | suitable          | suitable          | suitable                          | suitable            | suitable                          | suitable                   | suitable            | suitable                   | suitable                   |
| Tamalpais lessingia                             | 1B.2                          | Usually on serpentine, in                      | communities are                       | vegetation        | vegetation        | vegetation        | vegetation                        | vegetation          | vegetation                        | vegetation                 | vegetation          | vegetation                 | vegetation                 |
| Turnurpuis ressirigiu                           | 15.2                          | serpentine grassland or                        | present, suitable                     | communities are   | communities are   | communities are   | communities are                   | communities are     | communities are                   | communities are            | communities are     | communities are            | communities are            |
|                                                 |                               | serpentine chaparral. Often                    | soils may be                          | present, suitable | present, suitable | present, suitable | present, suitable                 | present, suitable   | present, suitable                 | present, suitable          | present, suitable   | present, suitable          | present, suitable          |
|                                                 |                               | on roadsides. Elevations:                      | present                               | soils may be      | soils may be      | soils may be      | soils may be                      | soils may be        | soils may be                      | soils may be               | soils may be        | soils may be               | soils may be               |
|                                                 |                               | 330-1640ft. (100-500m.)                        | present                               | present           | present           | present           | present                           | present             | present                           | present                    | present             | present                    | present                    |
|                                                 |                               | Blooms (Jun)Jul-Oct.                           |                                       | present           | present           | present           | present                           | present             | present                           | present                    | present             | present                    | present                    |
| Lilanonsis masonii                              | None/SR                       |                                                | Low Botontial                         | Low Dotontial:    | Low Dotontial:    | Low Dotontial:    | Low Dotontial:                    | Low Dotontial:      | Low Dotontial:                    | Low Dotontial:             | Low Dotontial       | Low Dotontial:             | Low Dotontial:             |
| <i>Lilaeopsis masonii</i><br>Mason's lilaeopsis | G2/S2                         | Marshes and swamps,                            | Low Potential;<br>suitable vegetation | Low Potential;    | Low Potential;    | Low Potential;    | Low Potential;                    | Low Potential;      | Low Potential;                    | Low Potential;<br>suitable | Low Potential;      | Low Potential;<br>suitable | Low Potential;<br>suitable |
| iviasuri s iliaeupsis                           | 1B.1                          | riparian scrub. Tidal zones, in                | -                                     |                   | suitable          | suitable          | suitable                          | suitable            | suitable                          |                            | suitable            |                            |                            |
|                                                 | 10.1                          | •                                              |                                       | vegetation        | vegetation        | vegetation        | vegetation                        | vegetation          | vegetation                        | vegetation                 | vegetation          | vegetation                 | vegetation                 |
|                                                 |                               | muddy or silty soil formed                     | present, suitable                     | communities are   | communities are   | communities are   | communities are present, suitable | communities are     | communities are present, suitable | communities are            | communities are     | communities are            |                            |
|                                                 |                               | through river deposition or                    | soils may be                          | present, suitable | present, suitable | present, suitable | '                                 | present, suitable   | '                                 | present, suitable          | present, suitable   | present, suitable          | present, suitable          |
|                                                 |                               | river bank erosion. In brackish or freshwater. | present                               | soils may be      | soils may be      | soils may be      | soils may be                      | soils may be        | soils may be                      | soils may be               | soils may be        | soils may be               | soils may be               |
|                                                 |                               | Elevations: 0-35ft. (0-10m.)                   |                                       | present           | present           | present           | present                           | present             | present                           | present                    | present             | present                    | present                    |
|                                                 |                               |                                                |                                       |                   |                   |                   |                                   |                     |                                   |                            |                     |                            |                            |

| Scientific Name                                              | Status Fed/                    |                                                                                                                                                                                                                                                         |                                                                                                         |                                                                                                         |                                                                                                         |                                                                                                         |                                                                                                         |                                                                            |                                                                                                           |                                                                                                         |                                                                            |                                                                                                         |                                                                                                         |
|--------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Common Name  Lilium maritimum  coast lily                    | None/None<br>G2/S2<br>1B.1     | Habitat Requirements Broadleafed upland forest, Closed-cone coniferous forest,Coastal prairie, Coastal scrub, Marshes and swamps (freshwater), North Coast coniferous forest. sometimes roadside. 5 - 475 m. perennial bulbiferous herb. Blooms May-Aug | vegetation communities are                                                                              | Moderate Potential; freshwater habitats are present.                                                    | Moderate Potential; freshwater habitats are present.                       | Moderate Potential; freshwater habitats are present.                                                      | Moderate Potential; freshwater habitats are present.                                                    | Moderate Potential; freshwater habitats are present.                       | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present       | Moderate Potential; freshwater aquatic habitatsare present.                                             |
| Lilium pardalinum<br>ssp. pitkinense<br>Pitkin Marsh lily    | FE/SE<br>G5T1/S1<br>1B.1       | Cismontane woodland, Meadows and seeps, Marshesand swamps (freshwater). mesic, sandy. 35-65 m. perennial bulbiferous herb. Blooms Jun-Jul                                                                                                               | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present       | Moderate Potential; freshwater habitats are present.                                                    | Moderate Potential; freshwater habitats are present.                       | Moderate Potential; freshwater habitats are present.                                                      | Moderate Potential; freshwater habitats are present.                                                    | Moderate Potential; freshwater habitats are present.                       | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present       | Moderate Potential; freshwater aquatic habitatsare present.                                             |
| Limnanthes vinculans<br>Sebastopol meadowfoam                | FE/SE<br>G1/S1<br>1B.1         | Meadows and seeps, Valley<br>andfoothill grassland, Vernal<br>pools.vernally mesic.<br>15-305m. annual herb.<br>Blooms Apr-May                                                                                                                          | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present. | communitiesare                                                             | Not Expected;<br>e suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present. | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present. | Moderate Potential; suitable vegetation communitiesare present.            | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present. | Not Expected;<br>suitable, vernal<br>pool habitats and<br>vegetation<br>communities are<br>not present. |
| Lomatium repostum<br>Napa lomatium                           | None/None<br>G2G3/S2S3<br>1B.2 | Perennial herb. Chaparral, cismontane woodland. Rocky areas in volcanic and serpentine soils with mixed chaparral and black oak woodland communities. Elevations: 295-3380ft. (90-1030m.) Blooms Mar-Jun.                                               | communities are not present.                                                                            | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present. | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present. | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              |
| Lupinus sericatus<br>Cobb Mountain lupine                    | None/None<br>G2?/S2?<br>1B.2   | Broadleafed upland forest,<br>Chaparral, Cismontane<br>woodland, Lower montane<br>coniferous forest. 275 - 1525<br>m.perennial herb. Blooms<br>Mar-Jun                                                                                                  | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present. | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present. | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              |
| Lupinus tidestromii<br>Tidestrom's lupine                    | FE/SE<br>G1/S1<br>1B.1         | Coastal dunes. 0 - 100 m.<br>perennial rhizomatous herb.<br>Blooms Apr-Jun                                                                                                                                                                              | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present. | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present. | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              |
| Microseris paludosa<br>marsh microseris                      | None/None<br>G2/S2<br>1B.2     | Closed-cone coniferous<br>forest, Cismontane woodland,<br>Coastalscrub, Valley and<br>foothill grassland. 5-355m.<br>perennialherb. Blooms Apr-<br>Jun(Jul)                                                                                             | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                                 | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present. | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                                | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected; suitable vegetation communities are not present.             | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                              |
| Navarretia leucocephala ssp.<br>bakeri<br>Baker's navarretia | None/None<br>G4T2/S2<br>1B.1   | Cismontane woodland,<br>Lower montane coniferous<br>forest, Meadows and seeps,<br>Valley andfoothill grassland,<br>Vernal pools.Mesic.<br>5-1740m. annual herb.<br>Blooms Apr-Jul                                                                       | Low Potential;<br>suitable upland<br>habitats and<br>vegetation<br>communities are<br>present           | Moderate Potential; freshwater habitats are present.                                                    | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                                        | Moderate Potential; freshwater habitats are present.                                                    | Moderate Potential; freshwater habitats are present.                                                    | Moderate Potential; freshwater habitats are present.                       | Moderate Potential; freshwater habitats are present.                                                      | Moderate Potential; freshwater habitats are present.                                                    | Moderate Potential; freshwater habitats are present.                       | Low Potential;<br>suitable upland<br>habitats and<br>vegetation<br>communities are<br>present           | Low Potential;<br>suitable upland<br>habitats and<br>vegetation<br>communities are<br>present           |

| Scientific Name<br>Common Name | Status Fed/<br>State ESA CRPR | Habitat Requirements                                               | GEY                 | GUE                | LAR                           | FOR                          | GRA                          | SAN                           | GLE                 | AGU                           | PEN                           | PET               | SON               |
|--------------------------------|-------------------------------|--------------------------------------------------------------------|---------------------|--------------------|-------------------------------|------------------------------|------------------------------|-------------------------------|---------------------|-------------------------------|-------------------------------|-------------------|-------------------|
| Navarretia leucocephala        | FE/ST                         | Annual herb. Vernal pools.                                         | Not Expected;       | Not Expected;      | Not Expected;                 | Not Expected;                | Not Expected;                | Moderate                      | Not Expected;       | Not Expected;                 | Moderate                      | Not Expected;     | Not Expected;     |
| ssp. pauciflora                | G4T1/S1                       | Volcanic ash flow, and                                             | suitable, vernal    | suitable, vernal   | suitable, vernal              | suitable, vernal             | suitable, vernal             | Potential; suitable           |                     | suitable, vernal              | Potential; suitable           |                   | suitable, vernal  |
| few-flowered navarretia        | 1B.1                          | volcanic substrate vernal                                          | pool habitats and   | pool habitats and  | pool habitats and             | pool habitats and            | pool habitats and            | vegetation                    | pool habitats and   | pool habitats and             | vegetation                    | pool habitats and | pool habitats and |
|                                |                               | pools. Elevations:                                                 | vegetation          | vegetation         | vegetation                    | vegetation                   | vegetation                   | communitiesare                | vegetation          | vegetation                    | communitiesare                | vegetation        | vegetation        |
|                                |                               | 1310-2805ft. (400-855m.)                                           | communities are     | communities are    | communities are               | communities are              | communities are              | present.                      | communities are     | communities are               | present.                      | communities are   | communities are   |
|                                |                               | Blooms May-Jun.                                                    | not present.        | not present.       | not present.                  | not present.                 | not present.                 |                               | not present.        | not present.                  |                               | not present.      | not present.      |
| Navarretia leucocephala ssp.   | •                             | Vernal pools (volcanic ash                                         | Not Expected;       | Not Expected;      | Not Expected;                 | Not Expected;                | Not Expected;                | Moderate                      | Not Expected;       | Not Expected;                 | Moderate                      | Not Expected;     | Not Expected;     |
| plieantha                      | G4T1/S1                       | flow).30-950m. annual herb.                                        | suitable, vernal    | suitable, vernal   | suitable, vernal              | suitable, vernal             | suitable, vernal             | Potential; suitable           | suitable, vernal    | suitable, vernal              | Potential; suitable           | suitable, vernal  | suitable, vernal  |
| many-flowerednavarretia        | 1B.2                          | BloomsMay-Jun                                                      | pool habitats and   | pool habitats and  | pool habitats and             | pool habitats and            | pool habitats and            | vegetation                    | pool habitats and   | pool habitats and             | vegetation                    | pool habitats and | pool habitats and |
|                                |                               |                                                                    | vegetation          | vegetation         | vegetation                    | vegetation                   | vegetation                   | communitiesare                | vegetation          | vegetation                    | communitiesare                | vegetation        | vegetation        |
|                                |                               |                                                                    | communities are     | communities are    | communities are               | communities are              | communities are              | present.                      | communities are     | communities are               | present.                      | communities are   | communities are   |
|                                |                               |                                                                    | not present.        | not present.       | not present.                  | not present.                 | not present.                 |                               | not present.        | not present.                  |                               | not present.      | not present.      |
| Navarretia rosulata            | None/None                     | Annual herb. Chaparral,                                            | Not Expected;       | Not Expected;      | Not Expected;                 | Not Expected;                | Not Expected;                | Not Expected;                 | Not Expected;       | Not Expected;                 | Not Expected;                 | Not Expected;     | Not Expected;     |
| Marin County navarretia        | G2/S2                         | closed-cone coniferous                                             | suitable vegetation |                    | suitable                      | suitable                     | suitable                     | suitable                      | suitable            | suitable                      | suitable                      | suitable          | suitable          |
|                                | 1B.2                          | forest. Dry, open rocky                                            | communities are     | vegetation         | vegetation                    | vegetation<br>               | vegetation<br>               | vegetation                    | vegetation          | vegetation                    | vegetation<br>                | vegetation        | vegetation<br>    |
|                                |                               | places; can occur on                                               | not present.        | communities are    | communities are               | communities are              | communities are              | communities are               | communities are     | communities are               | communities are               | communities are   | communities are   |
|                                |                               | serpentine. Elevations: 655-2085ft. (200-635m.) Blooms<br>May-Jul. |                     | not present.       | not present.                  | not present.                 | not present.                 | not present.                  | not present.        | not present.                  | not present.                  | not present.      | not present.      |
| Panicum acuminatum var.        | None/SE                       | Closed-cone coniferous                                             | Low Potential;      | Moderate           | Moderate                      | Moderate                     | Moderate                     | Moderate                      | Moderate            | Moderate                      | Moderate                      | Low Potential;    | Low Potential;    |
| thermale                       | G5T2Q/S2                      | forest, Riparian forest, Valley                                    | suitable upland     | Potential; Riparia | n <b>Potential</b> ; Ripariar | n <b>Potential</b> ; Riparia | n <b>Potential</b> ; Riparia | n <b>Potential</b> ; Riparian | Potential; Ripariar | n <b>Potential</b> ; Ripariar | n <b>Potential</b> ; Riparian | suitable upland   | suitable upland   |
| Geysers panicum                | 1B.2                          | and foothill grassland.                                            | habitats and        | andgrassland       | andgrassland                  | andgrassland                 | andgrassland                 | andgrassland                  | andgrassland        | andgrassland                  | andgrassland                  | habitats and      | habitats and      |
|                                |                               | geothermally-altered soil,                                         | vegetation          | habitats are       | habitats are                  | habitats are                 | habitats are                 | habitats are                  | habitats are        | habitats are                  | habitats are                  | vegetation        | vegetation        |
|                                |                               | sometimes streamsides.                                             | communities are     | present.           | present.                      | present.                     | present.                     | present.                      | present.            | present.                      | present.                      | communities are   | communities are   |
|                                |                               | 305-2470 m. annual/<br>perennial herb. BloomsJun-                  | present.            |                    |                               |                              |                              |                               |                     |                               |                               | present           | present           |
| Penstemon newberryi var.       | None/None                     | Aug Chaparral (rocky).                                             | Not Expected;       | Not Expected;      | Not Expected;                 | Not Expected;                | Not Expected;                | Not Expected;                 | Not Expected;       | Not Expected;                 | Not Expected;                 | Not Expected;     | Not Expected;     |
| sonomensis Sonoma              | G4T3/S3                       | 700-1370m.perennial herb.                                          | suitable rocky      | suitable rocky     | suitable rocky                | suitable rocky               | suitable rocky               | suitable rocky                | suitable rocky      | suitable rocky                | suitable rocky                | suitable rocky    | suitable rocky    |
| beardtongue                    | 1B.3                          | Blooms Apr-Aug                                                     | habitats are not    | habitats are not   | habitats are not              | habitats are not             | habitats are not             | habitats are not              | habitats are not    | habitats are not              | habitats are not              | habitats are not  | habitats are not  |
| Scaratorigae                   | 15.5                          | Diocinis Apr. Aug                                                  | present.            | present.           | present.                      | present.                     | present.                     | present.                      | present.            | present.                      | present.                      | present.          | present.          |
| Phacelia insularis var.        | None/None                     | Annual herb. Coastal bluff                                         | Not Expected;       | Not Expected;      | Not Expected;                 | Not Expected;                | Not Expected;                | Not Expected;                 | Not Expected;       | Not Expected;                 | Not Expected;                 | Not Expected;     | Not Expected;     |
| continentis                    | G2T2/S2                       | scrub, coastal dunes. Open                                         | suitable vegetation | • ′                | suitable                      | suitable                     | suitable                     | suitable                      | suitable            | suitable                      | suitable                      | suitable          | suitable          |
| North Coast phacelia           | 1B.2                          | maritime bluffs, sandy soil,                                       | communities are     | vegetation         | vegetation                    | vegetation                   | vegetation                   | vegetation                    | vegetation          | vegetation                    | vegetation                    | vegetation        | vegetation        |
|                                |                               | sometimes rocky habitats.                                          | not present.        | communities are    | communities are               | communities are              | communities are              | communities are               | communities are     | communities are               | communities are               | communities are   | communities are   |
|                                |                               | Elevations: 35-560ft. (10-                                         | <b>F</b>            | not present.       | not present.                  | not present.                 | not present.                 | not present.                  | not present.        | not present.                  | not present.                  | not present.      | not present.      |
|                                |                               | 170m.) Blooms Mar-May.                                             |                     | ·                  | •                             | •                            | •                            | ·                             | •                   | •                             | ·                             | ·                 | '                 |
| Piperia candida                | None/None                     | Broadleafed upland forest,                                         | Low Potential;      | Low Potential;     | Low Potential;                | Low Potential;               | Low Potential;               | Low Potential;                | Low Potential;      | Low Potential;                | Low Potential;                | Low Potential;    | Low Potential;    |
| white-flowered reinorchid      | G3?/S3                        | Lower montane coniferous                                           | suitable upland     | suitable upland    | suitable upland               | suitable upland              | suitable upland              | suitable upland               | suitable upland     | suitable upland               | suitable upland               | suitable upland   | suitable upland   |
|                                | 1B.2                          | forest, North Coast                                                | habitats and        | habitats and       | habitats and                  | habitats and                 | habitats and                 | habitats and                  | habitats and        | habitats and                  | habitats and                  | habitats and      | habitats and      |
|                                |                               | coniferous forest. sometimes                                       | vegetation          | vegetation         | vegetation                    | vegetation                   | vegetation                   | vegetation                    | vegetation          | vegetation                    | vegetation                    | vegetation        | vegetation        |
|                                |                               | serpentinite.30-1310 m.                                            | communities are     | communities are    | communities are               | communities are              | communities are              | communities are               | communities are     | communities are               | communities are               | communities are   | communities are   |
|                                |                               | perennial herb.<br>Blooms (Mar)May-Sep                             | present.            | present            | present                       | present                      | present                      | present                       | present             | present                       | present                       | present           | present           |
| Plagiobothrys strictus         | FE/ST                         | Annual herb. Meadows and                                           | Not Expected;       | Not Expected;      | Not Expected;                 | Not Expected;                | Not Expected;                | Not Expected;                 | Not Expected;       | Not Expected;                 | Not Expected;                 | Not Expected;     | Not Expected;     |
| Calistoga popcornflower        | G1/S1                         | seeps, valley and foothill                                         | suitable vegetation |                    | suitable                      | suitable                     | suitable                     | suitable                      | suitable            | suitable                      | suitable                      | suitable          | suitable          |
|                                | 1B.1                          | grassland, vernal pools.                                           | communities are     | vegetation         | vegetation                    | vegetation                   | vegetation                   | vegetation                    | vegetation          | vegetation                    | vegetation                    | vegetation        | vegetation        |
|                                |                               | Alkaline sites near thermal                                        | not present.        | communities are    | communities are               | communities are              | communities are              |                               | communities are     | communities are               | communities are               | communities are   | communities are   |
|                                |                               | springs and on margins of                                          |                     | not present.       | not present.                  | not present.                 | not present.                 | not present.                  | not present.        | not present.                  | not present.                  | not present.      | not present.      |
|                                |                               | vernal pools in heavy, dark,                                       |                     |                    |                               |                              |                              |                               |                     |                               |                               |                   |                   |
|                                |                               | adobe-like clay. Elevations: 295-525ft. (90-160m.) Blooms          |                     |                    |                               |                              |                              |                               |                     |                               |                               |                   |                   |
|                                |                               | 745-575TT (40-160M ) RIOOMS                                        |                     |                    |                               |                              |                              |                               |                     |                               |                               |                   |                   |
|                                |                               | Mar-Jun.                                                           | •                   |                    |                               |                              |                              |                               |                     |                               |                               |                   |                   |

| Scientific Name                         | Status Fed/          |                                                                                                          |                     |                                   |                             |                                   |                                   |                             |                             |                             |                             |                            |                            |
|-----------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------|-----------------------------|-----------------------------------|-----------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------|----------------------------|
| Common Name                             | State ESA CRPR       | <u> </u>                                                                                                 |                     | GUE                               | LAR                         | FOR                               | GRA                               | SAN                         | GLE                         | AGU                         | PEN                         | PET                        | SON                        |
| Pleuropogon hooverianus                 | None/ST              | Broadleafed upland forest,                                                                               | Low Potential;      | Low Potential;                    | Low Potential;              | Low Potential;                    | Low Potential;                    | Low Potential;              | Low Potential;              | Low Potential;              | Low Potential;              | Low Potential;             | Low Potential;             |
| North Coast semaphore                   | G2/S2                | Meadows and seeps, North                                                                                 | suitable vegetation |                                   | suitable                    | suitable                          | suitable                          | suitable                    | suitable                    | suitable                    | suitable                    | suitable                   | suitable                   |
| grass                                   | 1B.1                 | Coast coniferous forest. open                                                                            |                     | vegetation<br>                    | vegetation<br>              | vegetation<br>                    | vegetation<br>                    | vegetation<br>              | vegetation<br>              | vegetation<br>              | vegetation<br>              | vegetation<br>             | vegetation<br>             |
|                                         |                      | areas, mesic. 10-671m.                                                                                   | present, suitable   | communities are                   | communities are             | communities are                   | communities are                   | communities are             | communities are             | communities are             | communities are             | communities are            | communities are            |
|                                         |                      | perennial rhizomatous herb.                                                                              | soils may be        | present, suitable                 | present, suitable           | present, suitable                 | present, suitable                 | present, suitable           | present, suitable           | present, suitable           | present, suitable           | present, suitable          | present, suitable          |
|                                         |                      | Blooms Apr-Jun                                                                                           | present             | soils may be                      | soils may be<br>present     | soils may be                      | soils may be<br>present           | soils may be<br>present     | soils may be                | soils may be<br>present     | soils may be<br>present     | soils may be<br>present    | soils may be<br>present    |
| Poa napensis                            | FE/SE                | Perennial herb. Meadows and                                                                              | Not Evpected:       | present Not Expected;             | Not Expected;               | present Not Expected;             | Not Expected;                     | Not Expected;               | present Not Expected:       | Not Expected;               | Not Expected;               | Not Expected;              | Not Expected;              |
| Napa blue grass                         | G1/S1                | seeps, valley and foothill                                                                               | suitable vegetation | •                                 | suitable                    | suitable                          | suitable                          | suitable                    | suitable                    | suitable                    | suitable                    | suitable                   | suitable                   |
| Napa blue grass                         | 1B.1                 | grassland. Moist alkaline                                                                                | communities are     | vegetation                        | vegetation                  | vegetation                        | vegetation                        | vegetation                  | vegetation                  | vegetation                  | vegetation                  | vegetation                 | vegetation                 |
|                                         | 10.1                 | meadows fed by runoff from                                                                               |                     | communities are                   | communities are             | communities are                   | communities are                   | communities are             | communities are             | communities are             | communities are             | communities are            | communities are            |
|                                         |                      | nearby hot springs.<br>Elevations: 330-655ft.<br>(100-200m.) Blooms May-                                 |                     | not present.                      | not present.                | not present.                      | not present.                      | not present.                | not present.                | not present.                | not present.                | not present.               | not present.               |
| Dalamaniumaarnaum                       | Nana/Nana            | Aug.                                                                                                     | Low Dotoutial       | Law Datastial                     | Law Datastial               | Low Dotoutial                     | Law Datastial                     | Law Datastal                | Low Dotoutial               | Low Dotontial               | Law Datastial               | Low Detential              | Law Datastial              |
| Polemoniumcarneum Oregon polemonium     | None/None<br>G3G4/S2 | Coastal prairie, Coastal scrub,<br>Lower montane coniferous                                              | suitable vegetation | Low Potential;                    | Low Potential;<br>suitable  | Low Potential;<br>suitable        | Low Potential;<br>suitable        | Low Potential;<br>suitable  | Low Potential;<br>suitable  | Low Potential;<br>suitable  | Low Potential;<br>suitable  | Low Potential;<br>suitable | Low Potential;<br>suitable |
| Oregon polemonium                       | 2B.2                 | forest. 0-1830 m. perennial                                                                              | communities are     | vegetation                        | vegetation                  | vegetation                        | vegetation                        | vegetation                  | vegetation                  | vegetation                  | vegetation                  | vegetation                 | vegetation                 |
|                                         | 20.2                 | herb. Blooms Apr-Sep                                                                                     | present, suitable   | communities are                   | communities are             | communities are                   | communities are                   | communities are             | communities are             | communities are             | communities are             | communities are            | communities are            |
|                                         |                      | петата в петат при обр                                                                                   | soils may be        | present, suitable                 | present, suitable           | present, suitable                 | present, suitable                 | present, suitable           | present, suitable           | present, suitable           | present, suitable           | present, suitable          | present, suitable          |
|                                         |                      |                                                                                                          | present             | soils may be                      | soils may be                | soils may be                      | soils may be                      | soils may be                | soils may be                | soils may be                | soils may be                | soils may be               | soils may be               |
|                                         |                      |                                                                                                          | •                   | present                           | present                     | present                           | present                           | present                     | present                     | present                     | present                     | present                    | present                    |
| Puccinellia simplex                     | None/None            | Annual herb. Chenopod                                                                                    | Not Expected;       | Not Expected;                     | Not Expected;               | Not Expected;                     | Not Expected;                     | Not Expected;               | Not Expected;               | Not Expected;               | Not Expected;               | Not Expected;              | Not Expected;              |
| California alkali grass                 | G3/S2                | scrub, meadows and seeps,                                                                                | suitable vegetation | suitable                          | suitable                    | suitable                          | suitable                          | suitable                    | suitable                    | suitable                    | suitable                    | suitable                   | suitable                   |
|                                         | 1B.2                 | valley and foothill grassland,                                                                           | communities are     | vegetation                        | vegetation                  | vegetation                        | vegetation                        | vegetation                  | vegetation                  | vegetation                  | vegetation                  | vegetation                 | vegetation                 |
|                                         |                      | vernal pools. Alkaline,                                                                                  | not present.        | communities are                   | communities are             | communities are                   | communities are                   | communities are             | communities are             | communities are             | communities are             | communities are            | communities are            |
|                                         |                      | vernally mesic. Sinks, flats,<br>and lake margins. Elevations:<br>5-3050ft. (2-930m.) Blooms<br>Mar-May. |                     | not present.                      | not present.                | not present.                      | not present.                      | not present.                | not present.                | not present.                | not present.                | not present.               | not present.               |
| Quercus parvula                         | None/None            | Perennial evergreen shrub.                                                                               | Not Expected;       | Low Potential;                    | Not Expected;               | Not Expected;                     | Not Expected;                     | Not Expected;               | Low Potential;              | Not Expected;               | Not Expected;               | Not Expected;              | Not Expected;              |
| var. tamalpaisensis                     | G4T2/S2              | Lower montane coniferous                                                                                 | suitable vegetation | n suitable                        | suitable                    | suitable                          | suitable                          | suitable                    | suitable                    | suitable                    | suitable                    | suitable                   | suitable                   |
| Tamalpais oak                           | 1B.3                 | forest. Elevations:                                                                                      | communities are     | vegetation                        | vegetation                  | vegetation                        | vegetation                        | vegetation                  | vegetation                  | vegetation                  | vegetation                  | vegetation                 | vegetation                 |
|                                         |                      | 330-2460ft. (100-750m.)                                                                                  | not present.        | communities are                   | communities are             | communities are                   | communities are                   | communities are             | communities are             | communities are             | communities are             | communities are            | communities are            |
|                                         |                      | Blooms Mar-Apr.                                                                                          |                     | present, suitable                 | not present.                | not present.                      | not present.                      | not present.                | present, suitable           | not present.                | not present.                | not present.               | not present.               |
|                                         |                      |                                                                                                          |                     | soils may be                      |                             |                                   |                                   |                             | soils may be                |                             |                             |                            |                            |
| - " · · · · · · · · · · · · · · · · · · |                      |                                                                                                          |                     | present                           |                             |                                   |                                   |                             | present                     |                             |                             |                            |                            |
| Ramalina thrausta                       | None/None            | North Coast coniferous                                                                                   | Not Expected;       | Low Potential;                    | Not Expected;               | Low Potential;                    | Low Potential;                    | Not Expected;               | Not Expected;               | Not Expected;               | Not Expected;               | Not Expected;              | Not Expected;              |
| angel's hair lichen                     | G5?/S2S3             | forest. On dead twigs and                                                                                | suitable vegetation |                                   | suitable                    | suitable                          | suitable                          | suitable                    | suitable                    | suitable                    | suitable                    | suitable                   | suitable                   |
|                                         | 2B.1                 | other lichens.75-430m.                                                                                   | communities are     | vegetation                        | vegetation                  | vegetation                        | vegetation                        | vegetation                  | vegetation                  | vegetation                  | vegetation                  | vegetation communities are | vegetation communities are |
|                                         |                      | fruticose lichen (epiphytic).<br>Blooms                                                                  | not present         | communities are present, suitable | communities are not present | communities are present, suitable | communities are present, suitable | communities are not present | not present                | not present                |
|                                         |                      | Біоопіз                                                                                                  |                     | soils may be                      | not present                 | soils may be                      | soils may be                      | not present                 | not present                 | not present                 | not present                 | not present                | not present                |
|                                         |                      |                                                                                                          |                     | present                           |                             | present                           | present                           |                             |                             |                             |                             |                            |                            |
| Rhynchospora alba                       | None/None            | Bogs and fens, Meadows and                                                                               | Not Expected:       | Moderate                          | Moderate                    | Moderate                          | Moderate                          | Moderate                    | Moderate                    | Moderate                    | Moderate                    | Not Expected;              | Moderate                   |
| white beaked-rush                       | G5/S2                | seeps, Marshes and swamps                                                                                | • ′                 | Potential;                        | Potential;                  | Potential;                        | Potential;                        | Potential;                  | Potential;                  | Potential;                  | Potential;                  | suitable aquatic           | Potential;                 |
|                                         | 2B.3                 | (freshwater). 60-2040m.                                                                                  | habitats and        | freshwater                        | freshwater                  | freshwater                        | freshwater                        | freshwater                  | freshwater                  | freshwater                  | freshwater                  | habitats and               | freshwater aquatic         |
|                                         |                      | perennial rhizomatous herb.                                                                              | vegetation          | habitats are                      | habitats are                | habitats are                      | habitats are                      | habitats are                | habitats are                | habitats are                | habitats are                | vegetation                 | habitatsare                |
|                                         |                      | Blooms Jun-Aug                                                                                           | communities are     | present.                          | present.                    | present.                          | present.                          | present.                    | present.                    | present.                    | present.                    | communities are            |                            |
|                                         |                      |                                                                                                          | not present         |                                   |                             |                                   |                                   |                             |                             |                             |                             | not present                |                            |

| Scientific Name<br>Common Name | Status Fed/<br>State ESA CRPR | Habitat Requirements                                 | GEY                           | GUE                | LAR                | FOR                | GRA                | SAN                | GLE                | AGU                | PEN                | PET                         | SON                 |
|--------------------------------|-------------------------------|------------------------------------------------------|-------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----------------------------|---------------------|
| Rhynchospora californica       | None/None                     | Bogs and fens, Lower                                 | Not Expected;                 | Moderate           | Not Expected;               | Moderate            |
| California beaked-rush         | G1/S1                         | montane coniferous forest,                           | suitable aquatic              | Potential;         | suitable aquatic            | Potential;          |
|                                | 1B.1                          | Meadows and seeps (seeps),                           | habitats and                  | freshwater         | habitats and                | freshwater aquatic  |
|                                |                               | Marshes and swamps                                   | vegetation                    | habitats are       | vegetation                  | habitatsare         |
|                                |                               | (freshwater). 45-1010m.                              | communities are               | present.           | communities are             | present.            |
|                                |                               | perennial rhizomatous herb.<br>Blooms May-Jul        | not present                   |                    |                    |                    |                    |                    |                    |                    |                    | not present                 |                     |
| Rhynchospora capitellata       | None/None                     | Lower montane coniferous                             | Not Expected;                 | Moderate           | Not Expected;               | Moderate            |
| brownish beaked-rush           | G5/S1                         | forest, Meadows and seeps,                           | suitable aquatic              | Potential;         | suitable aquatic            | Potential;          |
|                                | 2B.2                          | Marshes and swamps, Upper                            |                               | freshwater         | habitats and                | freshwater aquatic  |
|                                |                               | montane coniferous forest.                           | vegetation                    | habitats are       | vegetation                  | habitatsare         |
|                                |                               | mesic. 45 - 2000 m. perennia<br>herb. Blooms Jul-Aug | I communities are not present | present.           | communities are not present | present.            |
| Rhynchosporaglobularis         | None/None                     | Marshes and swamps                                   | Not Expected;                 | Moderate           | Not Expected;               | Moderate            |
| round-headedbeaked-rush        | G5/S1                         | (freshwater). 45-60 m.                               | suitable aquatic              | Potential;         | suitable aquatic            | Potential;          |
|                                | 2B.1                          | perennial rhizomatous herb.                          | habitats and                  | freshwater         | habitats and                | freshwater aquatic  |
|                                |                               | Blooms Jul-Aug                                       | vegetation                    | habitats are       | vegetation                  | habitatsare         |
|                                |                               |                                                      | communities are not present   | present.           | communities are not present | present.            |
| Sagittaria sanfordii           | None/None                     | Perennial rhizomatous herb                           | Not Expected;                 | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;               | Not Expected;       |
| Sanford's arrowhead            | G3/S3                         | (emergent). Marshes and                              | suitable vegetation           | suitable                    | suitable vegetation |
|                                | 1B.2                          | swamps. In standing or slow-                         | communities are               | vegetation                  | communities are     |
|                                |                               | moving freshwater ponds,                             | not present.                  | communities are             | not present.        |
|                                |                               | marshes, and ditches.                                |                               | not present.                |                     |
|                                |                               | Elevations: 0-2135ft.                                |                               |                    |                    |                    |                    |                    |                    |                    |                    |                             |                     |
|                                |                               | (0-650m.) Blooms May-                                |                               |                    |                    |                    |                    |                    |                    |                    |                    |                             |                     |
|                                |                               | Oct(Nov).                                            |                               |                    |                    |                    |                    |                    |                    |                    |                    |                             |                     |
| Sidalcea calycosassp.          | None/None                     | Marshes and swamps                                   | Not Expected;                 | Moderate           | Not Expected;               | Moderate            |
| rhizomata                      | G5T2/S2 1B.2                  | (freshwater, near coast).                            | suitable aquatic              | Potential;         | suitable aquatic            | Potential;          |
| Point Reyes checkerbloom       |                               | 3-75m. perennial                                     | habitats and                  | freshwater         | habitats and                | freshwater aquatic  |
|                                |                               | rhizomatous herb.Blooms                              | vegetation                    | habitats are       | vegetation                  | habitatsare         |
|                                |                               | Apr-Sep                                              | communities are               | present.           | communities are             | present.            |
|                                |                               |                                                      | not present                   |                    |                    |                    |                    |                    |                    |                    |                    | not present                 |                     |
| Sidalcea hickmanii             | None/None                     | Chaparral. rhyolitic.                                | Not Expected;                 | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;               | Not Expected;       |
| ssp. napensis                  | G3T1/S1                       | 415-610m.perennial herb.                             | suitable soils and            | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and          | suitable soils and  |
| Napa checkerbloom              | 1B.1                          | Blooms Apr-Jun                                       | vegetation                    | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation                  | vegetation          |
|                                |                               |                                                      | communities are               | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are             | communities are     |
|                                |                               |                                                      | not present.                  | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.                | not present.        |
| Sidalcea hickmanii             | None/None                     | Chaparral (serpentinite).                            | Not Expected;                 | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;               | Not Expected;       |
| ssp. viridis Marin             | G3TH/SH                       | 50-430 m. perennial herb.                            | suitable vegetation           |                    | suitable                    | suitable vegetation |
| checkerbloom                   | 1B.1                          | Blooms May-Jun                                       | communities are               | vegetation                  | communities are     |
|                                |                               |                                                      | not present.                  | communities are             | not present.        |
|                                |                               |                                                      |                               | not present.                |                     |
| Sidalcea malviflorassp.        | None/None                     | Broadleafed upland forest,                           | Low Potential;                | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;              | Low Potential;      |
| purpurea purple-stemmed        | G5T1/S1                       | Coastal prairie. 15-85m.                             | suitable vegetation           |                    | suitable                    | suitable vegetation |
| checkerbloom                   | 1B.2                          | perennial rhizomatous herb.                          | communities are               | vegetation                  | communities are     |
|                                |                               | Blooms May-Jun                                       | present, suitable             | communities are             | present, suitable   |
|                                |                               |                                                      | soils may be                  | present, suitable           | soils may be        |
|                                |                               |                                                      | present                       | soils may be                | present             |
|                                |                               |                                                      |                               | present                     |                     |

| Scientific Name              | Status Fed/    |                              |                       |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |
|------------------------------|----------------|------------------------------|-----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|
| Common Name                  | State ESA CRPR | Habitat Requirements         | GEY                   | GUE                | LAR                | FOR                | GRA                | SAN                | GLE                | AGU                | PEN                | PET                | SON                 |
| Sidalcea oregana ssp.        | None/None      | Perennial herb. Meadows      | Not Expected;         | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;       |
| hydrophila                   | G5T2/S2        | and seeps, riparian forest.  | suitable soils and    | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and  |
| marsh checkerbloom           | 1B.2           | Wet soil of streambanks,     | vegetation            | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation          |
|                              |                | meadows. Elevations:         | communities are       | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are     |
|                              |                | 3610-7545ft. (1100-2300m.)   | not present.          | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.        |
|                              |                | Blooms (Jun)Jul-Aug.         |                       |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |
| Sidalcea oregana             | FE/SE          | Marshes and swamps           | Not Expected;         | Moderate           | Not Expected;      | Moderate            |
| ssp. valida                  | G5T1/S1        | (freshwater). 115-150m.      | suitable aquatic      | Potential;         | suitable aquatic   | Potential;          |
| Kenwood Marsh                | 1B.1           | perennial rhizomatous herb.  | habitats and          | freshwater         | habitats and       | freshwater aquation |
| checkerbloom                 |                | Blooms Jun-Sep               | vegetation            | habitats are       | vegetation         | habitatsare         |
|                              |                |                              | communities are       | present.           | communities are    | present.            |
|                              |                |                              | not present           |                    |                    |                    |                    |                    |                    |                    |                    | not present        |                     |
| Silene scouleri ssp.         | None/None      | Coastal bluff scrub, Coastal | Not Expected;         | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;       |
| scouleri                     | G5T4T5/S2S3    | prairie, Valley and foothill | suitable vegetation   | suitable           | suitable vegetation |
| Scouler's catchfly           | 2B.2           | grassland. 0-600m. perennial | communities are       | vegetation         | communities are     |
| •                            |                | herb. Blooms (Mar-May)Jun-   |                       | communities are    | not present.        |
|                              |                | Aug(Sep)                     | '                     | not present.       | '                   |
| Spergularia macrotheca var.  | None/None      | Perennial herb. Marshes and  | Not Expected;         | Not Expected;      | Not Expected:      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected:      | Not Expected;      | Not Expected:      | Not Expected;       |
| longistyla                   | G5T2/S2        | swamps, meadows and          | suitable vegetation   | •                  | suitable           | suitable vegetation |
| long-styled sand-spurrey     | 1B.2           | seeps. Alkaline. Elevations: | communities are       | vegetation         | communities are     |
| iong styled salid spairtey   | 10.2           | 0-835ft. (0-255m.) Blooms    | not present.          | communities are    |                     |
|                              |                | Feb-May.                     | not present.          | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.        |
| Streptanthus anomalus        | None/None      | Annual herb. Cismontane      | Low Potential;        | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential:     | Low Potential;     | Low Potential:     | Low Potential;     | Low Potential;      |
| Mount Burdell jewelflower    | G1/S1          | woodland. Openings,          | suitable vegetation   | ·                  | suitable           | suitable vegetation |
| Would Barden Jewelliower     | 1B.1           | Serpentinite. Elevations:    | communities are       | vegetation         | communities are     |
|                              | 10.1           | 165-490ft. (50-150m.)        | present, suitable     | communities are    | present, suitable   |
|                              |                | Blooms May-Jun.              | soils may be          | present, suitable  | soils may be        |
|                              |                | BIOOTTIS Way-Juil.           | present               | soils may be       | present             |
|                              |                |                              | present               | •                  | •                  | •                  | •                  | •                  | •                  | •                  | •                  | •                  | present             |
| Strontonthus batrachonus     | Nana/Nana      | Annual barb Chanarral        | Not Evented.          | present            | Not Function        |
| Streptanthus batrachopus     | None/None      | Annual herb. Chaparral,      | Not Expected;         | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;       |
| Tamalpais jewelflower        | G2/S2          | closed-cone coniferous       | suitable soils and    | suitable soils and |                    |                    |                    |                    | suitable soils and | suitable soils and |                    | suitable soils and |                     |
|                              | 1B.3           | forest. Talus serpentine     | vegetation            | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation          |
|                              |                | outcrops. Elevations:        | communities are       | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    |                     |
|                              |                | 1000-2135ft. (305-650m.)     | not present.          | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.        |
|                              |                | Blooms Apr-Jul.              |                       |                    |                    |                    |                    |                    |                    |                    |                    |                    |                     |
| Streptanthus brachiatus ssp. | •              | Closed-cone coniferous       | Not Expected;         | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;       |
| brachiatus                   | G2T1/S1        | forest, Chaparral. usually   | suitable vegetation   |                    | suitable           | suitable vegetation |
| Socrates Mine jewelflower    | 1B.2           | serpentinite.545-1000m.      | communities are       | vegetation         | communities are     |
|                              |                | perennial herb. Blooms May-  | not present.          | communities are    | communities are    |                    | communities are    | not present.        |
|                              |                | Jun                          |                       | not present.       |                     |
| Streptanthus brachiatus ssp. |                | Chaparral, Cismontane        | Not Expected;         | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;       |
| hoffmanii                    | G2T2/S2        | woodland. serpentinite.      | suitable vegetation   |                    | suitable           | suitable vegetation |
| Freed's jewelflower          | 1B.2           | 490-1220m. perennial herb.   | communities are       | vegetation         | communities are     |
|                              |                | BloomsMay-Jul                | not present.          | communities are    | not present.        |
|                              |                |                              |                       | not present.       |                     |
| Streptanthus glandulosus     | None/None      | Chaparral, Cismontane        | Low Potential;        | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;      |
| ssp. hoffmanii               | G4T2/S2        | woodland, Valley and foothil | I suitable vegetation | suitable           | suitable vegetation |
| Hoffman's bristlyjewelflower | r 1B.3         | grassland (often             | communities are       | vegetation         | communities are     |
|                              |                | serpentinite). rocky.        | present, suitable     | communities are    | _                  | communities are    | present, suitable   |
|                              |                | 120-475m. annual herb.       | soils may be          | present, suitable  | soils may be        |
|                              |                | Blooms Mar-Jul               | present               | soils may be       | present             |
|                              |                |                              |                       | present            |                     |
|                              |                |                              |                       | •                  | •                  | •                  | •                  | •                  | •                  | •                  | •                  | •                  |                     |

| Scientific Name<br>Common Name | Status Fed/<br>State ESA CRPR | Habitat Requirements                                | GEY                         | GUE                | LAR                | FOR                | GRA                | SAN                | GLE                | AGU                | PEN                | PET                         | SON                 |
|--------------------------------|-------------------------------|-----------------------------------------------------|-----------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-----------------------------|---------------------|
| Streptanthus glandulosus       | None/None                     | Annual herb. Chaparral,                             | Not Expected;               | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;               | Not Expected;       |
| ssp. pulchellus                | G4T2/S2                       | valley and foothill grassland.                      | suitable soils and          | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and          | suitable soils and  |
| Mt. Tamalpais bristly          | 1B.2                          | Serpentine slopes.                                  | vegetation                  | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation                  | vegetation          |
| jewelflower                    |                               | Elevations: 490-2625ft.                             | communities are             | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are             | communities are     |
|                                |                               | (150-800m.) Blooms May-<br>Jul(Aug).                | not present.                | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.                | not present.        |
| Streptanthushesperidis         | None/None                     | Chaparral (openings),                               | Low Potential;              | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;              | Low Potential;      |
| green jewelflower              | G2G3/S2S3                     | Cismontane woodland.                                | suitable vegetation         |                    | suitable                    | suitable vegetation |
|                                | 1B.2                          | serpentinite, rocky.                                | communities are             | vegetation                  | communities are     |
|                                |                               | 130-760m.annual herb.                               | present, suitable           | communities are             | present, suitable   |
|                                |                               | Blooms May-Jul                                      | soils may be                | present, suitable           | soils may be        |
|                                |                               |                                                     | present                     | soils may be                | present             |
|                                |                               |                                                     |                             | present                     |                     |
| Streptanthus morrisonii ssp.   | None/None                     | Closed-cone coniferous                              | Not Expected;               | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;               | Not Expected;       |
| hirtiflorus                    | G2T1/S1                       | forest,Chaparral.                                   | •                           |                    | suitable                    | suitable vegetation |
| Dorr's Cabin jewelflower       | 1B.2                          | serpentinite. 185 - 820 m.                          | communities are             | vegetation                  | communities are     |
|                                |                               | perennial herb. BloomsJun                           | not present.                | communities are             | not present.        |
|                                |                               |                                                     |                             | not present.                |                     |
| Streptanthus morrisonii ssp.   | None/None                     | Chaparral (serpentinite,                            | Not Expected;               | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;               | Not Expected;       |
| morrisonii                     | G2T1?/S1?                     | rocky,talus). 120 - 585 m.                          | suitable vegetation         |                    | suitable                    | suitable vegetation |
| Morrison's jewelflower         | 1B.2                          | perennial herb. Blooms May,                         | communities are             | vegetation         | vegetation<br>     | vegetation<br>     | vegetation<br>     | vegetation<br>     | vegetation<br>     | vegetation         | vegetation<br>     | vegetation<br>              | communities are     |
|                                |                               | Aug, Sep                                            | not present.                | communities are             | not present.        |
|                                |                               |                                                     |                             | not present.                |                     |
| Stuckenia filiformis           | None/None                     | Marshes and swamps                                  | Not Expected;               | Moderate           | Not Expected;               | Moderate            |
| ssp. alpina northern slender   | G5T5/S2S3                     | (assortedshallow                                    | suitable aquatic            | Potential;         | suitable aquatic            | Potential;          |
| pondweed                       | 2B.2                          | freshwater). 300 - 2150m.                           | habitats and                | freshwater         | habitats and                | freshwater aquatic  |
|                                |                               | perennial rhizomatous herb                          | vegetation                  | habitats are       | vegetation                  | habitatsare         |
|                                |                               | (aquatic). Blooms May-Jul                           | communities are not present | present.           | communities are not present | present.            |
| Symphyotrichum lentum          | None/None                     | Perennial rhizomatous herb.                         | Not Expected;               | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;               | Not Expected;       |
| Suisun Marsh aster             | G2/S2                         | Marshes and swamps. Most                            | suitable soils and          | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and          | suitable soils and  |
|                                | 1B.2                          | often seen along sloughs with                       | vegetation                  | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation                  | vegetation          |
|                                |                               | Phragmites, Scirpus,                                | communities are             | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are             | communities are     |
|                                |                               | blackberry, Typha, etc.                             | not present.                | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.                | not present.        |
|                                |                               | Elevations: 0-10ft. (0-3m.)<br>Blooms (Apr)May-Nov. |                             |                    |                    |                    |                    |                    |                    |                    |                    |                             |                     |
| Thamnolia vermicularis         | None/None                     | Fruticose lichen (terricolous).                     | Not Expected;               | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;      | Not Expected;               | Not Expected;       |
| whiteworm lichen               | G5/S1                         | Chaparral, valley and foothill                      | suitable soils and          | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and | suitable soils and          | suitable soils and  |
|                                | 2B.1                          | grassland. On rocks derived                         | vegetation                  | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation         | vegetation                  | vegetation          |
|                                |                               | from Wilson Ranch formation                         | communities are             | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are    | communities are             | communities are     |
|                                |                               | sandstone. Elevations: 295-<br>295ft. (90-90m.)     | not present.                | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.       | not present.                | not present.        |
| Trichostema ruygtii            | None/None                     | Annual herb. Chaparral,                             | Low Potential;              | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;     | Low Potential;              | Low Potential;      |
| Napa bluecurls                 | G1G2/S1S2                     | cismontane woodland, lower                          | ,                           | •                  | suitable                    | suitable vegetation |
| •                              | 1B.2                          | montane coniferous forest,                          | communities are             | vegetation                  | communities are     |
|                                |                               | valley and foothill grassland,                      | present, suitable           | communities are             | present, suitable   |
|                                |                               | vernal pools. Often in open,                        | soils may be                | present, suitable           | soils may be        |
|                                |                               | sunny areas. Also has been                          | present                     | soils may be                | present             |
|                                |                               | found in vernal pools.                              |                             | present                     |                     |
|                                |                               | Elevations: 100-2230ft. (30-                        |                             | •                  | •                  | •                  | •                  | •                  | •                  | •                  | •                  | •                           |                     |
|                                |                               |                                                     |                             |                    |                    |                    |                    |                    |                    |                    |                    |                             |                     |

| Scientific Name                                      | Status Fed/                  |                                                                                                                                                                                                |                                                                                                   |                                                                            |                                                                                  |                                                                                  |                                                                                  |                                                                                  |                                                                                  |                                                                                  |                                                                                  |                                                                                                   |                                                                                               |
|------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Common Name                                          | State ESA CRPR               | Habitat Requirements                                                                                                                                                                           | GEY                                                                                               | GUE                                                                        | LAR                                                                              | FOR                                                                              | GRA                                                                              | SAN                                                                              | GLE                                                                              | AGU                                                                              | PEN                                                                              | PET                                                                                               | SON                                                                                           |
| Trifolium amoenum<br>two-fork clover                 | FE/None<br>G1/S1<br>1B.1     | Coastal bluff scrub, Valley<br>and foothill grassland<br>(sometimes serpentinite).<br>5-415 m. annualherb. Blooms<br>Apr-Jun                                                                   | soils may be                                                                                      | vegetation<br>communities are<br>present, suitable                         | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable | Low Potential;<br>suitable<br>vegetation<br>communities are<br>present, suitable                  | Low Potential;<br>suitable vegetation<br>communities are<br>present, suitable<br>soils may be |
|                                                      |                              |                                                                                                                                                                                                | present                                                                                           | soils may be                                                               | soils may be                                                                     | soils may be                                                                     | soils may be                                                                     | soils may be                                                                     | soils may be                                                                     | soils may be                                                                     | soils may be                                                                     | soils may be                                                                                      | present                                                                                       |
| Trifolium buckwestiorum                              | None/None                    | Broadleafed upland forest,                                                                                                                                                                     | Low Potential;                                                                                    | present  Low Potential;                                                    | present  Low Potential;                                                          | present  Low Potential;                                                          | present  Low Potential;                                                          | present  Low Potential;                                                          | present  Low Potential;                                                          | present  Low Potential;                                                          | present  Low Potential;                                                          | present  Low Potential;                                                                           | Low Potential;                                                                                |
| Santa Cruz clover                                    | G2/S2<br>1B.1                | Cismontane woodland,<br>Coastalprairie. gravelly,<br>margins. 105 -610 m. annual<br>herb. Blooms Apr-Oct                                                                                       | suitable vegetation<br>communities are<br>present, suitable<br>soils may be<br>present            | ,                                                                          | suitable vegetation communities are present, suitable soils may be present       | suitable vegetation communities are present, suitable soils may be present       | suitable vegetation communities are present, suitable soils may be present       | suitable vegetation communities are present, suitable soils may be present       | suitable vegetation communities are present, suitable soils may be present       | suitable vegetation communities are present, suitable soils may be present       | suitable vegetation communities are present, suitable soils may be present       | suitable vegetation communities are present, suitable soils may be present                        | suitable vegetation communities are                                                           |
| Trifolium hydrophilum<br>saline clover               | None/None<br>G2/S2<br>1B.2   | Marshes and swamps, Valley<br>and foothill grassland (mesic,<br>alkaline), Vernal pools. 0 -<br>300<br>m. annual herb. Blooms Apr-<br>Jun                                                      | • ′                                                                                               | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.           | Moderate Potential; freshwater habitats are present.                             | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present | Moderate Potential; freshwater aquatic habitatsare present.                                   |
| Trifolium polyodont<br>Pacific Grove clover          | None/SR<br>G1/S1 1B.1        | Closed-cone coniferous<br>forest, Coastal prairie,<br>Meadows and seeps, Valley<br>and foothill grassland. mesic,<br>sometimes granitic. 5 - 425<br>m. annual herb.Blooms Apr-<br>Jun(Jul)     | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.           | Moderate Potential; freshwater habitats are present.                             | Moderate<br>Potential;<br>freshwater<br>habitats are<br>present.                 | Not Expected;<br>suitable aquatic<br>habitats and<br>vegetation<br>communities are<br>not present | Moderate Potential; freshwater aquatic habitatsare present.                                   |
| Triphysaria floribunda<br>San Francisco owl's-clover | None/None<br>G2?/S2?<br>1B.2 | Annual herb. Coastal prairie, coastal scrub, valley and foothill grassland. On serpentine and nonserpentine substrate (such as at Pt. Reyes). Elevations: 35-525ft. (10-160m.) Blooms Apr-Jun. | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                           | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present. | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.       | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.       | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.       | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.       | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.       | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.       | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.       | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                        | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                       |
| Triquetrellacalifornica<br>coastal triquetrella      | None/None<br>G2/S2<br>1B.2   | Coastal bluff scrub, Coastal<br>scrub. soil. 10 - 100 m. moss.                                                                                                                                 | <b>Not Expected</b> ; suitable vegetation communities are not present.                            | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present. | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.       | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.       | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.       | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.       | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.       | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.       | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.       | Not Expected;<br>suitable<br>vegetation<br>communities are<br>not present.                        | Not Expected;<br>suitable vegetation<br>communities are<br>not present.                       |

| Scientific Name      | Status Fed/    |                               |                     |                 |                 |                 |                 |                 |                 |                 |                 |                 |                     |
|----------------------|----------------|-------------------------------|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------------|
| Common Name          | State ESA CRPR | <b>Habitat Requirements</b>   | GEY                 | GUE             | LAR             | FOR             | GRA             | SAN             | GLE             | AGU             | PEN             | PET             | SON                 |
| Viburnum ellipticum  | None/None      | Chaparral, Cismontane         | Not Expected;       | Not Expected;   | Not Expected;   | Not Expected;   | Not Expected;   | Not Expected;   | Not Expected;   | Not Expected;   | Not Expected;   | Not Expected;   | Not Expected;       |
| oval-leaved viburnum | G4G5/S3?       | woodland, Lower montane       | suitable vegetation | suitable        | suitable vegetation |
|                      | 2B.3           | coniferous forest. 215 - 1400 | communities are     | vegetation      | communities are     |
|                      |                | m. perennial deciduous        | not present.        | communities are | not present.        |
|                      |                | shrub. Blooms May-Jun         |                     | not present.    |                     |
|                      |                | shrub. Blooms May-Jun         |                     | not present.    |                     |

FE = Federally Endangered FT = Federally Threatened

SE = State Endangered ST = State Threatened SR = State Rare SCE = State Candidate Endangered

G-Rank/S-Rank = Global Rank and State Rank as per NatureServe and CDFW's CNDDB RareFind3.

CRPR (CNPS California Rare Plant Rank):

1A=Presumed Extinct in California

1B=Rare, Threatened, or Endangered in California and elsewhere 2A=Plants presumed extirpated in California, but more common elsewhere

2B=Plants Rare, Threatened, or Endangered in California, but more common elsewhere3=Need more information (a Review List)

4=Plants of Limited Distribution (a Watch List)CRPR Threat Code Extension:

.1=Seriously endangered in California (over 80% of occurrences threatened / high degree and immediacy of threat)

.2=Fairly endangered in California (20-80% occurrences threatened)

.3=Not very endangered in California (<20% of occurrences threatened)

#### USGS 7.5-minute quadrangles Reviewed:

Geyserville (3812268), Cazadero (3812351), Healdsburg (3812257), Guerneville (3812258), Camp Meeker (3812248), Sebastopol (3812247), Santa Rosa (3812246), Cotati (3812236), Glen Ellen (3812235), Petaluma (3812226), Sonoma (3812234), Cloverdale (3812371), Asti (3812278), The Geysers (3812277), Jimtown (3812267), Warm Springs Dam (3812361), Tombs Creek (3812362), Arched Rock (3812342), Duncans Mills (3812341), Bodega Head (3812331), Valley Ford (3812238), Two Rock (3812237), Point Reyes NE (3812227), Inverness (3812217), San Geronimo (3812216), Novato (3812215), Petaluma River (3812225), Sears Point (3812224), Cuttings Wharf (3812223), Napa (3812233), Yountville (3812243), Rutherford (3812244), Kenwood (3812245), Calistoga (3812255), Mark West Springs (3812256), Mount St. Helena (3812266), Fort Ross (3812352)

# Special Status Animal Species in the Regional Vicinity of the Project Site

| Scientific Name<br>Common Name                                                | Status Fed/<br>State ESA CDFW | Habitat Requirements                                                                                                                                                                                                   | GEY                                                                | GUE                                                                                                             | LAR                                                                            | FOR                                                                                                                       | GRA                                                                                                          | SAN                                                                                                                            | GLE                                                                                                                                                    | AGU                                                                                                                                                         | PEN                                                                                                                     | PET                                                                                                                                                                                                    | SON                                                                                                                                                             |
|-------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Invertebrates                                                                 |                               |                                                                                                                                                                                                                        |                                                                    |                                                                                                                 |                                                                                |                                                                                                                           |                                                                                                              |                                                                                                                                |                                                                                                                                                        |                                                                                                                                                             |                                                                                                                         |                                                                                                                                                                                                        |                                                                                                                                                                 |
| Bombus crotchii<br>Crotch bumble bee                                          | None/SC<br>G3G4/S1S2          | Coastal California east to the Sierra-Cascade crest and south into Mexico. Food plantgenera include Antirrhinum, Phacelia, Clarkia, <i>Dendromecon</i> , <i>Eschscholzia</i> , and <i>Eriogonum</i> .                  | Low potential;<br>suitable habitat<br>may be present.              | Low potential;<br>suitable habitat<br>may be present.                                                           | Low potential;<br>suitable habitat<br>may be present.                          | Low potential;<br>suitable habitat<br>may be present.                                                                     | Low potential;<br>suitable habitat<br>may be present.                                                        | Low potential;<br>suitable habitat<br>may be present.                                                                          | Low Potential;1<br>historical CNDDB<br>occurrence<br>approximately 2<br>miles north of<br>site (1910),<br>suitable habitat<br>may be present.          | Low Potential;1<br>historical CNDDB<br>occurrence<br>approximately<br>2.2 miles<br>northwest of site<br>(1910), suitable<br>habitatmay be<br>present.       | may be present.                                                                                                         | Low potential;<br>suitable habitat<br>may be present.                                                                                                                                                  | Low Potential; 1<br>historical CNDD<br>occurrence<br>approximately<br>4.6 miles<br>northwest of sit<br>(1910), suitable<br>habitatmay be<br>present.            |
| Bombus occidentalis<br>western bumblebee                                      | None/SC<br>G2G3/S1            | Once common & widespread, species has declined precipitously from central CAto southern B.C., perhaps from disease.                                                                                                    | Low potential;<br>suitable habitat<br>may be present.              | Low potential;<br>suitable habitat<br>may be present.                                                           | Low potential;<br>suitable habitat<br>may be present.                          | Low potential;<br>suitable habitat<br>may be present.                                                                     | Low potential;1 CNDDB occurrence approximately 4.8 miles southwest of site, suitable habitat may be present. | Low potential;1 historical CNDDB occurrence approximately 0.25 miles southwest of site (1986), suitable habitatmay be present. | Low potential;2<br>historical CNDDB<br>occurrences<br>approximately 2<br>miles north of<br>site (1960,<br>1962) suitable<br>habitat may be<br>present. | Low potential;2 historical CNDDB occurrences (1958, 1960), including 1 occurrence approximately 1.6 miles southeast of site suitable habitat may bepresent. | Low potential;1 historical CNDDB occurrence approximately 4 miles south of site (1965) suitable habitat may be present. | Low potential; 2 historical CNDDB occurrences within 5 miles of site includingone occurrence approximately 0.2 miles east of site but occurrence is historical (1965) suitable habitat may be present. | Low potential;2 historical CNDDE occurrences within 5 miles of site includingone occurrencebut occurrence is historical (1958) suitable habitat may be present. |
| Danaus plexippus<br>pop. 1<br>monarch - California<br>overwinteringpopulation | FC/None<br>G4T1T2/S2          | Winter roost sites extend along the coast from northern Mendocino to Baja California, Mexico. Roosts located in wind-protected tree groves (eucalyptus, Monterey pine, cypress), with nectar and water sources nearby. | Not Expected; no suitable coastal/frost protected habitat present. | Not Expected; no<br>suitable<br>coastal/frost<br>protected habitat<br>present.                                  | Not Expected;<br>no suitable<br>coastal/frost<br>protected<br>habitat present. | Not Expected;<br>no suitable<br>coastal/frost<br>protected<br>habitat present.                                            | Not Expected; no suitable coastal/frost protected habitat present.                                           | Not Expected;<br>no suitable<br>coastal/frost<br>protected<br>habitat present.                                                 | Not Expected; no suitable coastal/frost protected habitat present.                                                                                     | no suitable<br>coastal/frost                                                                                                                                | Not Expected;<br>no suitable<br>coastal/frost<br>protected<br>habitat present.                                          | Not Expected; no suitable coastal/frost protected habitat present.                                                                                                                                     | Not Expected;<br>no suitable<br>coastal/frost<br>protected<br>habitat present.                                                                                  |
| Speyeria zerene myrtleae<br>Myrtle's silverspot butterfly                     | FE/None<br>G5T1/S1            | Restricted to the foggy, coastal dunes/hills of the Point Reyes peninsula; extirpated from coastal San Mateo County. Larval foodplant thought to be Viola adunca.                                                      | Not Expected;<br>coastal dune<br>habitats are not<br>present.      | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                                   | Not Expected;<br>coastal dune<br>habitats are not<br>present.                  | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                                             | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                                | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                                                  | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                                                                          | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                                                                               | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                                           | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                                                                                                                          | Not Expected;<br>coastal dune<br>habitats are not<br>present.                                                                                                   |
| Syncaris pacifica California freshwater shrimp                                | FE/SE<br>G2/S2                |                                                                                                                                                                                                                        | <b>Not Expected</b> ; no suitable aquatic habitatis present.       | Low Potential;2<br>CNDDB<br>occurrences<br>within 5 miles of<br>site and suitable<br>aquatichabitat<br>present. | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                   | Not Expected; 2<br>CNDDB<br>occurrences<br>within 5 miles of<br>site but no<br>suitable aquatic<br>habitat is<br>present. | Low Potential;3<br>CNDDB<br>occurrences<br>within 5 miles<br>suitable aquatic<br>habitat is<br>present.      | Not Expected;<br>no suitable<br>aquatic habitatis<br>present.                                                                  | Low Potential;5<br>CNDDB<br>occurrences<br>within 5 miles<br>suitable aquatic<br>habitat is<br>present.                                                | Present; 5 CNDDB occurrences within 5 miles of site, including 1 occurrence in Sonoma Creek within the BSA.                                                 | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                                            | <b>Not Expected</b> ; no suitable aquatic habitatis present.                                                                                                                                           | CNDDB                                                                                                                                                           |

| Scientific Name<br>Common Name                                   | Status Fed/<br>State ESA CDFW | Habitat Requirements                                                                                                                                                                                                                                                                                                                                                                                                                             | GEY                                                                   | GUE                                                                   | LAR                                                                   | FOR                                                                   | GRA                                                                   | SAN                                                                   | GLE                                                                   | AGU                                                                     | PEN                                                                   | PET                                                                   | SON                                                                   |
|------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|
| Fish                                                             |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                       |                                                                       |                                                                       |                                                                       |                                                                       |                                                                       |                                                                       |                                                                         |                                                                       |                                                                       |                                                                       |
| Acipenser medirostris pop. 1 greensturgeon – southern DPS        | FT/None<br>G2/S1              | Spawning site fidelity. Spawns in the Sacramento, Feather and Yuba Rivers. Presence in upper Stanislaus and San Joaquin Rivers may indicate spawning. Non-spawning adults occupy marine/estuarine waters. Delta Estuary is important for rearing juveniles. Spawning occurs primarily in cool (11-15 C) sections of mainstem rivers in deep pools (8-9 meters) with substrate containing small to medium sized sand, gravel, cobble, or boulder. | Not Expected;<br>suitable habitatis<br>not present.                     | Not Expected;<br>suitable habitatis<br>not present.                   | Not Expected;<br>suitable habitatis<br>not present.                   | Not Expected;<br>suitable habitatis<br>not present.                   |
| Eucyclogobius newberryi<br>tidewater goby                        | FE/None<br>G3/S3              | Brackish water habitats along the California coast from Agua Hedionda Lagoon, San Diego County to the mouth of the Smith River. Found in shallow lagoons and lower stream reaches, they need fairly still but not stagnant water and high oxygen levels.                                                                                                                                                                                         | Not Expected;<br>suitable brackish<br>waterhabitat is<br>not present.   | Not Expected;<br>suitable brackish<br>waterhabitat is<br>not present. | Not Expected;<br>suitable brackish<br>waterhabitat is<br>not present. | Not Expected;<br>suitable brackish<br>waterhabitat is<br>not present. |
| Hesperoleucus parvipinnis<br>Gualala roach                       | None/None<br>G3/S3<br>SSC     | Confined to the Gualala River                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Expected;<br>Suitable aquatic<br>habitat is not<br>present.       | Low Potential;<br>suitable aquatic<br>habitat is<br>present.          | Low Potential;<br>suitable aquatic<br>habitat is<br>present.          | Not Expected;<br>Suitable aquatic<br>habitat is not<br>present.       | Low Potential;<br>suitable aquatic<br>habitat is<br>present.            | Low Potential;<br>suitable aquatic<br>habitat is<br>present.          | Not Expected;<br>Suitable aquatic<br>habitat is not<br>present.       | Low Potential;<br>suitable aquatic<br>habitat is present.             |
| Hesperoleucus venustus<br>navarroensis<br>northern coastal roach | None/None<br>GNRT3/S3<br>SSC  | Habitat generalists. Found generally in a wide variety of habitats in the Navarro River and Russian River basins where there is cover (e.g. fallen trees) and where alien predators are absent. Most abundant in tributaries with clear, well oxygenated water with dominant substrates of cobble and boulder, and shallow depths (average 10-50 cm) with pools up to 1 m deep.                                                                  | Not Expected;<br>Suitable aquatic<br>habitat is not<br>present.       | Low Potential;<br>suitable aquatic<br>habitat is<br>present.          | Low Potential;<br>suitable aquatic<br>habitat is<br>present.          | Not Expected;<br>Suitable aquatic<br>habitat is not<br>present.       | Low Potential;<br>suitable aquatic<br>habitat is<br>present.            | Low Potential;<br>suitable aquatic<br>habitat is<br>present.          | Not Expected;<br>Suitable aquatic<br>habitat is not<br>present.       | Low Potential;<br>suitable aquatic<br>habitat is present.             |
| Hesperoleucus venustus<br>subditus<br>southern coastal roach     | None/None<br>GNRT2/S2<br>SSC  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                | Not Expected;<br>Suitable aquatic<br>habitat is not<br>present.       | Low Potential;<br>suitable aquatic<br>habitat is<br>present.          | Low Potential;<br>suitable aquatic<br>habitat is<br>present.          | Not Expected;<br>Suitable aquatic<br>habitat is not<br>present.       | Low Potential;<br>suitable aquatic<br>habitat is<br>present.            | Low Potential;<br>suitable aquatic<br>habitat is<br>present.          | Not Expected;<br>Suitable aquatic<br>habitat is not<br>present.       | Low Potential;<br>suitable aquatic<br>habitat is present.             |
| Hypomesus transpacificus<br>Delta smelt                          | FT/SE<br>G1/S1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Not Expected;<br>Suitable aquatic<br>habitat is not<br>present.       | <b>Not Expected</b> ;<br>Suitable aquatic<br>habitat is not<br>present. | Not Expected;<br>Suitable aquatic<br>habitat is not<br>present.       | Not Expected;<br>Suitable aquatic<br>habitat is not<br>present.       | Not Expected;<br>Suitable aquatic<br>habitat is not<br>present.       |

| Scientific Name<br>Common Name                                                   | Status Fed/<br>State ESA CDFW | Habitat Requirements                                                                                                                                                                                                                         | GEY                                                                  | GUE                                                                                                                         | LAR                                                                                               | FOR                                                                                                                      | GRA                                                                                               | SAN                                                                 | GLE                                                                                           | AGU                                                                                               | PEN                                                                                                                                               | PET                                                          | SON                                                                               |
|----------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Hysterocarpus traskii pomo<br>Russian River tuleperch                            | None/None<br>G5T4/S4<br>SSC   | Low elevation streams of the Russian River system. Requires clear, flowing water with abundant cover. They also require deep (> 1 m) pool habitat.                                                                                           | Not Expected;<br>Suitable aquatic<br>habitat is not<br>present.      | Low Potential;1<br>CNDDB<br>occurrence<br>approximately<br>3.3 miles east of<br>site in Russian<br>River and Fife<br>Creek. | Not Expected;<br>streams are<br>present onsite<br>but are not part<br>of Russian River<br>system. | Not Expected; 1<br>CNDDB<br>occurrence<br>within 5 miles of<br>site but no<br>suitable aquatic<br>habitat is<br>present. | Not Expected;<br>streams are<br>present onsite<br>but are not part<br>of Russian River<br>system. | Not Expected;<br>no suitable<br>aquatic habitatis<br>present.       | Not Expected;<br>present onsite<br>but are not part<br>of Russian River<br>system.            | Not Expected;<br>streams are<br>present onsite<br>but are not part<br>of Russian River<br>system. | Not Expected;<br>streams are<br>present onsite<br>but are not part<br>of Russian River<br>system.                                                 | <b>Not Expected</b> ; no suitable aquatic habitatis present. | Not Expected;<br>present onsite but<br>are not partof<br>Russian River<br>system. |
| Mylopharodonconocephalus<br>hardhead                                             | None/None<br>G3/S3<br>SSC     | Low to mid-elevation streams in the Sacramento-San Joaquin drainage. Also presentin the Russian River. Clear, deep pools with sand-gravel- boulder bottoms and slow water velocity. Not found where exotic centrarchids predominate.         | aquatic habitatis                                                    | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                                                | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                      | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                                             | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                      | Low Potential;<br>suitable aquatic<br>habitat is<br>present.        | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                  | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                      | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                                                                      | <b>Not Expected</b> ; no suitable aquatic habitatis present. | •                                                                                 |
| Oncorhynchus kisutch<br>pop. 4 coho salmon - central<br>Californiacoast ESU      | FE/SE<br>G5T2Q/S2             | Federal listing = pops between Punta Gorda & San Lorenzo River. State listing = pops south of Punta Gorda. Requirebeds of loose, silt-free, coarse gravel for spawning. Also needcover, cool water & sufficient dissolved oxygen.            | •                                                                    | Present; 6CNDDB occurrences within 5 miles and Fife creek is designated critical habitat.                                   | Present; 1<br>CNDDB<br>occurrence<br>within the BSAin<br>Mark West<br>Creek.                      | Not Expected; 4<br>CNDDB<br>occurrence<br>within 5 miles<br>but no suitable<br>aquatic habitatis<br>present.             | Moderate Potential; 2 CNDDB occurrence within 5 miles and suitable aquatic habitat is present.    | Not Expected;<br>suitable aquatic<br>habitat is not<br>present.     | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                  | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                      | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                                                                      | •                                                            | Low Potential;<br>suitable aquatic<br>habitat is present.                         |
| Oncorhynchus mykiss irideus<br>pop.8 steelhead – central<br>California coast DPS |                               | DPS includes all naturally spawned populations of steelhead (and their progeny) in streams from the Russian River to Aptos Creek, Santa Cruz County, California (inclusive). Also includes the drainages of San Francisco andSan Pablo Bays. | Not Expected;<br>no suitable<br>aquatic habitatis<br>present onsite. | Present; 2CNDDB occurrences within 5 miles and Fife creek is designated critical habitat.                                   | Moderate Potential; suitable aquatic habitat is present.                                          | Not Expected; 1<br>CNDDB<br>occurrence<br>within 5 miles<br>but no suitable<br>aquatic habitatis<br>present.             | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                      | Not Expected;<br>no suitable<br>aquatic habitatis<br>present.       | Moderate Potential; 3 CNDDB occurrence within 5 miles and suitable aquatic habitatis present. | Moderate Potential; 2 CNDDB occurrences within 5 miles and suitable aquatic habitatis present.    | Moderate Potential; 2 CNDDB occurrences within 5 miles and suitable aquatic habitatis present.                                                    | <b>Not Expected</b> ; no suitable aquatic habitatis present. | suitable aquatic                                                                  |
| Pogonichthys macrolepidotus<br>Sacramento splittail                              | None/None<br>GNR/S3<br>SSC    | Endemic to the lakes and rivers of the Central Valley, but now confined to the Delta, Suisun Bay and associated marshes. Slow moving river sections, dead end sloughs.  Requires flooded vegetation for spawning and foraging foryoung.      | Not Expected;<br>no suitable<br>marsh habitat is<br>present onsite.  | <b>Not Expected</b> ; no suitable marsh habitat ispresent onsite.                                                           | Not Expected;<br>no suitable<br>marsh habitat is<br>present onsite.                               | Not Expected;<br>no suitable<br>marsh habitat is<br>present onsite.                                                      | Not Expected; no suitable marsh habitat ispresent onsite.                                         | Not Expected;<br>no suitable<br>marsh habitat is<br>present onsite. | Not Expected;<br>no suitable<br>marsh habitat is<br>present onsite.                           | <b>Not Expected</b> ; no suitable marsh habitat ispresent onsite.                                 | Low Potential;1<br>CNDDB<br>occurrence<br>approximately<br>3.3 miles<br>northeast of site<br>(1999).<br>Occurrence is<br>downstream<br>from site. | Not Expected; no suitable marsh habitat ispresent onsite.    | Not Expected;no<br>suitable marsh<br>habitatis present<br>onsite.                 |
| Spirinchus thaleichthys<br>longfin smelt                                         | G5/S1                         | Euryhaline, nektonic & anadromous. Found in open waters of estuaries, mostly in middle or bottom of water column. Prefer salinities of 15-30 ppt, but can be found in completely freshwater to almost pure seawater.                         | Not Expected;<br>no suitable<br>estuary habitatis<br>present onsite. | •                                                                                                                           | no suitable                                                                                       | Not Expected;<br>no suitable<br>estuary habitatis<br>present onsite.                                                     | Not Expected; no suitable estuary habitatis present onsite.                                       | no suitable                                                         | Not Expected;<br>no suitable<br>estuary habitatis<br>present onsite.                          | Not Expected; no suitable estuary habitatis present onsite.                                       | <b>Not Expected</b> ;<br>no suitable                                                                                                              | Not Expected; no suitable estuary habitatis present onsite.  | Not Expected;<br>no suitable<br>estuary habitatis<br>present onsite.              |

| Scientific Name                                                               | Status Fed/                   |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                         |                                                                                                                 |                                                                                                                       |                                                                                                               |                                                                                                                                                          |                                                                                                                                 |                                                                                                                                                                          |                                                                                                                                                                      |                                                                                               |
|-------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Common Name                                                                   |                               | Habitat Requirements                                                                                                                                                                                                                                                                   | GEY                                                                                                                                                                                    | GUE                                                                                                            | LAR                                                                                                                                                                     | FOR                                                                                                             | GRA                                                                                                                   | SAN                                                                                                           | GLE                                                                                                                                                      | AGU                                                                                                                             | PEN                                                                                                                                                                      | PET                                                                                                                                                                  | SON                                                                                           |
| Thaleichthys pacificus<br>eulachon                                            | FT/None<br>G5/S2              | Found in Klamath River, Mad River, Redwood Creek, and in small numbers in Smith River and Humboldt Bay tributaries. Spawn in lower reaches of coastal rivers with moderate water velocities and bottom of pea-sized gravel, sand, and woody debris.                                    | Not Expected; no suitable coastal river habitat is present.                                                                                                                            | Not Expected; no suitable coastal river habitat is present.                                                    | Not Expected; no suitable coastal river habitat is present.                                                                                                             | Not Expected; no suitable coastal river habitat is present.                                                     | Not Expected; no suitable coastal river habitat is present.                                                           | Not Expected; no suitable coastal river habitat is present.                                                   | Not Expected; no suitable coastal river habitat is present.                                                                                              | Not Expected; no suitable coastal river habitat is present.                                                                     | Not Expected;no<br>suitable coastal<br>river habitat is<br>present.                                                                                                      | Not Expected; no suitable coastal river habitat is present.                                                                                                          | Not Expected; no suitable coastal river habitat is present.                                   |
| Reptiles                                                                      |                               |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                         |                                                                                                                 |                                                                                                                       |                                                                                                               |                                                                                                                                                          |                                                                                                                                 |                                                                                                                                                                          |                                                                                                                                                                      |                                                                                               |
| Emys marmorata western pond turtle                                            | None/None<br>G3G4/S3<br>SSC   | A thoroughly aquatic turtle of ponds, marshes, rivers, streams and irrigation ditches, usually with aquatic vegetation, below 6000 ft elevation. Needs basking sitesand suitable (sandy banks or grassy open fields) upland habitat up to 0.5 km from water for egg-laying.            | Not Expected; 3 CNDDB occurrences within 5 milesof site, including 1 occurrence approximately 0.7 miles northeast of site in Russian River, but no suitable aquatichabitat is present. | Moderate Potential; 8 CNDDB occurrences within 5 miles of site and suitable aquatichabitat present.            | Low Potential;15<br>CNDDB<br>occurrences<br>within 5 miles of<br>site includingone<br>historical<br>occurrence in<br>Mark West Creek<br>within the BSA<br>(1909).       | CNDDB<br>occurrences<br>within 5 miles of<br>site suitable<br>upland riparian<br>habitat is                     | Low Potential;8 CNDDB occurrences within 5 miles suitable aquatic habitat is present.                                 | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                                  | Low Potential;2<br>CNDDB<br>occurrences<br>within 5 miles<br>suitable aquatic<br>habitat is<br>present.                                                  | Low Potential;1 CNDDB occurrence approximately 1.6 miles southeast of site and suitable aquatichabitat present.                 | High Potential;9<br>CNDDB<br>occurrences<br>within 5 miles of<br>site, including<br>one occurrence<br>(2006) and<br>suitable aquatic<br>habitat present.                 | Not Expected;11 CNDDB occurrences within 5 miles of site, includingone occurrence approximately 1.3 miles south but no suitable aquatic habitatis present.           | Low Potential;4 CNDDB occurrences within 5 miles of site, suitable aquatic habitatis present. |
| Amphibians                                                                    |                               |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                        |                                                                                                                |                                                                                                                                                                         |                                                                                                                 |                                                                                                                       |                                                                                                               |                                                                                                                                                          |                                                                                                                                 |                                                                                                                                                                          |                                                                                                                                                                      |                                                                                               |
| Ambystoma californiense pop. 3 California tigersalamander – Sonoma County DPS | FE/ST<br>G2G3/S2S3<br>SSC     | Central Valley DPS federally listed as threatened. Santa Barbara and Sonoma counties DPS federally listed as endangered. Need underground refuges, especially ground squirrel burrows, and vernal pools or other seasonal water sources for breeding.                                  | Not Expected; no suitable aquatic habitatis present and there are no known occurrences within 5 miles.                                                                                 | suitable aquatic<br>habitat present,<br>but there are no<br>known<br>occurrences<br>within 5 miles of<br>site. | Low Potential; 2<br>CNDDB<br>occurrences<br>within 5 miles<br>and critical<br>habitat<br>approximately<br>0.5 miles to the<br>west and aquatic<br>habitatis<br>present. | 2.8 miles east,<br>and riparian<br>habitats are<br>present.                                                     | occurrences within 5 miles from critical habitat approximately 1.6 miles east of site, and aquatic habitatis present. | Present; 75 CNDDB occurrences within 5 miles of site, including 3 presumed extant occurrences within the BSA. | Low Potential;<br>suitable aquatic<br>habitat present,<br>but there are no<br>known<br>occurrences<br>within 5 miles of<br>site.                         | Low Potential;<br>suitable aquatic<br>habitat present,<br>but there are no<br>CNDDB<br>occurrences<br>within 5 milesof<br>site. | occurrences within 5 miles of the site, including one historical occurrence within the BSA (1856). Suitable aquatic habitat present and site is within critical habitat. | Low Potential;2 CNDDB occurrences within 5 miles of site, includingone historical occurrence within the BSA (1856), however suitable aquatic habitat is not present. | occurrence<br>within 5 miles.                                                                 |
| Dicamptodon ensatus California giantsalamander                                | None/None<br>G2G3/S2S3<br>SSC | Known from wet coastal forests near streams and seeps from Mendocino County south to Monterey County, and east to Napa County. Aquatic larvae foundin cold, clear streams, occasionally in lakes and ponds. Adults known from wet forests under rocks and logs near streams and lakes. | CNDDB occurrences within 5 miles, including one occurrence in                                                                                                                          | High Potential;14<br>CNDDB<br>occurrences<br>within 5 miles,<br>and suitable<br>aquatic habitatis<br>present.  | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                                                                                            | Low Potential;5<br>CNDDB<br>occurrences<br>within 5 miles,<br>and and suitable<br>aquatichabitat is<br>present. |                                                                                                                       | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                                  | Moderate Potential; 8 CNDDB occurrences within 5 miles including one occurrence approximately 1 mile northeast, and suitable aquatic habitat is present. | Moderate Potential; 5 CNDDB occurrences within 5 miles, and suitable aquatic habitatis present.                                 | Low Potential; 2<br>CNDDB<br>occurrences<br>within 5 miles,<br>and suitable<br>aquatic habitatis<br>present.                                                             | Not Expected; no<br>suitable aquatic<br>habitat present<br>and siteis<br>isolated by<br>development.                                                                 | •                                                                                             |

| Scientific Name                                                       | Status Fed/                   |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |                                                                                                  |                                                                                                                                                        |                                                                                                                                 |                                                                                                                            |                                                                                                                             |                                                                                                             |                                                                                                            |                                                                                                                            |                                                                                                                       |                                                                                                                |
|-----------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Common Name                                                           | State ESA CDFW                | <b>Habitat Requirements</b>                                                                                                                                                                                                                                                                                                                                            | GEY                                                                                                                                                   | GUE                                                                                              | LAR                                                                                                                                                    | FOR                                                                                                                             | GRA                                                                                                                        | SAN                                                                                                                         | GLE                                                                                                         | AGU                                                                                                        | PEN                                                                                                                        | PET                                                                                                                   | SON                                                                                                            |
| Rana boylii pop.1<br>foothill yellow-legged frog –<br>north coast DPS | None/None<br>G3TNRQ/S4<br>SSC | Partly-shaded, shallow streams<br>and riffles with a rocky<br>substrate in a variety of<br>habitats. Needs at least some<br>cobble-sized substrate for egg-<br>laying. Needs at least 15 weeks<br>to attain metamorphosis.                                                                                                                                             | Not Expected;11<br>CNDDB<br>occurrences<br>within 5 miles,<br>occurrences<br>within 5 miles,<br>however suitable<br>aquatichabitat is<br>not present. | Moderate Potential; 17 CNDDB occurrences within 5 miles, and suitable aquatic habitatis present. | Moderate Potential; 5 CNDDB occurrences within 5 miles, and suitable aquatic habitatis present.                                                        | Low Potential;4<br>CNDDB<br>occurrences<br>within 5 miles,<br>and suitable<br>aquatic habitatis<br>present.                     | Low Potential;3<br>CNDDB<br>occurrences<br>within 5 miles,<br>and suitable<br>aquatic habitatis<br>present.                | Low Potential;4<br>CNDDB<br>occurrences<br>within 5 miles,<br>and suitable<br>aquatic habitatis<br>present.                 | Low Potential;8<br>CNDDB<br>occurrences<br>within 5 miles,<br>and suitable<br>aquatic habitatis<br>present. | present.                                                                                                   | present.                                                                                                                   | Not Expected; 5<br>CNDDB<br>occurrence<br>within 5 miles,<br>but suitable<br>aquatic habitatis<br>not present.        | Low Potential; 1<br>CNDDB<br>occurrences<br>within 5 miles,<br>and suitable<br>aquatic habitati<br>present.    |
| Rana draytonii California red-legged frog                             | FT/None<br>G2G3/S2S3<br>SSC   | Lowlands and foothills in or<br>near permanent sources of<br>deep water with dense,<br>shrubby or emergent riparian<br>vegetation. Requires 11-20<br>weeks of permanent water for<br>larval development. Must have<br>access to estivation habitat.                                                                                                                    | Low Potential;11<br>CNDDB<br>occurrences<br>within 5 miles<br>and suitable<br>upland habitat<br>may be present.                                       | Moderate Potential; 2 CNDDB occurrences within 5 miles and suitable aquatic habitatis present.   | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                                                                           | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                                                    | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                                               | Low Potential;3<br>CNDDB<br>occurrences<br>within 5 miles<br>and suitable<br>aquatic habitatis<br>present.                  | Low Potential;8<br>CNDDB<br>occurrences<br>within 5 miles<br>and suitable<br>aquatic habitatis<br>present.  | Low Potential;3<br>CNDDB<br>occurrences<br>within 5 miles<br>and suitable<br>aquatic habitatis<br>present. | Low Potential;18<br>CNDDB<br>occurrences<br>within 5 miles<br>and suitable<br>aquatic habitatis<br>present.                | Low Potential;11<br>CNDDB<br>occurrences<br>within 5 miles<br>and suitable<br>aquatic habitatis<br>present.           | Low Potential;3<br>CNDDB<br>occurrences<br>within 5 miles<br>and suitable<br>upland habitat<br>may be present. |
| Taricha rivularis<br>red-bellied newt                                 | None/None<br>G2/S2<br>SSC     | Coastal drainages from Humboldt County south to Sonoma County, inland to Lake County. Isolated population of uncertain originin Santa Clara County. Lives interrestrial habitats, juveniles generally underground, adultsactive at surface in moist environments. Will migrate over 1 km to breed, typically in streams with moderate flow and clean, rocky substrate. | present. present.                                                                                                                                     | Moderate Potential; 2 CNDDB occurrences within 5 miles and suitable aquatic habitat present.     | Low Potential;3<br>CNDDB<br>occurrences<br>within 5 miles,<br>including one<br>occurrence at<br>Mark West Creek<br>approximately1<br>mile to the west. | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                                                    | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                                               | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                                                | Low Potential;1<br>CNDDB<br>occurrences<br>within 5 miles<br>and suitable<br>aquatic habitatis<br>present.  | Low Potential;1<br>CNDDB<br>occurrence<br>within 5 miles<br>and suitable<br>aquatic habitatis<br>present.  | Low Potential;1<br>CNDDB<br>occurrence and<br>suitable aquatic<br>habitat is<br>present.                                   | Not Expected; 1<br>CNDDB<br>occurrence<br>within 5 miles of<br>site but suitable<br>aquatichabitat is<br>not present. | Low Potential;<br>suitable aquatic<br>habitat is<br>present.                                                   |
| Birds                                                                 |                               |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |                                                                                                  |                                                                                                                                                        |                                                                                                                                 |                                                                                                                            |                                                                                                                             |                                                                                                             |                                                                                                            |                                                                                                                            |                                                                                                                       |                                                                                                                |
| Accipiter cooperii<br>Cooper's hawk                                   | None/None<br>G5/S4<br>WL      | Woodland, chiefly of open, interrupted or marginal type. Nest sites mainly in riparian growths of deciduous trees, as in canyon bottoms on river flood-plains; also, live oaks.                                                                                                                                                                                        | Low Potential;<br>suitable<br>woodland<br>habitat is<br>present.                                                                                      | Low Potential;<br>suitable<br>woodland<br>habitat is<br>present.                                 | Low Potential;<br>suitable<br>woodland<br>habitat is<br>present.                                                                                       | Low Potential;<br>suitable<br>woodland<br>habitat is<br>present.                                                                | Low Potential;<br>suitable<br>woodland<br>habitat is<br>present.                                                           | Low Potential;<br>suitable<br>woodland<br>habitat is<br>present.                                                            | Low Potential;<br>suitable<br>woodland<br>habitat is<br>present.                                            | Low Potential;<br>suitable<br>woodland<br>habitat is<br>present.                                           | Low Potential;<br>suitable<br>woodland<br>habitat is<br>present.                                                           | Low Potential;<br>suitable<br>woodland<br>habitat is<br>present.                                                      | Low Potential;<br>suitable<br>woodland<br>habitat is<br>present.                                               |
| Accipiter striatus<br>sharp-shinned hawk                              | None/None<br>G5/S4<br>WL      | Ponderosa pine, black oak, riparian deciduous, mixed conifer, and Jeffrey pine habitats. Prefers riparian areas. North-facing slopes with plucking perches are critical requirements. Nests usually within 275 ft of water.                                                                                                                                            | Low Potential;<br>suitable breeding<br>and foraging<br>habitatis present.                                                                             | suitable breeding                                                                                | and foraging                                                                                                                                           | Moderate Potential; suitable breeding and foraging habitatis present.                                                           | Moderate Potential; suitable breeding and foraging habitatis present.                                                      | Moderate Potential; suitable breeding and foraging habitatis present.                                                       | Moderate Potential; suitable breeding and foraging habitatis present.                                       | Moderate Potential; suitable breeding and foraging habitatis present.                                      | Moderate Potential; suitable breeding and foraging habitatis present.                                                      | Low Potential;<br>suitable breeding<br>and foraging<br>habitatis present.                                             | breeding and                                                                                                   |
| Agelaius tricolor<br>tricolored blackbird                             | None/ST<br>G1G2/S1S2<br>SSC   | Highly colonial species, most numerous in Central Valley & vicinity. Largely endemic to California. Requires open water, protected nesting substrate, and foraging area with insect prey within a few km of the colony.                                                                                                                                                | Not Expected;<br>suitable breeding<br>habitat is not<br>present.                                                                                      | Low Potential;<br>suitable breeding<br>and foraging<br>habitatmay be<br>present.                 | Low Potential;<br>suitable breeding<br>and foraging<br>habitatmay be<br>present.                                                                       | Low Potential;1<br>CNDDB<br>occurrence<br>within 5 miles<br>and suitable<br>breeding and<br>foraging habitat<br>may be present. | Low Potential;1<br>CNDDB<br>occurrence<br>within 5 miles<br>suitable breeding<br>and foraging<br>habitatmay be<br>present. | Low Potential;2<br>CNDDB<br>occurrences<br>within 5 miles<br>suitable breeding<br>and foraging<br>habitatmay be<br>present. | and foraging habitatmay be                                                                                  | Low Potential;<br>suitable breeding<br>and foraging<br>habitatmay be<br>present.                           | Low Potential;1<br>CNDDB<br>occurrence<br>within 5 miles<br>suitable breeding<br>and foraging<br>habitatmay be<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                       | Low Potential;<br>suitable<br>breeding and<br>foraging habitat<br>may bepresent.                               |

| Scientific Name<br>Common Name              | Status Fed/<br>State ESA CDFW | Habitat Requirements                                                                                                                                                                                                                                                           | GEY                                                                                                                           | GUE                                                                              | LAR                                                                                                                     | FOR                                                                                                                      | GRA                                                                              | SAN                                                                                                                     | GLE                                                                                                                                 | AGU                                                                                                                                          | PEN                                                                                                                                      | PET                                                                                                                     | SON                                                                                                                                        |
|---------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Ammodramussavannarum<br>grasshopper sparrow | None/None<br>G5/S3<br>SSC     | Dense grasslands on rolling hills, lowland plains, in valleys and on hillsides on lower mountain slopes. Favors native grasslands with a mix ofgrasses, forbs and scattered shrubs. Loosely colonial when nesting.                                                             | •                                                                                                                             | Low Potential;<br>suitable breeding<br>and foraging<br>habitatmay be<br>present. | Low Potential;<br>suitable breeding<br>and foraging<br>habitatmay be<br>present.                                        | Low Potential;<br>suitable breeding<br>and foraging<br>habitatmay be<br>present.                                         | Low Potential;<br>suitable breeding<br>and foraging<br>habitatmay be<br>present. | Low Potential;<br>suitable breeding<br>and foraging<br>habitatmay be<br>present.                                        | Low Potential;<br>suitable breeding<br>and foraging<br>habitatmay be<br>present.                                                    | Low Potential;<br>suitable breeding<br>and foraging<br>habitatmay be<br>present.                                                             | Low Potential;<br>suitable breeding<br>and foraging<br>habitatmay be<br>present.                                                         | Low Potential;<br>suitable breeding<br>and foraging<br>habitatmay be<br>present.                                        | Low Potential;<br>suitable<br>breeding and<br>foraging habitat<br>may bepresent.                                                           |
| Aquila chrysaetos<br>golden eagle           | None/None<br>G5/S3<br>FP; WL  | Rolling foothills, mountain areas, sage-juniper flats, and desert. Cliff-walled canyons provide nesting habitat in most parts of range; also, large trees in open areas.                                                                                                       | Low Potential;<br>suitable foraging<br>habitatmay be<br>present.                                                              | Low Potential;<br>suitable foraging<br>habitatmay be<br>present.                 | Low Potential;<br>suitable foraging<br>habitatmay be<br>present.                                                        | Low Potential;<br>suitable foraging<br>habitatmay be<br>present.                                                         | Low Potential;<br>suitable foraging<br>habitatmay be<br>present.                 | Low Potential;<br>suitable foraging<br>habitatmay be<br>present.                                                        | Low Potential;<br>suitable foraging<br>habitatmay be<br>present.                                                                    | Low Potential;<br>suitable foraging<br>habitatmay be<br>present.                                                                             | Low Potential;1<br>CNDDB<br>occurrence<br>approximately<br>4.5 miles<br>northeast, and<br>suitable foraging<br>habitatmay be<br>present. | Low Potential;<br>suitable foraging<br>habitatmay be<br>present.                                                        | Low Potential;<br>suitable foraging<br>habitat may be<br>present.                                                                          |
| Athene cunicularia<br>burrowing owl         | None/None<br>G4/S3<br>SSC     | Open, dry annual or perennial grasslands, deserts, and scrublands characterized by low-growing vegetation. Subterranean nester, dependent upon burrowing mammals, most notably, the California ground squirrel.                                                                | Low Potential;<br>suitable open<br>areas are present<br>and 1 CNDDB<br>occurrence<br>approximately<br>2.3 miles<br>southeast. | Low Potential;<br>suitable habitats<br>are present.                              | Low Potential;1<br>CNDDB<br>occurrence<br>approximately<br>2.3 miles<br>northwest and<br>suitable habitatis<br>present. | Low Potential; 1<br>CNDDB<br>occurrence<br>approximately<br>4.8 miles<br>northeast and<br>suitable habitatis<br>present. | Low Potential;<br>suitable habitats<br>are present.                              | Low Potential;1<br>CNDDB<br>occurrence<br>approximately<br>3.5 miles<br>southeast and<br>suitable habitatis<br>present. | Low Potential;1<br>CNDDB<br>occurrence<br>within 5 miles<br>and suitable<br>habitat is<br>present.                                  | Low Potential;<br>suitable habitats<br>are present.                                                                                          | Low Potential;1<br>CNDDB<br>occurrence<br>approximately<br>3.1 miles north<br>and suitable<br>habitat is<br>present.                     | Low Potential;1<br>CNDDB<br>occurrence<br>approximately<br>2.9 miles<br>southwest and<br>suitable habitatis<br>present. | Low Potential;<br>suitable habitats<br>are present.                                                                                        |
| Buteo regalis<br>ferruginous hawk           | None/None<br>G4/S3S4<br>WL    | Open grasslands, sagebrush flats, desert scrub, low foothills and fringes of pinyonand juniper habitats. Eats mostly lagomorphs, ground squirrels, and mice.  Population trends may follow lagomorph population cycles.                                                        | Low Potential;<br>suitable foraging<br>habitatis present.                                                                     | Low Potential;<br>suitable foraging<br>habitatis present.                        | Low Potential;<br>suitable foraging<br>habitatis<br>present.                                                            | Low Potential;<br>suitable foraging<br>habitatis<br>present.                                                             | Low Potential;<br>suitable foraging<br>habitatis<br>present.                     | Low Potential;<br>suitable foraging<br>habitatis<br>present.                                                            | Low Potential;1<br>CNDDB<br>occurrence<br>approximately<br>3.8 miles<br>southwest and<br>suitable foraging<br>habitatis<br>present. | Low Potential;1<br>CNDDB<br>occurrence<br>approximately 5<br>miles northwest<br>and suitable<br>foraging habitatis<br>present                | Low Potential;1<br>CNDDB<br>occurrence<br>approximately<br>4.9 miles<br>northeast and<br>suitable foraging<br>habitatis present.         | 0 0                                                                                                                     | Low Potential;<br>suitable foraging<br>habitat is<br>present.                                                                              |
| Buteo swainsoni<br>Swainson's hawk          | None/ST<br>G5/S3              | Breeds in grasslands with scattered trees, juniper-sage flats, riparian areas, savannahs, & agricultural or ranch lands with groves or lines of trees. Requires adjacent suitable foraging areas such as grasslands, or alfalfa or grain fields supporting rodent populations. | and foraging                                                                                                                  | Low Potential;<br>suitable breeding<br>and foraging<br>habitatis present.        | and foraging                                                                                                            | Low Potential;<br>suitable breeding<br>and foraging<br>habitatis<br>present.                                             | Low Potential;<br>suitable breeding<br>and foraging<br>habitatis<br>present.     | Low Potential;<br>suitable breeding<br>and foraging<br>habitatis<br>present.                                            | Low Potential;                                                                                                                      | Low Potential;1<br>CNDDB<br>occurrence<br>approximately<br>4.2 miles south<br>and suitable<br>breeding and<br>foraging habitatis<br>present. | Low Potential;<br>suitable breeding<br>and foraging<br>habitatis present.                                                                | occurrence<br>approximately<br>3.1 miles south<br>and breeding and                                                      | Low Potential;1<br>CNDDB<br>occurrence<br>approximately2<br>miles south and<br>suitable<br>breeding and<br>foraging habitat<br>is present. |
| Cerorhinca monocerata rhinoceros auklet     | None/None<br>G5/S3<br>WL      | Off-shore islands and rocks along the California coast. Nests in a burrow on undisturbed, forested and unforested islands, and probably in cliff caves on the mainland.                                                                                                        | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                               | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.  | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                         | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                          | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.  | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                         | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                     | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                              | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                          | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                         | Not Expected;<br>suitable breeding<br>and foraging<br>habitat is not<br>present.                                                           |

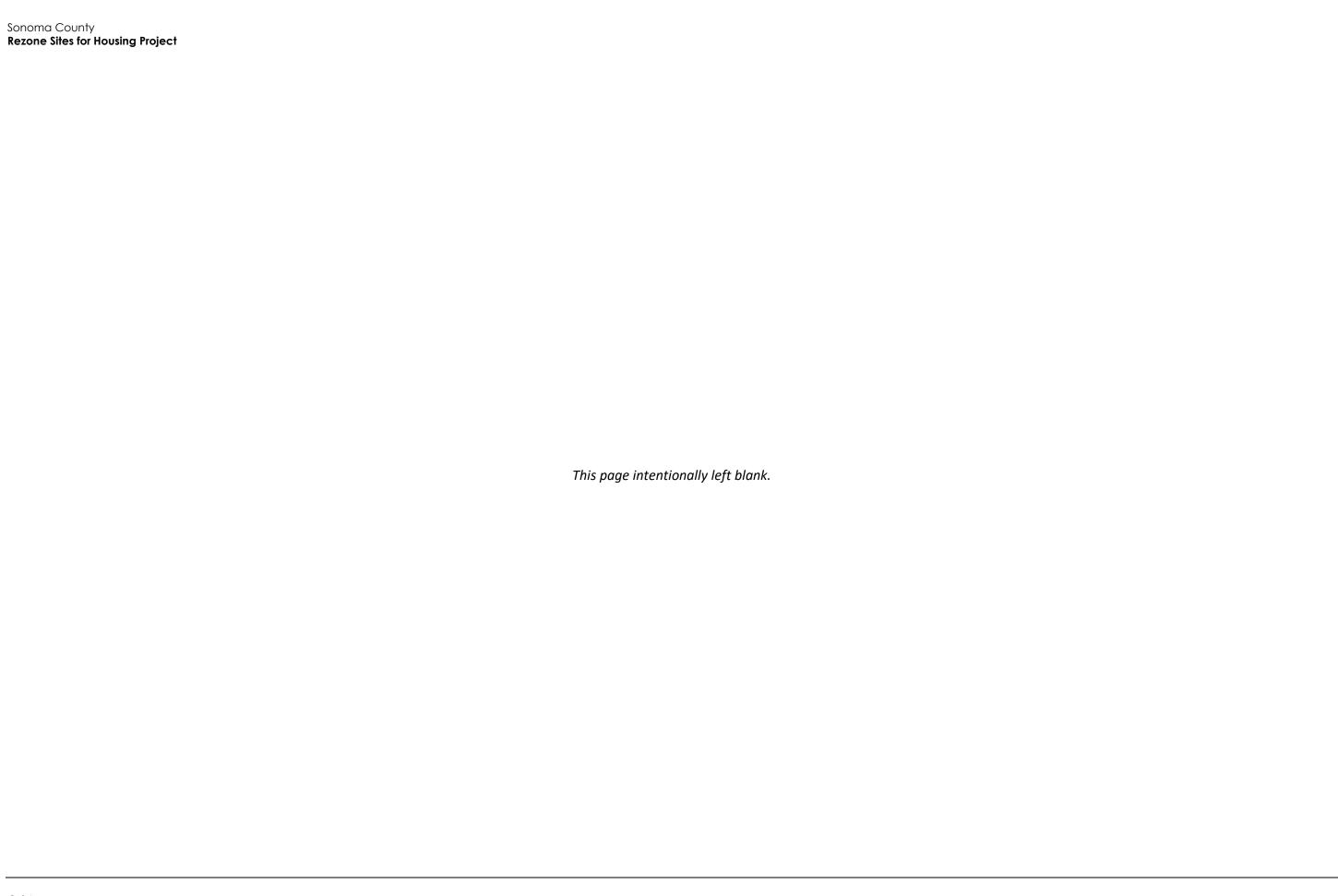
| Scientific Name<br>Common Name                                      | Status Fed/<br>State ESA CDFW | Habitat Requirements                                                                                                                                                                                                                                           | GEY                                                                             | GUE                                                                             | LAR                                                                                                                                          | FOR                                                                             | GRA                                                                             | SAN                                                                             | GLE                                                                                                                                    | AGU                                                                                                                                                    | PEN                                                                                                                                                                                                                           | PET                                                                             | SON                                                                                                                   |
|---------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Charadrius alexandrinus<br>nivosus<br>western snowyplover           | FT/None<br>G3T3/S3<br>SSC     | Sandy beaches, salt pond<br>levees & shores of large alkali<br>lakes. Needs sandy, gravelly or<br>friable soils for nesting.                                                                                                                                   | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                              | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                        | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                        | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                                                                                               | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitat is not<br>present.                                      |
| Circus hudsonius<br>northern harrier                                | None/None<br>G5/S3<br>SSC     | Coastal salt and freshwater marsh. Nest and forage in grasslands, from salt grass in desert sink to mountain cienagas. Nests on ground in shrubby vegetation, usually at marsh edge; nest built of a large mound of sticks in wet areas.                       | Low Potential;<br>suitable breeding<br>and foraging<br>habitatis present.       | suitable breeding and foraging                                                  | and foraging                                                                                                                                 | Moderate Potential; suitable breeding and foraging habitatis present.           | Moderate Potential; suitable breeding and foraging habitatis present.           | Moderate Potential; suitable breeding and foraging habitatis present.           | Moderate Potential; suitable breeding and foraging habitatis present.                                                                  | Moderate Potential; suitable breeding and foraging habitatis present.                                                                                  | Moderate Potential; suitable breeding and foraging habitatis present.                                                                                                                                                         | Low Potential;<br>suitable breeding<br>and foraging<br>habitatis present.       | Low Potential;<br>suitable breeding<br>and foraging<br>habitatis<br>present.                                          |
| Coccyzus americanus<br>occidentalis<br>western yellow-billed cuckoo | FT/SE<br>G5T2T3/S1            | Riparian forest nester, along the broad, lower flood-bottoms of larger river systems. Nests in riparian jungles of willow, often mixed with cottonwoods, with lower story of blackberry, nettles, or wild grape.                                               | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                              | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | occurrences<br>within 5 miles of                                                | Not Expected; 1<br>CNDDB<br>occurrence<br>within 5 miles of<br>site but suitable<br>breeding and<br>foraging habitatis<br>not present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                        | Not Expected; 2<br>CNDDB<br>occurrences<br>within 5 miles,<br>including<br>historical one<br>occurrence<br>approximately 3<br>miles northeast<br>(1975) but<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitat is not<br>present.                                      |
| Coturnicops noveboracensis<br>yellow rail                           | None/None<br>G4/S1S2<br>SSC   | Summer resident in eastern<br>Sierra Nevada in Mono County.<br>Freshwater marshlands.                                                                                                                                                                          | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected; 1<br>CNDDB<br>occurrence<br>within 5 miles of<br>site but no<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | and foraging habitatis not present.                                             | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                        | Not Expected; 1 historical CNDDB occurrence approximately 1.5 miles southeast of site (1898) but suitable breeding and foraging habitatis not present. | Not Expected;                                                                                                                                                                                                                 | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitat is not<br>present.                                      |
| Cypseloides niger<br>black swift                                    | None/None<br>G4/S2<br>SSC     | Coastal belt of Santa Cruz and Monterey counties; central & southern Sierra Nevada; San Bernardino & San Jacinto mountains. Breeds in small colonies on cliffs behind or adjacent to waterfalls in deep canyons and sea-bluffs above the surf; forages widely. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                              | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | occurrence approximately                                                                                                               | Not Expected; 1<br>CNDDB<br>occurrence<br>within 5 miles of<br>site but suitable<br>breeding and<br>foraging habitatis<br>not present.                 | and foraging habitatis not present.                                                                                                                                                                                           | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;1<br>CNDDB<br>occurrence<br>(1898) and<br>suitable breeding<br>andforaging<br>habitat is not<br>present. |

| Scientific Name<br>Common Name                                | Status Fed/<br>State ESA CDFW | Habitat Requirements                                                                                                                                                                                                                    | GEY                                                                                   | GUE                                                                             | LAR                                                                             | FOR                                                                                                         | GRA                                                                             | SAN                                                                                                                     | GLE                                                                                                          | AGU                                                                                                         | PEN                                                                                                                            | PET                                                                                                                                    | SON                                                                                                                             |
|---------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Elanus leucurus<br>white-tailed kite                          | None/None<br>G5/S3S4<br>FP    | Rolling foothills and valley margins with scattered oaks & river bottomlands or marshes next to deciduous woodland. Open grasslands, meadows, or marshes for foraging close to isolated, dense-topped trees for nesting and perching.   | Moderate<br>Potential;<br>suitable<br>breeding and<br>foraging habitat<br>is present. | Moderate Potential; suitable breeding and foraging habitatis present.           | and foraging                                                                    | Moderate Potential; 1 CNDDB occurrence within 5 miles and suitable breeding and foraging habitatis present. | and foraging habitatis present.                                                 | Moderate Potential; 1 CNDDB occurrence approximately 1 mile north and suitable breeding and foraging habitatis present. | Moderate Potential; 2 CNDDB occurrences within 5 miles and suitable breeding and foraging habitatis present. | Moderate Potential; 1 CNDDB occurrence within 5 miles and suitable breeding and foraging habitatis present. | Moderate Potential; 1 CNDDB occurrence approximately 4.8 miles northeast and suitable breeding and foraging habitatis present. | and foraging habitatis present.                                                                                                        | Moderate<br>Potential;<br>suitable<br>breeding and<br>foraging habitat<br>is present.                                           |
| Eremophila alpestris actia<br>California hornedlark           | None/None<br>G5T4Q/S4<br>WL   | Coastal regions, chiefly from Sonoma County to San Diego County. Also main part of San Joaquin Valley and east to foothills. Short-grass prairie, bald hills, mountain meadows, open coastal plains, fallow grain fields, alkali flats. | Moderate Potential; suitable breeding and foraging habitat is present.                | Moderate Potential; suitable breeding and foraging habitatis present.           | and foraging                                                                    | Moderate Potential; suitable breeding and foraging habitatis present.                                       | Moderate Potential; suitable breeding and foraging habitatis present.           | Moderate Potential; suitable breeding and foraging habitatis present.                                                   | Moderate Potential; suitable breeding and foraging habitatis present.                                        | Moderate Potential; suitable breeding and foraging habitatis present.                                       | and foraging                                                                                                                   | and foraging                                                                                                                           | Moderate Potential; suitable breeding and foraging habitat is present.                                                          |
| Falco peregrinus anatum<br>American peregrine falcon          | FDR/SDR<br>G4T4/S3S4<br>FP    | Near wetlands, lakes, rivers, or<br>other water; on cliffs, banks,<br>dunes, mounds; also, human-<br>made structures. Nest consists<br>of a scrape or a depression or<br>ledge in an open site.                                         | Moderate Potential; suitable breeding and foraging habitat is present.                | Moderate Potential; suitable breeding and foraging habitatis present.           | and foraging                                                                    | Moderate Potential; suitable breeding and foraging habitatis present.                                       | Moderate Potential; suitable breeding and foraging habitatis present.           | Moderate Potential; suitable breeding and foraging habitatis present.                                                   | Moderate Potential; suitable breeding and foraging habitatis present.                                        | Moderate Potential; suitable breeding and foraging habitatis present.                                       | and foraging                                                                                                                   | and foraging                                                                                                                           | Moderate<br>Potential;<br>suitable<br>breeding and<br>foraging habitat<br>is present.                                           |
| Fratercula cirrhata<br>tufted puffin                          | None/None<br>G5/S1S2<br>SSC   | Open-ocean bird; nests along the coast on islands, islets, or (rarely) mainland cliffs. Requires sod or earth into which the birds can burrow, on island cliffs or grassy island slopes.                                                | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present.      | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                             | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                         | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                              | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                             | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                        | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present.                                                |
| Geothlypis trichassinuosa<br>saltmarsh common<br>yellowthroat | None/None<br>G5T3/S3<br>SSC   | Resident of the San Francisco<br>Bay region, in fresh and salt<br>water marshes. Requires thick,<br>continuous cover downto water<br>surface for foraging;tall grasses,<br>tule patches, willows for<br>nesting.                        |                                                                                       | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                             | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                         | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                              | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                             | occurrence<br>approximately 5<br>miles south of<br>site at Petaluma                                                            | Not Expected; 2<br>CNDDB<br>occurrence<br>within 5 miles of<br>site but suitable<br>breeding and<br>foraging habitatis<br>not present. | Not Expected;3<br>CNDDB<br>occurrences<br>within 5 milesburs<br>suitable<br>breeding and<br>foraging habitat<br>is not present. |
| Haliaeetus leucocephalus<br>bald eagle                        | FDR/SE<br>G5/S3<br>FP         | Ocean shore, lake margins, and rivers for both nesting and wintering. Most nests within 1 mile of water. Nests in large, old-growth, or dominant live tree with open branches, especially ponderosa pine. Roosts communally in winter.  | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present.      | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                             | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                         | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                              | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                             | Not Expected;                                                                                                                  | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                        | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present.                                                |

| Scientific Name<br>Common Name                                     | Status Fed/<br>State ESA CDFW | Habitat Requirements                                                                                                                                                                                                            | GEY                                                                              | GUE                                                                                                                 | LAR                                                                              | FOR                                                                                                                         | GRA                                                                                                                                    | SAN                                                                              | GLE                                                                             | AGU                                                                             | PEN                                                                                                                                                                         | PET                                                                                                                                                                        | SON                                                                                                                                                       |
|--------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Laterallus jamaicensis<br>coturniculus<br>California black rail    | None/ST<br>G3T1/S1<br>FP      | Inhabits freshwater marshes, wet meadows and shallow margins of saltwater marshes bordering larger bays. Needs water depths of about 1 inch that do not fluctuate during the year and dense vegetationfor nesting habitat.      | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                     | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.  | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                             | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                        | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.  | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                                             | Not Expected; 4<br>CNDDB<br>occurrences<br>within 5 miles<br>but suitable<br>breeding and<br>foraging habitatis<br>not present.                                            | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present.                                                                          |
| Melospiza melodiasamuelis<br>San Pablo songsparrow                 | None/None<br>G5T2/S2<br>SSC   | Resident of salt marshes along<br>the north side of San Francisco<br>and San Pablo bays. Inhabits<br>tidal sloughs in the Salicornia<br>marshes; nests in Grindelia<br>bordering slough channels.                               | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                     | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.  | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                             | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                        | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.  | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected; 1<br>historical CNDDB<br>occurrence<br>approximately 5<br>miles south of<br>site (1940) and<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected; 1<br>historical CNDDB<br>occurrence<br>approximately 2<br>miles east of site<br>(1940) but<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;2<br>historical CNDDB<br>occurrences<br>within 5 miles<br>(1901, 1947)<br>and suitable<br>breeding and<br>foraging habitat<br>is notpresent. |
| Nannopterum auritum<br>double-crested cormorant                    | None/None<br>G5/S4<br>WL      | Colonial nester on coastal cliffs, offshore islands, and along lake margins in the interior of the state. Nests along coast on sequestered islets, usually on ground with sloping surface, or in tall trees along lake margins. | -                                                                                | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                     | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                             | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                        | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present.                                                                                            | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                                            | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                           |
| Pandion haliaetus<br>osprey                                        | None/None<br>G5/S4<br>WL      | Ocean shore, bays, freshwater lakes, and larger streams. Large nests built in tree-tops within 15 miles of a good fish-producing body of water.                                                                                 | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.  | Low Potential;3 CNDDB occurrences including one occurrence approximately 2.4 miles eastof site along Russian River. | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present. | Not Expected; 2<br>CNDDB<br>occurrences<br>within 5 milesof<br>site but no<br>suitable breeding<br>and foraging<br>habitat. | Not Expected; 1<br>CNDDB<br>occurrence<br>within 5 miles of<br>site but suitable<br>breeding and<br>foraging habitatis<br>not present. | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present.                                                                                            | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                                            | Not Expected;<br>suitable breeding<br>and foraging<br>habitat is not<br>present.                                                                          |
| Pelecanus occidentalis<br>californicus<br>California brown pelican | FDR/SDR<br>G4T3T4/S3<br>FP    | Colonial nester on coastal islands just outside the surf line. Nests on coastal islands of small to moderate size which afford immunity from attack by ground-dwelling predators. Roosts communally.                            | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.  | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                     | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                             | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                        | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present.                                                                                            | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                                            | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                           |
| Progne subis<br>purple martin                                      | None/None<br>G5/S3<br>SSC     | Inhabits woodlands, low elevation coniferous forest of Douglas-fir, ponderosa pine, and Monterey pine. Nests in old woodpecker cavities mostly; also in human-made structures. Nest often locatedin tall, isolated tree/snag.   | Low Potential;<br>suitable breeding<br>and foraging<br>habitatis present.        | Low Potential;<br>suitable breeding<br>and foraging<br>habitatis<br>present.                                        | Low Potential;<br>suitable<br>breeding and<br>foraging habitat<br>is present.    | Low Potential;<br>suitable breeding<br>and foraging<br>habitatis present.                                                   | and foraging                                                                                                                           | Low Potential;<br>suitable<br>breeding and<br>foraging habitat<br>is present.    | Low Potential;<br>suitable breeding<br>and foraging<br>habitatis present.       | Low Potential;<br>suitable breeding<br>and foraging<br>habitatis<br>present.    | Low Potential;<br>suitable<br>breeding and<br>foraging habitat<br>is present.                                                                                               | and foraging                                                                                                                                                               | Low Potential;<br>suitable breeding<br>and foraging<br>habitat is<br>present.                                                                             |

| Scientific Name<br>Common Name                        | Status Fed/<br>State ESA CDFW | Habitat Requirements                                                                                                                                                                                                                                        | GEY                                                                                                                                                      | GUE                                                                                                                                                                                                               | LAR                                                                                                                     | FOR                                                                                                                                                               | GRA                                                                                              | SAN                                                                                                                                               | GLE                                                                                                                                                                 | AGU                                                                                                                                             | PEN                                                                                                                                                       | PET                                                                                                                                                      | SON                                                                                                                                                                             |
|-------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rallus obsoletusobsoletus<br>California Ridgway'srail | FE/SE<br>G3T1/S1<br>FP        | Salt water and brackish marshes traversed by tidal sloughs in the vicinity of San Francisco Bay. Associated with abundant growths of pickleweed, but feeds away from cover on invertebrates from mud-bottomed sloughs.                                      | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                          | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                                                                                   | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present.                                        | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                                   | and foraging habitatis not present.                                                              | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present.                                                                  | and foraging habitatis not present.                                                                                                                                 | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                 | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present.                                                                          | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                          | Not Expected;1<br>CNDDB<br>occurrence<br>within 5 milesof<br>site but suitable<br>breeding and<br>foraging habitat<br>is not present.                                           |
| Riparia riparia<br>bank swallow                       | None/ST<br>G5/S2              | Colonial nester; nests primarily in riparian and otherlowland habitats west of the desert. Requires vertical banks/cliffs with fine- textured/sandy soils near streams, rivers, lakes, ocean to dig nesting hole.                                           | Not Expected;<br>suitable breeding<br>habitat is not<br>present.                                                                                         | Not Expected;<br>suitable breeding<br>habitat is not<br>present.                                                                                                                                                  | Not Expected;<br>suitable<br>breeding habitat<br>is not present.                                                        | Not Expected;<br>suitable breeding<br>habitat is not<br>present.                                                                                                  | Not Expected;<br>suitable breeding<br>habitat is not<br>present.                                 | Not Expected;<br>suitable<br>breeding habitat<br>is not present.                                                                                  | Not Expected; 1<br>CNDDB<br>occurrence<br>within 5 milesbut<br>suitable breeding<br>habitat is not<br>present.                                                      | Not Expected; 1<br>historical CNDDB<br>occurrence<br>(1893) but<br>suitable breeding<br>habitat is not<br>present.                              | breeding habitat is not present.                                                                                                                          | <b>Not Expected</b> ; suitable breeding habitat is not present.                                                                                          | Not Expected;1<br>historical CNDDB<br>occurrence<br>(1893) but<br>suitable breeding<br>habitat is not<br>present.                                                               |
| Strix occidentaliscauring northern spottedowl         | FT/ST<br>G3G4T3/S2            | Old-growth forests or mixed stands of old-growth and mature trees. Occasionally in younger forests with patches of big trees. High, multistory canopy dominated by big trees, many trees with cavitiesor broken tops, woody debris, and space under canopy. | Not Expected;<br>no CNDDB<br>spotted owl<br>observations<br>within 5 miles of<br>site and suitable<br>breeding and<br>foraging habitatis<br>not present. | Low Potential;<br>CNDDB spotted<br>owl observations<br>within 5 miles,<br>including one<br>observation<br>approximately<br>0.5 miles south,<br>but suitable<br>breeding and<br>foraging habitatis<br>not present. | foraging habitat<br>is not present,<br>and the site is<br>isolated by<br>development.                                   | Low Potential;<br>CNDDB spotted<br>owl observations<br>approximately 1<br>mile west of site<br>but suitable<br>breeding and<br>foraging habitatis<br>not present. | approximately 2.3 miles west but suitable breeding and                                           | Not Expected;<br>no CNDDB<br>spotted owl<br>observations<br>within 5 miles<br>and suitable<br>breeding and<br>foraging habitat<br>is not present. | Not Expected;<br>CNDDB spotted<br>owl observations<br>approximately<br>1.7 miles<br>southwest but<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | inSonoma<br>Mountains<br>approximately                                                                                                          | Not Expected;<br>no CNDDB<br>spotted owl<br>observations<br>within 5 miles of<br>site and suitable<br>breeding and<br>foraging habitat<br>is not present. | Not Expected;<br>no CNDDB<br>spotted owl<br>observations<br>within 5 miles of<br>site and suitable<br>breeding and<br>foraging habitatis<br>not present. | Not Expected;<br>CNDDB spotted<br>owl observations<br>approximately<br>2.8 miles<br>northeast but<br>suitable breeding<br>andforaging<br>habitat is not<br>present.             |
| Mammals  Antrozous pallidus pallid bat                | None/None<br>G4/S3<br>SSC     | Deserts, grasslands, shrublands, woodlands and forests. Most common in open, dry habitats with rockyareas for roosting. Roosts must protect bats from high temperatures. Very sensitiveto disturbance of roosting sites.                                    | Low Potential;<br>4 CNDDB<br>occurrences<br>within 5 miles of<br>site and suitable<br>habitatis<br>present.                                              | Low Potential;1<br>CNDDB<br>occurrence<br>approximately<br>4.9 miles<br>southeast and<br>suitable habitatis<br>present.                                                                                           | Low Potential;1<br>CNDDB<br>occurrence<br>approximately<br>4.7 miles<br>northeast and<br>suitable habitatis<br>present. | Moderate Potential; 2 CNDDB occurrences within 5 miles of site, including one historical occurrence within the BSA and suitable habitat is present.               | Low Potential;<br>2 CNDDB<br>occurrences<br>within 5 milesand<br>suitable habitat<br>is present. | Low Potential;<br>suitable habitatis<br>present.                                                                                                  | Low Potential; 1 CNDDB occurrence approximately 1.3 miles west and suitable habitat is present.                                                                     | Low Potential; 4 CNDDB occurrences within 5 milesof site, including 1 occurrence approximately 0.7 miles south and suitable habitat is present. | Low Potential;<br>1 CNDDB<br>occurrence<br>approximately<br>4.9 miles south<br>and suitable<br>habitat is<br>present.                                     | Low Potential;<br>suitable habitatis<br>present.                                                                                                         | Low Potential;3<br>CNDDB<br>occurrences<br>within 5 milesof<br>site, including 1<br>occurrence<br>approximately<br>0.6 miles<br>southwest and<br>suitable habitatis<br>present. |
| Aplodontia rufa phaea<br>Point Reyes mountain beaver  | None/None<br>G5T2/S2<br>SSC   | Coastal area of Point Reyes in areas of springs or seepages. North-facing slopes of hills and gullies in areas overgrown with sword ferns and thimbleberries.                                                                                               | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present.                                                                         | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                                                                                   | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                         | Not Expected;                                                                                                                                                     | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                  | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present.                                                                  | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                                     | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                 | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                           | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                          | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                                                 |

| Scientific Name<br>Common Name                        | Status Fed/<br>State ESA CDFW    | Habitat Requirements                                                                                                                                                                                                                                                               | GEY                                                                              | GUE                                                                                                | LAR                                                                                                 | FOR                                                                                                                   | GRA                                                                                                                                     | SAN                                                                              | GLE                                                                             | AGU                                                                             | PEN                                                                                                                                            | PET                                                                                                                       | SON                                                                              |
|-------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Arborimus pomo<br>Sonoma tree vole                    | None/None<br>G3/S3<br>SSC        | North coast fog belt from Oregon border to Sonoma County. In Douglas-fir, redwood & montane hardwood-conifer forests. Feeds almost exclusively on Douglas-fir needles. Will occasionally take needles of grand fir, hemlock or spruce.                                             | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present. | Low Potential;6<br>CNDDB<br>occurrences<br>within 5 milesand<br>suitable habitat<br>is present.    | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                     | Low Potential;<br>1 CNDDB<br>occurrence<br>within 5 miles<br>and suitable<br>habitat is<br>present.                   | Not Expected; 2<br>CNDDB<br>occurrences<br>within 5 miles of<br>site but suitable<br>breeding and<br>foraging habitatis<br>not present. | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                           | Not Expected;<br>suitable breeding<br>and foraging<br>habitat is not<br>present. |
| Corynorhinus townsendii<br>Townsend's big-eared bat   | None/None<br>G4/S2<br>SSC        | Throughout California in a wide variety of habitats. Most common in mesic sites. Roosts in the open, hanging from walls and ceilings. Roosting sites limiting. Extremely sensitive to human disturbance.                                                                           | suitable habitatis present.                                                      | Low Potential;1 CNDDB occurrence approximately 2.2 miles north and suitable habitat is present.    | Low Potential;2<br>CNDDB<br>occurrences<br>within 5 miles<br>and suitable<br>habitat is<br>present. | Low Potential; 1<br>CNDDB<br>occurrence<br>approximately<br>4.6 miles north<br>and suitable<br>habitat is<br>present. | Low Potential;<br>suitable habitatis<br>present.                                                                                        | Low Potential;<br>suitable habitatis<br>present.                                 | Low Potential;<br>suitable habitatis<br>present.                                | Low Potential;<br>suitable habitatis<br>present.                                | Low Potential; 1<br>CNDDB<br>occurrence<br>approximately4<br>miles south and<br>suitable habitat<br>is present.                                | Low Potential;1<br>historical CNDDB<br>occurrence<br>approximately 2<br>miles east and<br>suitable habitat<br>is present. | Low Potential;<br>suitable habitatis<br>present.                                 |
| Lasiurus blossevillii<br>western red bat              | None/None<br>G4/S3<br>SSC        | Roosts primarily in trees, 2-40 ft above ground, from sea level up through mixed conifer forests. Prefers habitat edges and mosaics with trees that are protected from above and open below with open areas for foraging.                                                          | present.                                                                         | Low Potential;1 CNDDB occurrence approximately 4.9 miles southeast and suitable habitatis present. | Low Potential;<br>suitable habitatis<br>present.                                                    | Low Potential;1 CNDDB occurrence approximately 0.7 miles west and suitable habitat is present.                        | Low Potential;1<br>CNDDB<br>occurrence<br>approximately 3<br>miles northwest<br>and suitable<br>habitatis<br>present.                   | Low Potential;<br>suitable habitatis<br>present.                                 | Low Potential;<br>suitable habitatis<br>present.                                | Low Potential;<br>suitable habitatis<br>present.                                | Low Potential;<br>suitable habitatis<br>present.                                                                                               | Low Potential;<br>suitable habitatis<br>present.                                                                          | Low Potential;<br>suitable habitatis<br>present.                                 |
| Pekania pennanti fisher                               | None/None<br>G5/S2S3<br>SSC      | Intermediate to large-tree stages of coniferous forests and deciduous-riparian areas with high percent canopy closure. Uses cavities, snags, logs and rocky areas for cover and denning. Needs large areas of mature, dense forest.                                                | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                    | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                     | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                       | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                         | Not Expected;<br>suitable<br>breeding and<br>foraging habitat<br>is not present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present. | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                                                | Not Expected;<br>suitable breeding<br>and foraging<br>habitatis not<br>present.                                           | Not Expected;<br>suitable breeding<br>and foraging<br>habitat is not<br>present. |
| Reithrodontomysraviventris<br>salt-marsh harvestmouse | FE/SE<br>G1G2/S1S2<br>FP         | Only in the saline emergent wetlands of San Francisco Bay and its tributaries. Pickleweed is primary habitat, but may occur in other marsh vegetation types and in adjacent upland areas. Does not burrow; builds loosely organized nests. Requires higher areas for flood escape. | Not Expected;<br>suitable wetland<br>habitatis not<br>present.                   | Not Expected;<br>suitable wetland<br>habitatis not<br>present.                                     | Not Expected;<br>suitable wetland<br>habitatis not<br>present.                                      | Not Expected;<br>suitable wetland<br>habitatis not<br>present.                                                        | Not Expected;<br>suitable wetland<br>habitatis not<br>present.                                                                          | Not Expected;<br>suitable wetland<br>habitatis not<br>present.                   | Not Expected;<br>suitable wetland<br>habitatis not<br>present.                  | Not Expected;<br>suitable wetland<br>habitatis not<br>present.                  | Not Expected; 1<br>CNDDB<br>occurrence<br>approximately<br>4.8 miles<br>southeast of site<br>but suitable<br>wetland habitatis<br>not present. | Not Expected; 2<br>CNDDB<br>occurrences<br>within 5 miles of<br>site but suitable<br>wetland habitatis<br>not present.    | Not Expected;<br>suitable wetland<br>habitatis not<br>present.                   |
| Sorex ornatussinuosus<br>Suisun shrew                 | None/None<br>G5T1T2Q/S1S2<br>SSC | Tidal marshes of the northern                                                                                                                                                                                                                                                      | Not Expected;<br>suitable tidal<br>marsh habitat is<br>not present.              | Not Expected;<br>suitable tidal<br>marsh habitat is<br>not present.                                | Not Expected;<br>suitable tidal<br>marsh habitat is<br>not present.                                 | Not Expected;<br>suitable tidal<br>marsh habitat is<br>not present.                                                   | Not Expected;<br>suitable tidal<br>marsh habitat is<br>not present.                                                                     | Not Expected;<br>suitable tidal<br>marsh habitat is<br>not present.              | Not Expected;<br>suitable tidal<br>marsh habitat is<br>not present.             | Not Expected;<br>suitable tidal<br>marsh habitat is<br>not present.             | Not Expected;<br>suitable tidal<br>marsh habitat is<br>not present.                                                                            | Not Expected;<br>suitable tidal<br>marsh habitat is<br>not present.                                                       | Not Expected;<br>suitable tidal<br>marsh habitatis<br>not present.               |


| Scientific Name<br>Common Name   | Status Fed/<br>State ESA CDFW                                                            | Habitat Requirements                                                                                                                                                                                                 | GEY                                                 | GUE                                                                                                                  | LAR                                                                     | FOR                                                 | GRA                                                                                                 | SAN                                                                                                 | GLE                                                                                                                                     | AGU                                                 | PEN                                                                                                                                                              | PET                                                                                                              | SON                                                 |
|----------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Taxidea taxus<br>American badger | None/None<br>G5/S3<br>SSC                                                                | Most abundant in drier open stages of most shrub, forest, and herbaceous habitats, with friable soils. Needs sufficient food, friable soils and open, uncultivated ground. Preys on burrowing rodents. Digs burrows. | Not Expected;<br>suitable habitatis<br>not present. | Not Expected;<br>suitable habitatis<br>not present.                                                                  | Not Expected;<br>suitable habitatis<br>not present.                     | Not Expected;<br>suitable habitatis<br>not present. | Not Expected; 2<br>CNDDC<br>occurrences<br>within 5 milesbut<br>suitable habitat<br>is not present. | Not Expected; 3<br>CNDDC<br>occurrences<br>within 5 milesbut<br>suitable habitat<br>is not present. | Not Expected; 1<br>CNDDB<br>occurrence<br>approximately<br>3.8 miles<br>southwest of site<br>but suitable<br>habitat is not<br>present. | Not Expected;<br>suitable habitatis<br>not present. | Not Expected; 4 CNDDB occurrences within 5 milesof site, including one occurrence approximately 0.8 miles southwest of site but suitable habitat is not present. | Moderate Potential; 1 CNDDB occurrence approximately 400 feet northof site and suitable open habitat is present. | Not Expected;<br>suitable habitatis<br>not present. |
| •                                | Federal Candidate Species ST = State ThreatenedFE = Federally Endangered SR = State Rare |                                                                                                                                                                                                                      | State Rare (                                        | JSGS 7.5-minute quad<br>Geyserville (3812268),<br>3812226), Sonoma (3<br>3812341), Bodega He<br>3812224), Cuttings W | Cazadero (3812351),<br>812234), Cloverdale (3<br>ad (3812331), Valley F | 3812371), Asti (38122<br>Ford (3812238), Two F      | 78), The Geysers (381<br>ock (3812237), Point                                                       | 2277), Jimtown (3812<br>Reyes NE (3812227),                                                         | 2267), Warm Springs [<br>Inverness (3812217),                                                                                           | Dam (3812361),Tomb<br>San Geronimo (38122           | s Creek (3812362), Ar<br>216), Novato (381221                                                                                                                    | ched Rock (3812342),<br>5), Petaluma River (38                                                                   | Duncans Mills<br>12225), Sears Point                |

(3812352)

SSC = CDFW Species of Special ConcernFP = Fully Protected

WL = Watch List

DPS = Distinct Population Segment





Paleontological Technical Information

# Appendix GEO: Paleontological Technical Information

#### **Quaternary Young Alluvial Fan and Fluvial Deposits**

Middle to late Holocene alluvial fan and fluvial deposits (Q, Qal), mapped extensively throughout the Geyserville, Guerneville, Larkfield, Graton, and Santa Rosa Potential Sites, are composed of unconsolidated to moderately consolidated medium to coarse-grained sand, silt, and gravel. Middle to late Holocene alluvial fan deposits are typically too young (i.e., less than 5,000 years old) to preserve paleontological resources and are also determined to have a low paleontological sensitivity according to SVP (2010) standards. However, middle to late Holocene alluvial and fluvial deposits may grade downward into more fine-grained deposits of early Holocene to late Pleistocene age (e.g., Qo) that could preserve fossil remains at shallow or unknown depths. Quaternary young alluvial fan and fluvial deposits (Q, Qal) are assigned a low paleontological sensitivity at the surface, and a high paleontological sensitivity at depths below 5 feet.

#### **Quaternary Old Alluvium**

Late to middle Pleistocene alluvium (Qo), which is mapped extensively throughout the Agua Caliente, Santa Rosa, and Sonoma Potential Sites consists of well consolidated, crudely stratified, light yellowish-brown, texturally massive to faintly laminated, poorly sorted, fine- to coarse-grained sand with sparsely distributed pebble beds (Blake et al. 2002; Wagner and Bortugno 1982). Quaternary old (early Holocene to Pleistocene) fine-grained alluvial deposits have a well-documented record of abundant and diverse vertebrate fauna recorded throughout California (Paleobiology Database 2020). Jefferson (2010) has reported numerous vertebrate fossil taxa from Sonoma County and neighboring counties including horse, tapir, bison, camelid, deer, mastodon, mammoth, ground sloth, canine, rabbit, and rodent. Late to middle Pleistocene alluvium (Qo) is assigned a high paleontological sensitivity.

#### **Quaternary Old Alluvial and Marine Terrace Deposits**

Middle to early Pleistocene marine terrace deposits (Qt), mapped within a Guerneville Potential Site (GUE-1), consist of siliceous, fine-grained marine sediments and terrestrial alluvium that accumulated on a series of wave-cut platforms formed during late Pleistocene. Pleistocene terrace deposits have a record of vertebrate fossil preservation in California and have produced scientifically significant specimens from multiple localities. In coastal California, Pleistocene marine terrace deposits have yielded vertebrate fossil specimens of camel, horse, ground sloth, whale, and dolphin, shark, and fish (Jefferson 2010; Woodring et al. 1946). Middle to early Pleistocene marine terrace deposits (Qt) are assigned a high paleontological sensitivity.

#### Pleistocene Huichica and Glen Ellen Formations

Pleistocene Huichica and Glen Ellen Formations (QT), mapped within the Glen Ellen Potential Sites, consist of brown- to buff weathering, interbedded siltstone, fine- to coarse-grained sandstone, pebbly and cobbly sandstone, conglomerate, and tuff (Blake et al. 2002; Wagner and Bortugno 1982). A review of the museum records maintained in the University of California Museum of Paleontology (UCMP) online collections database identified several fossil localities from Pleistocene Huichica and Glen Ellen formations within Sonoma County, which produced several horse teeth, freshwater molluscs, plant remains, and diatoms (UCMP locality V90056) (UCMP 2020). Pleistocene Huichica and Glen Ellen Formations (QT) are assigned a high paleontological sensitivity.

#### Pleistocene to Pliocene Petaluma Formation

The mostly non-marine Pleistocene to Pliocene Petaluma Formation (Pp), mapped extensively within the Penngrove Potential Sites, has a maximum thickness of about 4,000 feet and consists primarily of clay, sandstone, and minor conglomerate (Blake et al. 2002; Wagner and Bortugno 1982). According to the museum records maintained in the UCMP online collections database, at least nine vertebrate localities were identified from the Petaluma Formation (UCMP 2020), which yielded fossil specimens of rabbit (Leporidae), horse (*Equus, Neohipparion gidleyi*), turtle (Testudines), camel (Camelidae), rhinoceros (Rhinocerotidae) within Sonoma County. Pleistocene to Pliocene Petaluma Formation (Pp) is assigned a high paleontological sensitivity.

#### Late Pliocene to late Miocene Wilson Grove Formation

Late Pliocene to late Miocene Wilson Grove Formation (Twg, Pwg), mapped within the Graton, Forestville, and Petaluma Potential Sites, consists of fine grained, well sorted, massive to poorly bedded, light gray to light yellow-brown marine sandstone with thin lenses of pebble conglomerate. According to the museum records maintained in the UCMP online collections database, UCMP localities V81135 and V92001 produced fossil specimens of cartilaginous fish (*Cetorhinus maximus, Isurus oxyrhynchus, Hexanchus griseus*) and bony fish (*Sardinops, Sarda, Merluccius*) from the Wilson Grove Formation within Sonoma County (UCMP 2020). Late Pliocene to late Miocene Wilson Grove Formation (Twg, Pwg) is assigned a high paleontological sensitivity.

#### Pliocene to Miocene Sonoma Volcanics

Pliocene to Miocene Sonoma Volcanics (Psv, Tsb), mapped within a Petaluma Potential Site (PET-4), consists of basalt, andesite, and rhyolite lavas interbedded with debris avalanche deposits. Certain facies, such as the basaltic and andesitic lava flows are extremely unlikely to yield fossils, whereas others such as tuffs, mudflows, and lacustrine facies have yielded significant fossils within Sonoma County. Given the lithology, Pliocene to Miocene Sonoma Volcanics (Psv, Tsb) underlying PET-4 have no paleontological sensitivity since the physical parameters of their formation are not conducive to fossil preservation. Pliocene to Miocene Sonoma Volcanics (Psv, Tsb) have no paleontological sensitivity.

### Late Eocene to Late Cretaceous Franciscan Complex

Late Eocene to Late Cretaceous metasedimentary rocks of the Franciscan Complex (Tsb, TKfs, KJfs, KJfm), mapped within a Guerneville Potential Site (GUE-3), consist of submetamorphosed eugeosynclinal marine sedimentary and mafic igneous rocks, including dark gray to black metabasalt greenstone. Late Eocene to Late Cretaceous metasedimentary rocks from the Franciscan Complex formed from the cooling of molten rock that was subsequently metamorphosed. The high-heat and high-pressure conditions in which these rocks formed are not suitable for life or fossilization. Consequently, metasedimentary rocks from the Franciscan Complex (Tsb, TKfs, KJfs, KJfm) have no paleontological sensitivity (SVP 2020).

#### Early Cretaceous to Late Jurassic Great Valley Complex

Early Cretaceous to Late Jurassic rocks from the Great Valley Complex (KJgvc), mapped within a Geyserville Potential Site (GEY-4), consist of conglomerate, sandstone, siltstone, and shale. Early Cretaceous to Late Jurassic rocks from the Great Valley Complex have yielded several paleontological resources throughout California (Blake et al. 2000; 2002). A search of the paleontological locality records maintained in the online Paleobiology Database indicates that Early Cretaceous to Late Jurassic rocks

from the Great Valley Complex have rendered various significant fossil specimens of extinct cephalopod (Ammonoidea), sea urchin (Echinoidea), and cartilaginous fish (Elasmobranchii) within neighboring counties (Paleobiology Database 2020). Early Cretaceous to Late Jurassic rocks from the Great Valley Complex (KJgvc) are assigned a high paleontological sensitivity.

#### **Depth to Paleontologically Sensitive Units**

Quaternary young (middle to late Holocene) alluvial fan and fluvial deposits (Q, Qal) have a low paleontological sensitivity at the surface as defined by SVP (2010) standards; however, middle to late Holocene deposits may grade downward into more fine-grained, fossiliferous deposits of early Holocene to late Pleistocene age (i.e., Qo, Qt), late Pliocene to late Miocene (i.e., Twg, Pwg), or Early Cretaceous to Late Jurassic (KJgvc) at shallow or unknown depths. Accurately assessing the boundaries between younger and older units within the Potential Sites is generally not possible without site-specific stratigraphic<sup>1</sup> data, some form of radiometric dating<sup>2</sup> or fossil analysis, so conservative estimates of the depth at which paleontologically sensitive units may occur reduces potential for impacts to paleontological resources. The depths at which these units become old enough to yield fossils is highly variable, but generally does not occur at depths of less than 5 feet. Given the proximity of geologic units with high paleontological sensitivity (i.e., Qo, Qt, Twg, and KJgvc) mapped near the Geyserville, Guerneville, Larkfield, Graton, and Santa Rosa Potential Sites, early Holocene to late Pleistocene age (i.e., Qo, Qt), late Pliocene to late Miocene (i.e., Twg), and/or Early Cretaceous to Late Jurassic (KJgvc) deposits are likely present at relatively shallow (i.e., between 5 to 10 feet) depth below younger alluvial sediments (Q, Qal). As noted above, early Holocene to late Pleistocene age, late Pliocene to late Miocene, and Early Cretaceous to Late Jurassic (KJgvc) sedimentary deposits have a well-documented record of abundant and diverse vertebrate fauna throughout California (Jefferson 2010; Paleobiology Database 2020; UCMP 2020). Therefore, areas mapped as Quaternary young (middle to late Holocene) alluvial fan and fluvial deposits (Q, Qal) are assigned a high paleontological sensitivity at depths greater than 5 feet (SVP 2020).

<sup>&</sup>lt;sup>1</sup> Rock layers in the geologic units below the Potential Sites.

<sup>&</sup>lt;sup>2</sup> Technique to determine the age of the geologic units below the Potential Sites.



Report date: 5/6/2020

Sonoma County Rezoning Case Description:

---- Receptor #1 ----

Baselines (dBA)

Land Use Daytime Evening Description Night

Residential Residential 80 80 80

Equipment

Receptor Estimated Spec Actual **Impact** Lmax Lmax Distance Shielding Description Device Usage(%) (dBA) (dBA) (feet) (dBA) 94 25 0 Blasting Yes 1

Calculated (dBA)

Equipment

\*Lmax Leq

Blasting 100

80 100 80 Total

\*Calculated Lmax is the Loudest value.

Report date: 5/6/2020

Case Description: Sonoma County Rezoning

---- Receptor #1 ----

Baselines (dBA)

Description Land Use Daytime Evening Night
Residential Residential 80 80 80

Equipment

Receptor Estimated Spec Actual **Impact** Lmax Lmax Distance Shielding Description Device (dBA) Usage(%) (dBA) (dBA) (feet) 50 0 Blasting Yes 1 94

Calculated (dBA)

Equipment \*Lmax Blasting

k Leq 94 74

Total 94 74

\*Calculated Lmax is the Loudest value.

Report date: 5/6/2020

Case Description: Sonoma County Rezoning

---- Receptor #1 ----

Baselines (dBA)

Description Land Use Daytime Evening Night

Residential Residential 80 80 80

Equipment

Spec Actual Receptor Estimated **Impact** Lmax Lmax Distance Shielding Device Description (dBA) Usage(%) (dBA) (dBA) (feet) Hydra Break Ram 25 Yes 10 90 0

Calculated (dBA)

Equipment \*Lmax Leq

Hydra Break Ram 96 86

Total 96 86

\*Calculated Lmax is the Loudest value.

Report date: 5/6/2020

Case Description: Sonoma County Rezoning

---- Receptor #1 ----

Baselines (dBA)

Land Use Daytime Evening Description Night Residential Residential 80 80

80

Equipment

Spec Actual Receptor Estimated **Impact** Lmax Lmax Distance Shielding Device Description (dBA) Usage(%) (dBA) (dBA) (feet) Hydra Break Ram 50 Yes 10 90 0

Calculated (dBA)

Equipment \*Lmax

Hydra Break Ram 90 80 90 80 Total

\*Calculated Lmax is the Loudest value.

Leq

Report date: 5/6/2020

Case Description: Sonoma County Rezoning

---- Receptor #1 ----

Baselines (dBA)

Description Land Use Daytime Evening Night
Residential Residential 80 80 80

Equipment

|                  |        |          | Equipini | CIIC   |          |           |
|------------------|--------|----------|----------|--------|----------|-----------|
|                  |        |          | Spec     | Actual | Receptor | Estimated |
|                  | Impact |          | Lmax     | Lmax   | Distance | Shielding |
| Description      | Device | Usage(%) | (dBA)    | (dBA)  | (feet)   | (dBA)     |
| Excavator        | No     | 40       |          | 80.7   | 50       | 0         |
| Front End Loader | No     | 40       |          | 79.1   | 50       | 0         |
| Dump Truck       | No     | 40       |          | 76.5   | 50       | 0         |

# Calculated (dBA)

| Equipment        |       | *Lmax | Leq |      |
|------------------|-------|-------|-----|------|
| Excavator        |       | 80.7  |     | 76.7 |
| Front End Loader |       | 79.1  |     | 75.1 |
| Dump Truck       |       | 76.5  |     | 72.5 |
|                  | Total | 80.7  |     | 79.9 |

<sup>\*</sup>Calculated Lmax is the Loudest value.

Report date: 5/6/2020

Case Description: Sonoma County Rezoning

---- Receptor #1 ----

Baselines (dBA)

Description Land Use Daytime Evening Night

Residential Residential 80 80 80

Equipment

Spec Actual Receptor Estimated **Impact** Lmax Lmax Distance Shielding Description Device Usage(%) (dBA) (dBA) (feet) (dBA) Impact Pile Driver 50 0 Yes 20 101.3

Calculated (dBA)

Equipment

\*Lmax Leq

Impact Pile Driver

101.3 94.3

Total 101.3 94.3

<sup>\*</sup>Calculated Lmax is the Loudest value.

#### **ELECTRICAL DATA**

| 38HDR<br>UNIT<br>SIZE | V-PH-Hz      | VOLTAGE RANGE* |     | COMPRESSOR |       | OUTDOOR FAN MOTOR |           |           | MIN         | FUSE/            |
|-----------------------|--------------|----------------|-----|------------|-------|-------------------|-----------|-----------|-------------|------------------|
|                       |              | Min            | Max | RLA        | LRA   | FLA               | NEC<br>Hp | kW<br>Out | CKT<br>AMPS | HACR BKR<br>AMPS |
| 018                   | 208/230-1-60 | 187            | 253 | 9.0        | 48.0  | 0.80              | 0.125     | 0.09      | 12.1        | 20               |
| 024                   | 208/230-1-60 | 187            | 253 | 12.8       | 58.3  | 0.80              | 0.125     | 0.09      | 16.8        | 25               |
| 030                   | 208/230-1-60 | 187            | 253 | 14.1       | 73.0  | 1.45              | 0.25      | 0.19      | 19.1        | 30               |
|                       | 208/230-1-60 | 187            | 253 | 14.1       | 77.0  | 1.45              | 0.25      | 0.19      | 19.1        | 30               |
| 036                   | 208/230-3-60 | 187            | 253 | 9.0        | 71.0  | 1.45              | 0.25      | 0.19      | 12.7        | 20               |
|                       | 460-3-60     | 414            | 506 | 5.6        | 38.0  | 0.80              | 0.25      | 0.19      | 7.8         | 15               |
|                       | 208/230-1-60 | 187            | 253 | 21.8       | 117.0 | 1.45              | 0.25      | 0.19      | 28.7        | 50               |
| 048                   | 208/230-3-60 | 187            | 253 | 13.7       | 83.1  | 1.45              | 0.25      | 0.19      | 18.6        | 30               |
|                       | 460-3-60     | 414            | 506 | 6.2        | 41.0  | 0.80              | 0.25      | 0.19      | 8.6         | 15               |
|                       | 208/230-1-60 | 187            | 253 | 26.4       | 134.0 | 1.45              | 0.25      | 0.19      | 34.5        | 60               |
| 060                   | 208/230-3-60 | 187            | 253 | 16.0       | 110.0 | 1.45              | 0.25      | 0.19      | 21.5        | 35               |
|                       | 460-3-60     | 414            | 506 | 7.8        | 52.0  | 0.80              | 0.25      | 0.19      | 10.6        | 15               |

<sup>\*</sup> Permissible limits of the voltage range at which the unit will operate satisfactorily

FLA – Full Load Amps
HACR – Heating, Air Conditininng, Refrigeration

LRA – Locked Rotor Amps
NEC – National Electrical Code

- Rated Load Amps (compressor)

NOTE: Control circuit is 24—V on all units and requires external power source. Copper wire must be used from service disconnect to unit.

All motors/compressors contain internal overload protection.

#### **SOUND LEVEL**

| Unit Size | Standard    | Typical Octave Band Spectrum ( dBA ) (without tone adjustment) |      |      |      |      |      |      |  |
|-----------|-------------|----------------------------------------------------------------|------|------|------|------|------|------|--|
|           | Rating (dB) | 125                                                            | 250  | 500  | 1000 | 2000 | 4000 | 8000 |  |
| 018       | 68          | 52.0                                                           | 57.5 | 60.5 | 63.5 | 60.5 | 57.5 | 46.5 |  |
| 024       | 69          | 57.5                                                           | 61.5 | 63.0 | 61.0 | 60.0 | 56.0 | 45.0 |  |
| 030       | 72          | 56.5                                                           | 63.0 | 65.0 | 66.0 | 64.0 | 62.5 | 57.0 |  |
| 036       | 72          | 65.0                                                           | 61.5 | 63.5 | 65.0 | 64.5 | 61.0 | 54.5 |  |
| 048       | 72          | 58.5                                                           | 61.0 | 64.0 | 67.5 | 66.0 | 64.0 | 57.0 |  |
| 060       | 72          | 63.0                                                           | 61.5 | 64.0 | 66.5 | 66.0 | 64.5 | 55.5 |  |

#### CHARGING SUBCOOLING (TXV-TYPE EXPANSION DEVICE)

| UNIT SIZE-VOLTAGE, SERIES | REQUIRED SUBCOOLING °F (°C) |
|---------------------------|-----------------------------|
| 018                       | 12 (6.7)                    |
| 024                       | 12 (6.7)                    |
| 030                       | 12 (6.7)                    |
| 036                       | 12 (6.7)                    |
| 048                       | 12 (6.7)                    |
| 060                       | 12 (6.7)                    |



# 20/22 kW



# GUARDIAN® SERIES Residential Standby Generators Air-Cooled Gas Engine

### Standby Power Rating

G007038-1, G007039-1, G007038-3, G007039-3 (Aluminum - Bisque) - 20 kW 60 Hz G007042-2, G007043-2, G007042-3, G007043-3 (Aluminum - Bisque) - 22 kW 60 Hz

#### INCLUDES:

- True Power™ Electrical Technology
- Two-line multilingual digital LCD Evolution™ controller (English/Spanish/French/Portuguese)
- 200 amp service rated smart switch transfer switch available
- Electronic governor
- Standard Wi-Fi<sup>®</sup> connectivity
- System status & maintenance interval LED indicators
- Sound attenuated enclosure
- Flexible fuel line connector
- Natural gas or LP gas operation
- 5 Year limited warranty
- Listed and labeled by the Southwest Research Institute allowing
  installation as close as 18 in (457 mm) to a structure.\*
   \*Must be located away from doors, windows, and fresh air intakes and in
  accordance with local codes.

https://assets.swri.org/library/DirectoryOfListedProducts/ ConstructionIndustry/973 DoC 204 13204-01-01 Rev9.pdf





Note: CETL or CUL certification only applies to unbundled units and units packaged with limited circuit switches, Units packaged with the Smart Switch are ETL or UL certified in the USA only.

## **FEATURES**

- INNOVATIVE ENGINE DESIGN & RIGOROUS TESTING are at the heart of Generac's success in providing the most reliable generators possible. Generac's G-Force engine lineup offers added peace of mind and reliability for when it's needed the most. The G-Force series engines are purpose built and designed to handle the rigors of extended run times in high temperatures and extreme operating conditions.
- TRUE POWER™ ELECTRICAL TECHNOLOGY: Superior harmonics and sine wave form produce less than 5% Total Harmonic Distortion for utility quality power. This allows confident operation of sensitive electronic equipment and micro-chip based appliances, such as variable speed HVAC systems.
- O TEST CRITERIA:
  - ✓ PROTOTYPE TESTED✓ SYSTEM TORSIONAL TESTED
- ✓ NEMA MG1-22 EVALUATION
   ✓ MOTOR STARTING ABILITY
- MOBILE LINK® CONNECTIVITY: FREE with select Guardian Series Home standby generators, Mobile Link Wi-Fi allows users to monitor generator status from anywhere in the world using a smartphone, tablet, or PC. Easily access information such as the current operating status and maintenance alerts. Users can connect an account to an authorized service dealer for fast, friendly, and proactive service. With Mobile Link, users are taken care of before the next power outage.

- SOLID-STATE, FREQUENCY COMPENSATED VOLTAGE REGULATION: This state-of-the-art power maximizing regulation system is standard on all Generac models. It provides optimized FAST RESPONSE to changing load conditions and MAXIMUM MOTOR STARTING CAPABILITY by electronically torque-matching the surge loads to the engine. Digital voltage regulation at ±1%.
- SINGLE SOURCE SERVICE RESPONSE from Generac's extensive dealer network
  provides parts and service know-how for the entire unit, from the engine to the smallest electronic component.
- GENERAC TRANSFER SWITCHES: Long life and reliability are synonymous with GENERAC POWER SYSTEMS. One reason for this confidence is that the GENERAC product line is offered with its own transfer systems and controls for total system compatibility.











## **GENERAC**

### **Features and Benefits**

#### Engine

20/22 kW

Generac G-Force design
 Maximizes engine "breathing" for increased fuel efficiency. Plateau honed cylinder walls and plasma moly rings help the engine run cooler, reducing oil consumption and resulting in longer engine life.

"Spiny-lok" cast iron cylinder walls
 Rigid construction and added durability provide long engine life.

Electronic ignition/spark advance
 These features combine to assure smooth, quick starting every time.

Full pressure lubrication system
 Pressurized lubrication to all vital bearings means better performance, less maintenance, and longer engine

life. Now featuring up to a 2 year/200 hour oil change interval.

Low oil pressure shutdown system
 Shutdown protection prevents catastrophic engine damage due to low oil.

High temperature shutdown
Prevents damage due to overheating.

#### Generator

Revolving field
 Allows for a smaller, light weight unit that operates 25% more efficiently than a revolving armature generator.

Skewed stator Produces a smooth output waveform for compatibility with electronic equipment.

Displaced phase excitation
 Maximizes motor starting capability.

Automatic voltage regulation
 Regulating output voltage to ±1% prevents damaging voltage spikes.

UL 2200 listed For your safety.

#### Transfer Switch (if applicable)

Fully automatic
 Transfers vital electrical loads to the energized source of power.

NEMA 3R
 Can be installed inside or outside for maximum flexibility.

Remote mounting
 Mounts near an existing distribution panel for simple, low-cost installation.

#### **Evolution™ Controls**

AUTO/MANUAL/OFF illuminated buttons
 Selects the operating mode and provides easy, at-a-glance status indication in any condition.

Two-line multilingual LCD display
 Provides homeowners easily visible logs of history, maintenance, and events up to 50 occurrences.

Sealed, raised buttons
 Smooth, weather-resistant user interface for programming and operations.

Utility voltage sensing
 Constantly monitors utility voltage, setpoints 65% dropout, 80% pick-up, of standard voltage.

Generator voltage sensing
 Constantly monitors generator voltage to verify the cleanest power delivered to the home.

Utility interrupt delay
 Prevents nuisance start-ups of the engine, adjustable 2-1500 seconds from the factory default setting of 5

seconds by a qualified dealer.

Engine warm-up
 Verifies engine is ready to assume the load, setpoint approximately 5 seconds.

Engine cool-down Allows engine to cool prior to shutdown, setpoint approximately 1 minute.

Programmable exercise
 Operates engine to prevent oil seal drying and damage between power outages by running the generator for

5 minutes every other week. Also offers a selectable setting for weekly or monthly operation providing

flexibility and potentially lower fuel costs to the owner.

Smart battery charger
Delivers charge to the battery only when needed at varying rates depending on outdoor air temperature.

Compatible with lead acid and AGM-style batteries.

Main line circuit breaker Protects generator from overload.

• Electronic governor Maintains constant 60 Hz frequency.

#### Unit

SAE weather protective enclosure
 Sound attenuated enclosures ensure quiet operation and protection against mother nature, withstanding winds up to 150 mph (241 km/h). Hinged key locking roof panel for security. Lift-out front for easy access

to all routine maintenance items. Electrostatically applied textured epoxy paint for added durability.

Enclosed critical grade muffler
 Quiet, critical grade muffler is mounted inside the unit to prevent injuries.

Small, compact, attractive
 Makes for an easy, eye appealing installation, as close as 18 in (457 mm) away from a structure.

#### 3 of 6

### 20/22 kW

## **Features and Benefits**

**GENERAC**°

#### **Installation System**

• 14 in (35.6 cm) flexible fuel line connector Listed ANSI Z21.75/CSA 6.27 outdoor appliance connector for the required connection to the gas supply piping.

Integral sediment trap Meets IFGC and NFPA 54 installation requirements.

#### Connectivity (Wi-Fi equipped models only)

 Ability to view generator status Monitor generator with a smartphone, tablet, or computer at any time via the Mobile Link application for complete peace of mind.

 Ability to view generator Exercise/Run and Total Hours Review the generator's complete protection profile for exercise hours and total hours.

Provides maintenance information for the specific model generator when scheduled maintenance is due.

Detailed monthly reports provide historical generator information.

Built in battery diagnostics displaying current state of the battery.

Provides detailed local ambient weather conditions for generator location.

Ability to view generator maintenance information

Monthly report with previous month's activity

Ability to view generator battery information

Weather information



## **Specifications**

#### Generator

20/22 kW

| Model                                         |                                                                              | G007038-1, G007039-1<br>(20 kW) | G007042-2, G007043-2<br>(22 kW) | G007038-3, G007039-3<br>(20 kW) | G007042-3, G007043-3<br>(22 kW) |  |
|-----------------------------------------------|------------------------------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|
| Rated maximum continuous power capacity (     | (LP)                                                                         | 20,000 Watts*                   | 22,000 Watts*                   | 20,000 Watts*                   | 22,000 Watts*                   |  |
| Rated maximum continuous power capacity (     | (NG)                                                                         | 18,000 Watts*                   | 19,500 Watts *                  | 18,000 Watts*                   | 19,500 Watts *                  |  |
| Rated voltage                                 |                                                                              |                                 | 24                              | 10                              |                                 |  |
| Rated maximum continuous load current - 24    | 40 volts (LP/NG)                                                             | 83.3 / 75.0                     | 91.7 / 81.3                     | 83.3 / 75.0                     | 91.7 / 81.3                     |  |
| Total Harmonic Distortion                     |                                                                              |                                 | Less th                         | nan 5%                          |                                 |  |
| Main line circuit breaker                     |                                                                              | 90 amp                          | 100 amp                         | 90 amp                          | 100 amp                         |  |
| Phase                                         |                                                                              |                                 | •                               |                                 |                                 |  |
| Number of rotor poles 2                       |                                                                              |                                 |                                 |                                 |                                 |  |
| Rated AC frequency                            |                                                                              |                                 | 60                              | Hz                              |                                 |  |
| Power factor                                  |                                                                              |                                 | 1.                              | .0                              |                                 |  |
| Battery requirement (not included)            |                                                                              | 12 Volts, G                     | Group 26R 540 CCA minimur       | m or Group 35AGM 650 CC         | A minimum                       |  |
| Unit weight (lb / kg)                         |                                                                              | 448 / 203                       | 466 / 211                       | 436 / 198                       | 445 / 202                       |  |
| Dimensions (L x W x H) in / cm                |                                                                              |                                 | 48                              | x 25 x 29 / 121.9 x 63.5 x 7    | 3.7                             |  |
| Sound output in dB(A) at 23 ft (7 m) with gen | nerator operating at normal load**                                           | 67                              | 67                              | 67                              | 67                              |  |
| Sound output in dB(A) at 23 ft (7 m) with gen | nerator in Quiet-Test™ low-speed exercise mode**                             | 55                              | 57                              | 55                              | 57                              |  |
| Exercise duration                             |                                                                              |                                 |                                 | 5 min                           |                                 |  |
| Engine                                        |                                                                              |                                 |                                 |                                 |                                 |  |
| Engine type                                   |                                                                              | GENERAC G-Fo                    |                                 |                                 |                                 |  |
| Number of cylinders 2                         |                                                                              |                                 |                                 |                                 |                                 |  |
| Displacement 999 cc                           |                                                                              |                                 |                                 |                                 |                                 |  |
| Cylinder block                                | ck Aluminum w/ cast iron sleeve                                              |                                 |                                 |                                 |                                 |  |
| Valve arrangement                             |                                                                              |                                 | Overhea                         | ad valve                        |                                 |  |
| Ignition system                               |                                                                              |                                 | Solid-state                     | w/ magneto                      |                                 |  |
| Governor system                               |                                                                              |                                 |                                 | ronic                           |                                 |  |
| Compression ratio                             |                                                                              |                                 | 9.5                             |                                 |                                 |  |
| Starter                                       |                                                                              |                                 | 12\                             |                                 |                                 |  |
| Oil capacity including filter                 |                                                                              |                                 | Approx. 1.9                     | •                               |                                 |  |
| Operating rpm                                 |                                                                              |                                 | 3,6                             | 600                             |                                 |  |
| Fuel consumption                              |                                                                              |                                 |                                 |                                 |                                 |  |
| Natural gas                                   | ft <sup>3</sup> /hr (m <sup>3</sup> /hr)<br>1/2 Load                         | 204 (5.78)                      | 228 (6.46)                      | 164 (4.64)                      | 203 (5.75)                      |  |
|                                               | Full Load                                                                    | 301 (8.52)                      | 327 (9.26)                      | 287 (8.13)                      | 306 (8.66)                      |  |
| Liquid propane ft <sup>3</sup> /l             | hr (gal/hr) [L/hr]                                                           | , , ,                           | ()                              | ()                              | ()                              |  |
|                                               | 1/2 Load                                                                     | 87 (2.37) [8.99]                | 92 (2.53) [9.57]                | 86 (2.36) [8.95]                | 92 (2.53) [9.57]                |  |
|                                               | Full Load                                                                    | 130 (3.56) [13.48]              | 142 (3.90) [14.77]              | 136 (3.74) [14.15]              | 142 (3.90) [14.77]              |  |
| Note: Fuel pipe must be sized for full load   | <ol> <li>Required fuel pressure to generator fuel inlet at all lo</li> </ol> | ad ranges - 3.5–7 in water of   | column (0.87–1.74 kPa) for I    | NG. 10-12 in water column       | (2.49-2.99 kPa) for LP gas      |  |

Note: Fuel pipe must be sized for full load. Required fuel pressure to generator fuel inlet at all load ranges – 3.5–7 in water column (0.87–1.74 kPa) for NG, 10–12 in water column (2.49–2.99 kPa) for LP gas. For BTU content, multiply ft<sup>3</sup>/hr x 2500 (LP) or ft<sup>3</sup>/hr x 1000 (NG). For Megajoule content, multiply m³/hr x 93.15 (LP) or m³/hr x 37.26 (NG).

#### Controls

| Two-line plain text multilingual LCD                                                                       | Simple user interface for ease of operation.                                                               |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Mode buttons: AUTO                                                                                         | Automatic start on utility failure. Weekly, Bi-weekly, or Monthly selectable exerciser.                    |
| MANUAL                                                                                                     | Start with starter control, unit stays on. If utility fails, transfer to load takes place.                 |
| OFF                                                                                                        | Stops unit. Power is removed. Control and charger still operate.                                           |
| Ready to Run/Maintenance messages                                                                          | Standard                                                                                                   |
| Engine run hours indication                                                                                | Standard                                                                                                   |
| Programmable start delay between 2–1500 seconds                                                            | Standard (programmable by dealer only)                                                                     |
| Utility Voltage Loss/Return to Utility adjustable (brownout setting)                                       | From 140-171 V / 190-216 V                                                                                 |
| Future Set Capable Exerciser/Exercise Set Error warning                                                    | Standard                                                                                                   |
| Run/Alarm/Maintenance logs                                                                                 | 50 events each                                                                                             |
| Engine start sequence                                                                                      | Cyclic cranking: 16 sec on, 7 rest (90 sec maximum duration).                                              |
| Starter lock-out                                                                                           | Starter cannot re-engage until 5 sec after engine has stopped.                                             |
| Smart Battery Charger                                                                                      | Standard                                                                                                   |
| Charger Fault/Missing AC warning                                                                           | Standard                                                                                                   |
| Low Battery/Battery Problem Protection and Battery Condition indication                                    | Standard                                                                                                   |
| Automatic Voltage Regulation with Over and Under Voltage Protection                                        | Standard                                                                                                   |
| Under-Frequency/Overload/Stepper Overcurrent Protection                                                    | Standard                                                                                                   |
| Safety Fused/Fuse Problem Protection                                                                       | Standard                                                                                                   |
| Automatic Low Oil Pressure/High Oil Temperature Shutdown                                                   | Standard                                                                                                   |
| Overcrank/Overspeed (@ 72 Hz)/rpm Sense Loss Shutdown                                                      | Standard                                                                                                   |
| High Engine Temperature Shutdown                                                                           | Standard                                                                                                   |
| Internal Fault/Incorrect Wiring protection                                                                 | Standard                                                                                                   |
| Common external fault capability                                                                           | Standard                                                                                                   |
| Field upgradable firmware                                                                                  | Standard                                                                                                   |
| **Cound louds are taken from the front of the consenter Cound louds taken from other sides of the consents | u may ba biabay dagandina an ingtallatian navamataya Datina dafinitiana. Ctandby, Angliachla fay ayanlyina |

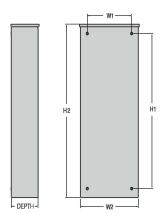
<sup>\*\*</sup>Sound levels are taken from the front of the generator. Sound levels taken from other sides of the generator may be higher depending on installation parameters. Rating definitions - Standby: Applicable for supplying emergency power for the duration of the utility power outage. No overload capability is available for this rating. (All ratings in accordance with BS5514, ISO3046 and DIN6271). \*\*Maximum kilovolt amps and current are subject to and limited by such factors as fuel BTU/megajoule content, ambient temperature, altitude, engine power and condition, etc. Maximum power decreases approximately 3.5% for each 1,000 ft (304.8 m) above sea level; and also will decrease approximately 1% for each 10 °F (6 °C) above 60 °F (16 °C).

### 20/22 kW

## **Switch Options**

GENERAC

#### **Service Rated Smart Switch Features**


- Includes digital power management technology (DPM) standard.
- Intelligently manages up to four air conditioner loads with no additional hardware.
- Up to eight additional large (240 VAC) loads can be managed when used in conjunction with Smart Management Modules (SMMs).
- Electrically operated, mechanically-held contacts for fast, clean connections.
- Rated for all classes of load, 100% equipment rated, both inductive and resistive.
- 2-pole, 250 VAC contactors.
- Service equipment rated, dual coil design.
- Rated for both aluminum and copper conductors.
- Main contacts are silver plated or silver alloy to resist welding and sticking.
- NEMA/UL 3R aluminum outdoor enclosure allows for indoor or outdoor mounting

#### **Dimensions**

|    | 200 Amps 120/240, 1ø<br>Open Transition Service Rated |       |       |       |       |  |  |  |
|----|-------------------------------------------------------|-------|-------|-------|-------|--|--|--|
|    | Height Width                                          |       |       | Donth |       |  |  |  |
|    | H1                                                    | H2    | W1    | W2    | Depth |  |  |  |
| in | 26.75                                                 | 30.1  | 10.5  | 13.5  | 6.91  |  |  |  |
| cm | 67.95                                                 | 76.45 | 26.67 | 34.29 | 17.55 |  |  |  |

| Wire Ranges   |              |            |  |  |  |  |
|---------------|--------------|------------|--|--|--|--|
| Conductor Lug | Neutral Lug  | Ground Lug |  |  |  |  |
| 400 MCM - #4  | 350 MCM - #6 | 2/0 - #14  |  |  |  |  |

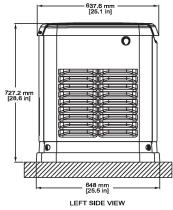
\*Function of Evolution controller Exercise can be set to weekly or monthly

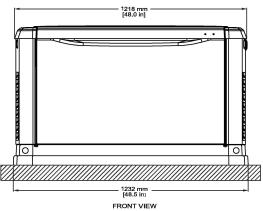


5 of 6

6 of 6

## **GENERAC**


### **Available Accessories**


### 20/22 kW

| Model #                                      | Product                                          | Description                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| G005819-0                                    | 26R Wet Cell Battery                             | Every standby generator requires a battery to start the system. Generac offers the recommended 26R wet cell battery for use with all air-cooled standby product (excluding PowerPact®).                                                                                                                                                                                                                                          |
| G007101-0                                    | Battery Pad Warmer                               | Pad warmer rests under the battery. Recommended for use if temperature regularly falls below 0 °F (-18 °C). (Not necessary for use with AGM-style batteries).                                                                                                                                                                                                                                                                    |
| G007102-0                                    | Oil Warmer                                       | Oil warmer slips directly over the oil filter. Recommended for use if temperature regularly falls below 0 °F (-18 °C).                                                                                                                                                                                                                                                                                                           |
| G007103-1                                    | Breather Warmer                                  | Breather warmer is for use in extreme cold weather applications. For use with Evolution controllers only in climates where heavy icing occurs.                                                                                                                                                                                                                                                                                   |
| G005621-0                                    | Auxiliary Transfer Switch<br>Contact Kit         | The auxiliary transfer switch contact kit allows the transfer switch to lock out a single large electrical load that may not be needed. Not compatible with 50 amp pre-wired switches.                                                                                                                                                                                                                                           |
| G007027-0 - Bisque                           | Fascia Base Wrap Kit<br>(Standard on 22 kW)      | The fascia base wrap snaps together around the bottom of the new air-cooled generators. This offers a sleek, contoured appearance as well as offering protection from rodents and insects by covering the lifting holes located in the base.                                                                                                                                                                                     |
| G005703-0 - Bisque                           | Touch-Up Paint Kit                               | If the generator enclosure is scratched or damaged, it is important to touch up the paint to protect from future corrosion. The touch-up paint kit includes the necessary paint to correctly maintain or touch up a generator enclosure.                                                                                                                                                                                         |
| G006485-0                                    | Scheduled Maintenance Kit                        | Generac's scheduled maintenance kit provides all the items necessary to perform complete routine maintenance on a Generac automatic standby generator (oil not included).                                                                                                                                                                                                                                                        |
| G007005-0                                    | Wi-Fi LP Tank Fuel Level<br>Monitor              | The Wi-Fi enabled LP tank fuel level monitor provides constant monitoring of the connected LP fuel tank. Monitoring the LP tank's fuel level is an important step in verifying the generator is ready to run during an unexpected power failure. Status alerts are available through a free application to notify users when the LP tank is in need of a refill.                                                                 |
| G007000-0 (50 amp)<br>G007006-0 (100<br>amp) | Smart Management Module                          | Smart Management Modules (SMM) are used to optimize the performance of a standby generator. It manages large electrical loads upon startup and sheds them to aid in recovery when overloaded. In many cases, using SMM's can reduce the overall size and cost of the system.                                                                                                                                                     |
| G007169-0                                    | Mobile Link <sup>®</sup> Cellular<br>Accessories | The Mobile Link family of Cellular Accessories allows users to monitor generator status from anywhere in the world, using a smart phone, tablet, or PC. Easily access information such as the current operating status and maintenance alerts. Users can connect an account with an authorized service dealer for fast, friendly, and proactive service. With Mobile Link, users are taken care of before the next power outage. |

### **Dimensions & UPCs**

| Model     | UPC          |
|-----------|--------------|
| G007038-1 | 696471074185 |
| G007038-3 | 696471074185 |
| G007039-1 | 696471074192 |
| G007039-3 | 696471074192 |
| G007042-2 | 696471074208 |
| G007042-3 | 696471074208 |
| G007043-2 | 696471074215 |
| G007043-3 | 696471074215 |





Dimensions shown are approximate. See installation manual for exact dimensions, DO NOT USE THESE DIMENSIONS FOR INSTALLATION PURPOSES.



# Appendix NOP

Notice of Preparation

## Sonoma County Housing Element Update EIR Notice of Preparation (NOP) and Scoping Comments

The County of Sonoma distributed an NOP of the Program EIR for a 30-day agency and public review period (June 15, 2022 to July 15, 2022). In addition, the County held a virtual Scoping Meeting on June 28, 2022. The comments contained herein were submitted to the County during the NOP comment period for consideration in preparation of the DEIR.



## NOTICE OF PREPARATION OF PROGRAM EIR AND NOTICE OF PROGRAM EIR PUBLIC SCOPING MEETING

#### Sonoma County Housing Element Update Program EIR

**Date:** June 15, 2022

To: State Clearinghouse, Responsible and Trustee Agencies, and Interested Parties

and Organizations

**Project Title:** Sonoma County Housing Element Update

Comment Period: June 15, 2022 through July 15, 2022

**Scoping Meeting:** VIRTUAL, Tuesday, June 28, 2022, at 6:00 p.m. PST

**Lead Agency:** County of Sonoma

**Project Location:** Countywide (refer to Figure 1)

Lead Agency Contact: Eric Gage, Planner III

County of Sonoma 2550 Ventura Avenue Santa Rosa, California 95403

PermitSonoma-Housing@sonoma-county.org

The Sonoma County Permit and Resource Management Department (Permit Sonoma) is preparing an update to the Housing Element of the Sonoma County General Plan 2020 and has determined that a Program Environmental Impact Report (EIR) will be necessary to evaluate environmental impacts of the Housing Element Update. The County requests comments and guidance on the scope and content of the Program EIR from responsible and trustee agencies, interested public agencies, organizations, and the general public in compliance with the California Environmental Quality Act (CEQA; California Public Resources Code, Section 21000 et seq.), and California Code of Regulations, Title 14, Division 6, Chapter 3 (State CEQA Guidelines). The County prepared this Notice of Preparation (NOP) in accordance with CEQA Guidelines Sections 15082(a) and 15375.

This notice provides a summary of the Housing Element Update project; includes the County's preliminary identification of the potential environmental issues to be analyzed in the EIR; and provides information on how to comment on the scope of the EIR and how to participate in the Public Scoping Meeting.





## NOTICE OF PREPARATION OF A DRAFT ENVIRONMENTAL IMPACT REPORT SONOMA COUNTY HOUSING ELEMENT UPDATE

The County invites any and all input and comments regarding the preparation of the Program EIR. If applicable, please indicate a contact person for your agency or organization. If your agency is a responsible agency as defined by CEQA Guidelines Section 15381, your agency may use the environmental documents prepared by the County when considering permits or approvals for action regarding the project.

#### Public Scoping Meeting:

The County will hold a virtual scoping meeting to provide an opportunity for agency staff and interested members of the public to submit verbal comments on the scope of the environmental issues to be addressed in the EIR. The virtual scoping meeting will be held on **Tuesday, June 28, 2022, at 6:00 p.m. PST.** To join the meeting by computer or provide comment by phone, use the Zoom link or phone number on the Housing Element webpage:

https://permitsonoma.org/regulationsandinitiatives/housing/housingelement#events.

The scoping meeting will begin with a presentation followed by a question and answer session. The scoping presentation will be recorded and available to view after June 30, 2022 on: https://www.youtube.com/c/PermitSonoma/videos.

If you have questions regarding this NOP or the scoping meeting, please contact Eric Gage at 707-565-1391 or via email at PermitSonoma-Housing@sonoma-county.org.

**Written Comments:** Please submit written comments within 30 days of the date of this notice by 5:00 p.m. on July 15, 2022, via email to <a href="mailto:PermitSonoma-Housing@sonoma-county.org">PermitSonoma-County.org</a> or by regular mail to Permit Sonoma, Attn: Eric Gage, 2550 Ventura Avenue, Santa Rosa, California 95403.

#### **Proposed Project:**

The Sonoma County Permit and Resource Management Department (Permit Sonoma) is preparing its 6<sup>th</sup> Cycle Housing Element Update, which will result in a series of zoning changes and a General Plan Amendment necessary to accommodate the County's Regional Housing Needs Allocation (RHNA). The RHNA is the number of dwelling units assigned to each jurisdiction by state and regional agencies that each city and county must plan for. The County is not responsible to construct the housing, but must identify and zone sites that can accommodate the assigned number of units for the duration of the 8-year Housing Element Cycle. For the current 5<sup>th</sup> RHNA cycle ending in 2022, the County was allocated a total of 515 units to be accommodated in its Housing Element inventory of adequate sites. The County's 6<sup>th</sup> Cycle RHNA is 3,881 dwelling units.

The Housing Element update presents a comprehensive set of housing policies and actions for the years 2023-2031 and will encompass all of unincorporated Sonoma County. The Housing Element update will be based on the County's final RHNA, which determined that the County needs to identify and zone sites for approximately 3,881 residential units, plus a buffer of some number of units to ensure ongoing compliance with the No Net Loss provisions of State housing law. The County expects to exceed the growth forecasts in General Plan 2020. Due to the anticipated increase in residents beyond current forecasts, the County has determined that a Program EIR will be the best document to comply with CEQA.

In order to accommodate as many as 3,881 new units, Sonoma County may be required to find additional sites – some in areas not previously targeted as inventory sites – as well as rezone other areas. The County









anticipates a rezoning effort targeted in designated Urban Service Areas throughout unincorporated Sonoma County and the environmental analysis will also include the proposed rezoning effort.

**Project Background:** The County of Sonoma is updating its housing element as required by State law. This process is an opportunity for the County to examine all the policies, market conditions, and other forces that contribute to an adequate supply of housing homes for everyone in the community, regardless of income.

Under California law, the housing element is one of the seven mandated elements of the general plan and must be updated on a set schedule. A housing element is required by State law ("Housing Element law") to establish policies and programs that will support the provision of an adequate housing supply for citizens of all income levels.

The housing element typically includes:

- 1. **Housing Needs Assessment**: Examine demographic, employment, and housing trends and conditions that affect the housing needs of the community.
- 2. **Evaluation of Past Performance**: Review the prior housing element to measure progress in implementing policies and programs.
- 3. **Housing Sites Inventory**: Identify locations of available sites for housing development or redevelopment to ensure that there is adequate capacity to address the Regional Housing Needs Allocation.
- 4. **Community Outreach and Engagement**: Implement a robust community outreach and engagement program, with a particular focus on outreach to traditionally underrepresented groups.
- 5. **Constraints Analysis**: Analyze and recommend remedies for existing and potential governmental and nongovernmental barriers to housing development.
- Policies and Programs: Establish policies and programs to fulfill the identified housing needs.

In 2020, Permit Sonoma initiated the Rezoning Sites for Housing Project, and it circulated a Draft EIR for the project in May 2021 (SCH No. 2020030351). However, following circulation of that Draft EIR, Permit Sonoma determined that due to the imminent Housing Element Update it would not move forward with rezoning the 59 sites identified as a part of this effort as a separate project and instead would incorporate rezoning of these sites as one component of the broader Housing Element update. Accordingly, the Board of Supervisors did not certify the Rezoning Sites for Housing Project Draft EIR. Just as the Housing Element Update is a different project from the Rezoning Sites project, the EIR for the Housing Element Update will be a new and distinct document. To that end, the Housing Element Update EIR will incorporate some information from the Rezoning Sites Draft EIR, as appropriate, but it will be a new and distinct document that analyzes the environmental effects of the comprehensive Housing Element Update throughout the County.

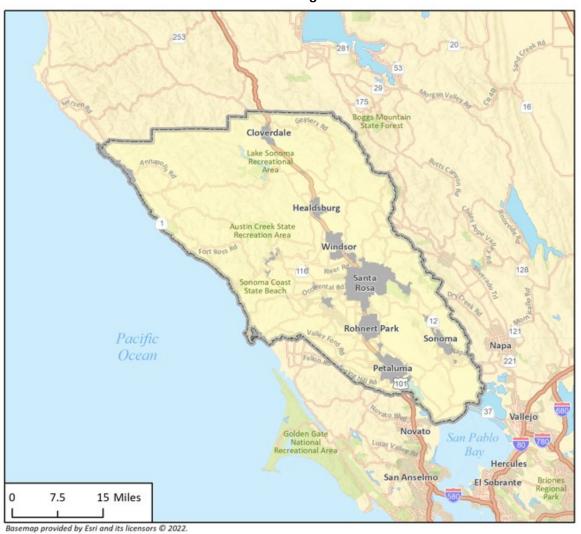
**Project Location:** Housing Element policies and programs will apply countywide, and the County boundaries are shown in Figure 1.

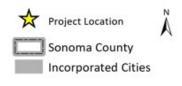


## County of Sonoma Permit & Resource Management Department

**Project Alternatives:** The EIR will evaluate a reasonable range of project alternatives that, consistent with CEQA, meet most of the project objectives and reduce or avoid potential environmental effects, including a required No Project Alternative.

**Next Steps:** The County will issue a Notice of Availability of a Draft EIR at that time to inform the public and interested agencies, groups, and individuals of how to access the Draft EIR and provide comments.


When the Draft EIR is completed, it will be available for review at Permit Sonoma, located at 2550 Ventura Avenue, Santa Rosa, California 95403 and online at: https://permitsonoma.org/regulationsandinitiatives/housing/housingelement.


#### Potential Environmental Effects:

The EIR will describe the reasonably foreseeable and potentially significant adverse effects of the proposed project (both direct and indirect). The EIR also will evaluate the cumulative impacts of the project when considered in conjunction with other related past, present, and reasonably foreseeable future projects. The County anticipates that the proposed project could result in potentially significant environmental impacts in the following topic areas, which will be further evaluated in the EIR.

| Aesthetics/Visual               | Noise                                 |
|---------------------------------|---------------------------------------|
| Air Quality                     | Population and Housing                |
| Biological Resources            | <b>Public Services and Recreation</b> |
| Cultural Resources              | Transportation                        |
| Energy                          | Tribal Cultural Resources             |
| Geology and Soils               | <b>Utilities and Service Systems</b>  |
| Greenhouse Gas Emissions        | Wildfire                              |
| Hazards and Hazardous Materials | Cumulative Effects                    |
| Hydrology and Water Quality     | Growth Inducing Effects               |
| Land Use and Planning           |                                       |
|                                 |                                       |
|                                 |                                       |
|                                 |                                       |
| Eric Gage, Planner III          | <br>Date                              |
|                                 |                                       |

Figure 1







Page 5 of 5

### California Department of Transportation





July 26, 2022

SCH #: 2022060323

GTS #: 04-SON-2022-00683

GTS ID: 26749

Co/Rt/Pm: SON/VAR/VAR

Eric Gage, Planner III County of Sonoma 2550 Ventura Avenue Santa Rosa, CA 95403

## Re: Sonoma County Housing Element Update Notice of Preparation (NOP) for Draft Environmental Impact Report (DEIR)

Dear Eric Gage:

Thank you for including the California Department of Transportation (Caltrans) in the environmental review process for the Sonoma County Housing Element Update Project. We are committed to ensuring that impacts to the State's multimodal transportation system and to our natural environment are identified and mitigated to support a safe, sustainable, integrated and efficient transportation system. The following comments are based on our review of the June 2022 NOP.

#### **Project Understanding**

The Sonoma County Permit and Resource Management Department (Permit Sonoma) is preparing its 6th Cycle Housing Element Update, which will result in a series of zoning changes and a General Plan Amendment necessary to accommodate the County's Regional Housing Needs Allocation (RHNA). The RHNA is the number of dwelling units assigned to each jurisdiction by state and regional agencies that each city and county must plan for. The County is not responsible to construct the housing but must identify and zone sites that can accommodate the assigned number of units for the duration of the 8-year Housing Element Cycle. For the current 5th RHNA cycle ending in 2022, the County was allocated a total of 515 units to be accommodated in its Housing Element inventory of adequate sites. The County's 6th Cycle RHNA is 3,881 dwelling units.

#### **Travel Demand Analysis**

With the enactment of Senate Bill (SB) 743, Caltrans is focused on maximizing efficient development patterns, innovative travel demand reduction strategies, and

Eric Gage, Planner III July 26, 2022 Page 2

multimodal improvements. For more information on how Caltrans assesses Transportation Impact Studies, please review Caltrans' Transportation Impact Study Guide (*link*). Please note that current and future land use projects proposed near and adjacent to the State Transportation Network (STN) may be assessed, in part, through the TISG.

#### **Transportation Impact Fees**

We encourage a sufficient allocation of fair share contributions toward multi-modal and regional transit improvements to fully mitigate cumulative impacts to regional transportation. We also strongly support measures to increase sustainable mode shares, thereby reducing VMT. Caltrans welcomes the opportunity to work with the City and local partners to secure the funding for needed mitigation. Traffic mitigation or cooperative agreements are examples of such measures.

#### **Lead Agency**

As the Lead Agency, the County of Sonoma is responsible for all project mitigation, including any needed improvements to the STN. The project's fair share contribution, financing, scheduling, implementation responsibilities and lead agency monitoring should be fully discussed for all proposed mitigation measures.

#### **Equitable Access**

If any Caltrans facilities are impacted by the project, those facilities must meet American Disabilities Act (ADA) Standards after project completion. As well, the project must maintain bicycle and pedestrian access during construction. These access considerations support Caltrans' equity mission to provide a safe, sustainable, and equitable transportation network for all users.

Thank you again for including Caltrans in the environmental review process. Should you have any questions regarding this letter, or for future notifications and requests for review of new projects, please email LDR-D4@dot.ca.gov.

Sincerely,

MARK LEONG

District Branch Chief

Mark Leong

Local Development Review

c: State Clearinghouse

<sup>&</sup>quot;Provide a safe and reliable transportation network that serves all people and respects the environment"



CHAIRPERSON **Laura Miranda** Luiseño

VICE CHAIRPERSON Reginald Pagaling Chumash

Parliamentarian Russell Attebery Karuk

SECRETARY
Sara Dutschke
Miwok

COMMISSIONER
William Mungary
Paiute/White Mountain
Apache

COMMISSIONER Isaac Bojorquez Ohlone-Costanoan

COMMISSIONER **Buffy McQuillen**Yokayo Pomo, Yuki,
Nomlaki

COMMISSIONER
Wayne Nelson
Luiseño

COMMISSIONER **Stanley Rodriguez** *Kumeyaay* 

EXECUTIVE SECRETARY
Raymond C.
Hitchcock
Miwok/Nisenan

NAHC HEADQUARTERS 1550 Harbor Boulevard Suite 100 West Sacramento, California 95691 (916) 373-3710 nahc@nahc.ca.gov NAHC.ca.gov

#### NATIVE AMERICAN HERITAGE COMMISSION

June 16, 2022

Eric Gage County of Sonoma 2550 Ventura Avenue Santa Rosa, CA 95403

Re: 2022060323, Housing Element Update Project, Sonoma County

Dear Mr. Gage:

The Native American Heritage Commission (NAHC) has received the Notice of Preparation (NOP), Draft Environmental Impact Report (DEIR) or Early Consultation for the project referenced above. The California Environmental Quality Act (CEQA) (Pub. Resources Code §21000 et seq.), specifically Public Resources Code §21084.1, states that a project that may cause a substantial adverse change in the significance of a historical resource, is a project that may have a significant effect on the environment. (Pub. Resources Code § 21084.1; Cal. Code Regs., tit.14, §15064.5 (b) (CEQA Guidelines §15064.5 (b)). If there is substantial evidence, in light of the whole record before a lead agency, that a project may have a significant effect on the environment, an Environmental Impact Report (EIR) shall be prepared. (Pub. Resources Code §21080 (d); Cal. Code Regs., tit. 14, § 5064 subd.(a)(1) (CEQA Guidelines §15064 (a)(1)). In order to determine whether a project will cause a substantial adverse change in the significance of a historical resource, a lead agency will need to determine whether there are historical resources within the area of potential effect (APE).

CEQA was amended significantly in 2014. Assembly Bill 52 (Gatto, Chapter 532, Statutes of 2014) (AB 52) amended CEQA to create a separate category of cultural resources, "tribal cultural resources" (Pub. Resources Code §21074) and provides that a project with an effect that may cause a substantial adverse change in the significance of a tribal cultural resource is a project that may have a significant effect on the environment. (Pub. Resources Code §21084.2). Public agencies shall, when feasible, avoid damaging effects to any tribal cultural resource. (Pub. Resources Code §21084.3 (a)). AB 52 applies to any project for which a notice of preparation, a notice of negative declaration, or a mitigated negative declaration is filed on or after July 1, 2015. If your project involves the adoption of or amendment to a general plan or a specific plan, or the designation or proposed designation of open space, on or after March 1, 2005, it may also be subject to Senate Bill 18 (Burton, Chapter 905, Statutes of 2004) (SB 18). Both SB 18 and AB 52 have tribal consultation requirements. If your project is also subject to the federal National Environmental Policy Act (42 U.S.C. § 4321 et seq.) (NEPA), the tribal consultation requirements of Section 106 of the National Historic Preservation Act of 1966 (154 U.S.C. 300101, 36 C.F.R. §800 et seq.) may also apply.

The NAHC recommends consultation with California Native American tribes that are traditionally and culturally affiliated with the geographic area of your proposed project as early as possible in order to avoid inadvertent discoveries of Native American human remains and best protect tribal cultural resources. Below is a brief summary of <u>portions</u> of AB 52 and SB 18 as well as the NAHC's recommendations for conducting cultural resources assessments.

Consult your legal counsel about compliance with AB 52 and SB 18 as well as compliance with any other applicable laws.

AB 52

AB 52 has added to CEQA the additional requirements listed below, along with many other requirements:

- 1. Fourteen Day Period to Provide Notice of Completion of an Application/Decision to Undertake a Project: Within fourteen (14) days of determining that an application for a project is complete or of a decision by a public agency to undertake a project, a lead agency shall provide formal notification to a designated contact of, or tribal representative of, traditionally and culturally affiliated California Native American tribes that have requested notice, to be accomplished by at least one written notice that includes:
  - a. A brief description of the project.
  - **b.** The lead agency contact information.
  - **c.** Notification that the California Native American tribe has 30 days to request consultation. (Pub. Resources Code §21080.3.1 (d)).
  - **d.** A "California Native American tribe" is defined as a Native American tribe located in California that is on the contact list maintained by the NAHC for the purposes of Chapter 905 of Statutes of 2004 (SB 18). (Pub. Resources Code §21073).
- 2. Begin Consultation Within 30 Days of Receiving a Tribe's Request for Consultation and Before Releasing a Negative Declaration, Mitigated Negative Declaration, or Environmental Impact Report: A lead agency shall begin the consultation process within 30 days of receiving a request for consultation from a California Native American tribe that is traditionally and culturally affiliated with the geographic area of the proposed project. (Pub. Resources Code §21080.3.1, subds. (d) and (e)) and prior to the release of a negative declaration, mitigated negative declaration or Environmental Impact Report. (Pub. Resources Code §21080.3.1(b)).
  - **a.** For purposes of AB 52, "consultation shall have the same meaning as provided in Gov. Code §65352.4 (SB 18), (Pub. Resources Code §21080.3.1 (b)).
- 3. <u>Mandatory Topics of Consultation If Requested by a Tribe</u>: The following topics of consultation, if a tribe requests to discuss them, are mandatory topics of consultation:
  - a. Alternatives to the project.
  - b. Recommended mitigation measures.
  - c. Significant effects. (Pub. Resources Code §21080.3.2 (a)).
- 4. Discretionary Topics of Consultation: The following topics are discretionary topics of consultation:
  - a. Type of environmental review necessary.
  - b. Significance of the tribal cultural resources.
  - c. Significance of the project's impacts on tribal cultural resources.
  - **d.** If necessary, project alternatives or appropriate measures for preservation or mitigation that the tribe may recommend to the lead agency. (Pub. Resources Code §21080.3.2 (a)).
- 5. Confidentiality of Information Submitted by a Tribe During the Environmental Review Process: With some exceptions, any information, including but not limited to, the location, description, and use of tribal cultural resources submitted by a California Native American tribe during the environmental review process shall not be included in the environmental document or otherwise disclosed by the lead agency or any other public agency to the public, consistent with Government Code §6254 (r) and §6254.10. Any information submitted by a California Native American tribe during the consultation or environmental review process shall be published in a confidential appendix to the environmental document unless the tribe that provided the information consents, in writing, to the disclosure of some or all of the information to the public. (Pub. Resources Code §21082.3 (c)(1)).
- **6.** <u>Discussion of Impacts to Tribal Cultural Resources in the Environmental Document:</u> If a project may have a significant impact on a tribal cultural resource, the lead agency's environmental document shall discuss both of the following:
  - a. Whether the proposed project has a significant impact on an identified tribal cultural resource.
  - **b.** Whether feasible alternatives or mitigation measures, including those measures that may be agreed to pursuant to Public Resources Code §21082.3, subdivision (a), avoid or substantially lessen the impact on the identified tribal cultural resource. (Pub. Resources Code §21082.3 (b)).

- **7.** <u>Conclusion of Consultation</u>: Consultation with a tribe shall be considered concluded when either of the following occurs:
  - **a.** The parties agree to measures to mitigate or avoid a significant effect, if a significant effect exists, on a tribal cultural resource; or
  - **b.** A party, acting in good faith and after reasonable effort, concludes that mutual agreement cannot be reached. (Pub. Resources Code §21080.3.2 (b)).
- **8.** Recommending Mitigation Measures Agreed Upon in Consultation in the Environmental Document: Any mitigation measures agreed upon in the consultation conducted pursuant to Public Resources Code §21080.3.2 shall be recommended for inclusion in the environmental document and in an adopted mitigation monitoring and reporting program, if determined to avoid or lessen the impact pursuant to Public Resources Code §21082.3, subdivision (b), paragraph 2, and shall be fully enforceable. (Pub. Resources Code §21082.3 (a)).
- 9. Required Consideration of Feasible Mitigation: If mitigation measures recommended by the staff of the lead agency as a result of the consultation process are not included in the environmental document or if there are no agreed upon mitigation measures at the conclusion of consultation, or if consultation does not occur, and if substantial evidence demonstrates that a project will cause a significant effect to a tribal cultural resource, the lead agency shall consider feasible mitigation pursuant to Public Resources Code §21084.3 (b). (Pub. Resources Code §21082.3 (e)).
- **10.** Examples of Mitigation Measures That, If Feasible, May Be Considered to Avoid or Minimize Significant Adverse Impacts to Tribal Cultural Resources:
  - a. Avoidance and preservation of the resources in place, including, but not limited to:
    - i. Planning and construction to avoid the resources and protect the cultural and natural context.
    - **ii.** Planning greenspace, parks, or other open space, to incorporate the resources with culturally appropriate protection and management criteria.
  - **b.** Treating the resource with culturally appropriate dignity, taking into account the tribal cultural values and meaning of the resource, including, but not limited to, the following:
    - i. Protecting the cultural character and integrity of the resource.
    - ii. Protecting the traditional use of the resource.
    - iii. Protecting the confidentiality of the resource.
  - **c.** Permanent conservation easements or other interests in real property, with culturally appropriate management criteria for the purposes of preserving or utilizing the resources or places.
  - d. Protecting the resource. (Pub. Resource Code §21084.3 (b)).
  - **e.** Please note that a federally recognized California Native American tribe or a non-federally recognized California Native American tribe that is on the contact list maintained by the NAHC to protect a California prehistoric, archaeological, cultural, spiritual, or ceremonial place may acquire and hold conservation easements if the conservation easement is voluntarily conveyed. (Civ. Code §815.3 (c)).
  - **f.** Please note that it is the policy of the state that Native American remains and associated grave artifacts shall be repatriated. (Pub. Resources Code §5097.991).
- **11.** Prerequisites for Certifying an Environmental Impact Report or Adopting a Mitigated Negative Declaration or Negative Declaration with a Significant Impact on an Identified Tribal Cultural Resource: An Environmental Impact Report may not be certified, nor may a mitigated negative declaration or a negative declaration be adopted unless one of the following occurs:
  - **a.** The consultation process between the tribes and the lead agency has occurred as provided in Public Resources Code §21080.3.1 and §21080.3.2 and concluded pursuant to Public Resources Code §21080.3.2.
  - **b.** The tribe that requested consultation failed to provide comments to the lead agency or otherwise failed to engage in the consultation process.
  - **c.** The lead agency provided notice of the project to the tribe in compliance with Public Resources Code §21080.3.1 (d) and the tribe failed to request consultation within 30 days. (Pub. Resources Code §21082.3 (d)).

#### SB 18

SB 18 applies to local governments and requires local governments to contact, provide notice to, refer plans to, and consult with tribes prior to the adoption or amendment of a general plan or a specific plan, or the designation of open space. (Gov. Code §65352.3). Local governments should consult the Governor's Office of Planning and Research's "Tribal Consultation Guidelines," which can be found online at: https://www.opr.ca.gov/docs/09 14 05 Updated Guidelines 922.pdf.

#### Some of SB 18's provisions include:

- 1. <u>Tribal Consultation</u>: If a local government considers a proposal to adopt or amend a general plan or a specific plan, or to designate open space it is required to contact the appropriate tribes identified by the NAHC by requesting a "Tribal Consultation List." If a tribe, once contacted, requests consultation the local government must consult with the tribe on the plan proposal. A tribe has 90 days from the date of receipt of notification to request consultation unless a shorter timeframe has been agreed to by the tribe. (Gov. Code §65352.3 (a)(2)).
- 2. No Statutory Time Limit on SB 18 Tribal Consultation. There is no statutory time limit on SB 18 tribal consultation.
- 3. <u>Confidentiality</u>: Consistent with the guidelines developed and adopted by the Office of Planning and Research pursuant to Gov. Code §65040.2, the city or county shall protect the confidentiality of the information concerning the specific identity, location, character, and use of places, features and objects described in Public Resources Code §5097.9 and §5097.993 that are within the city's or county's jurisdiction. (Gov. Code §65352.3 (b)).
- 4. Conclusion of SB 18 Tribal Consultation: Consultation should be concluded at the point in which:
  - **a.** The parties to the consultation come to a mutual agreement concerning the appropriate measures for preservation or mitigation; or
  - **b.** Either the local government or the tribe, acting in good faith and after reasonable effort, concludes that mutual agreement cannot be reached concerning the appropriate measures of preservation or mitigation. (Tribal Consultation Guidelines, Governor's Office of Planning and Research (2005) at p. 18).

Agencies should be aware that neither AB 52 nor SB 18 precludes agencies from initiating tribal consultation with tribes that are traditionally and culturally affiliated with their jurisdictions before the timeframes provided in AB 52 and SB 18. For that reason, we urge you to continue to request Native American Tribal Contact Lists and "Sacred Lands File" searches from the NAHC. The request forms can be found online at: <a href="http://nahc.ca.gov/resources/forms/">http://nahc.ca.gov/resources/forms/</a>.

#### NAHC Recommendations for Cultural Resources Assessments

To adequately assess the existence and significance of tribal cultural resources and plan for avoidance, preservation in place, or barring both, mitigation of project-related impacts to tribal cultural resources, the NAHC recommends the following actions:

- 1. Contact the appropriate regional California Historical Research Information System (CHRIS) Center (https://ohp.parks.ca.gov/?page\_id=30331) for an archaeological records search. The records search will determine:
  - a. If part or all of the APE has been previously surveyed for cultural resources.
  - b. If any known cultural resources have already been recorded on or adjacent to the APE.
  - c. If the probability is low, moderate, or high that cultural resources are located in the APE.
  - d. If a survey is required to determine whether previously unrecorded cultural resources are present.
- 2. If an archaeological inventory survey is required, the final stage is the preparation of a professional report detailing the findings and recommendations of the records search and field survey.
  - **a.** The final report containing site forms, site significance, and mitigation measures should be submitted immediately to the planning department. All information regarding site locations, Native American human remains, and associated funerary objects should be in a separate confidential addendum and not be made available for public disclosure.
  - **b.** The final written report should be submitted within 3 months after work has been completed to the appropriate regional CHRIS center.

- 3. Contact the NAHC for:
  - **a.** A Sacred Lands File search. Remember that tribes do not always record their sacred sites in the Sacred Lands File, nor are they required to do so. A Sacred Lands File search is not a substitute for consultation with tribes that are traditionally and culturally affiliated with the geographic area of the project's APE.
  - **b.** A Native American Tribal Consultation List of appropriate tribes for consultation concerning the project site and to assist in planning for avoidance, preservation in place, or, failing both, mitigation measures.
- **4.** Remember that the lack of surface evidence of archaeological resources (including tribal cultural resources) does not preclude their subsurface existence.
  - **a.** Lead agencies should include in their mitigation and monitoring reporting program plan provisions for the identification and evaluation of inadvertently discovered archaeological resources per Cal. Code Regs., tit. 14, §15064.5(f) (CEQA Guidelines §15064.5(f)). In areas of identified archaeological sensitivity, a certified archaeologist and a culturally affiliated Native American with knowledge of cultural resources should monitor all ground-disturbing activities.
  - **b.** Lead agencies should include in their mitigation and monitoring reporting program plans provisions for the disposition of recovered cultural items that are not burial associated in consultation with culturally affiliated Native Americans.
  - **c.** Lead agencies should include in their mitigation and monitoring reporting program plans provisions for the treatment and disposition of inadvertently discovered Native American human remains. Health and Safety Code §7050,5, Public Resources Code §5097.98, and Cal. Code Regs., tit. 14, §15064.5, subdivisions (d) and (e) (CEQA Guidelines §15064.5, subds. (d) and (e)) address the processes to be followed in the event of an inadvertent discovery of any Native American human remains and associated grave goods in a location other than a dedicated cemetery.

If you have any questions or need additional information, please contact me at my email address: Cameron. Vela@nahc.ca.gov.

Sincerely,

Cameron Vela

Cameron Vela
Cultural Resources Analyst

cc: State Clearinghouse

| From:    |  |
|----------|--|
| Sent:    |  |
| To:      |  |
| Subject: |  |

----Original Message-----

From: Rick Coates <rcoates@sonic.net> Sent: Tuesday, June 28, 2022 2:56 PM

To: PermitSonoma-Housing < PermitSonoma-Housing@sonoma-county.org>

Subject: Scoping for Housing Element of GP

#### **EXTERNAL**

The EIR for the Housing Element of the General Plan should evaluate the following:

The comparative advantages of building housing near train stations versus bus stops. Specifically the comparative likelyhood that residents will use transit.

The projected effect on VMT. Will it decrease VMT as required?

The projected effect on GHG emissions. This includes travel emissions and construction emissions.

Evaluate the fire potential of any location selected in light of major fire history.

Rick Coates 707-632-6070 or rcoates@sonic.net

THIS EMAIL ORIGINATED OUTSIDE OF THE SONOMA COUNTY EMAIL SYSTEM.

Warning: If you don't know this email sender or the email is unexpected, do not click any web links, attachments, and never give out your user ID or password.

## Appendix NRG

Energy Calculation Sheets

## **Rezoning Sites for Housing**

Last Updated:October 26, 2020

Compression-Ignition Engine Brake-Specific Fuel Consumption (BSFC) Factors [1]:

| [HP: 0 to 100 | HP: 0 to 100 | 0.0588 | HP: Greater than 100 | 0.0529 |
|---------------|--------------|--------|----------------------|--------|
|---------------|--------------|--------|----------------------|--------|

Values above are expressed in gallons per horsepower-hour/BSFC.

|                               |   | CONSTRUC  | TION EQUIPMEN | IT     |              |            |
|-------------------------------|---|-----------|---------------|--------|--------------|------------|
|                               |   | Hours per |               | Load   | Construction | Fuel Used  |
| <b>Construction Equipment</b> | # | Day       | Horsepower    | Factor | Phase        | (gallons)  |
| Concrete/Industrial Saws      | 1 | 8         | 81            | 0.73   | Demo         | 4,169.67   |
| Excavators                    | 3 | 8         | 158           | 0.38   | Demo         | 11,425.15  |
| Rubber Tired Dozer            | 2 | 8         | 247           | 0.40   | Demo         | 12,533.92  |
| Rubber Tired Dozer            | 3 | 8         | 247           | 0.40   | Site Prep    | 18,800.89  |
| Tractors/Loaders/Backhoes     | 4 | 8         | 97            | 0.37   | Site Prep    | 10,123.43  |
| Excavators                    | 2 | 8         | 158           | 0.38   | Grading      | 22,850.31  |
| Graders                       | 1 | 8         | 187           | 0.41   | Grading      | 14,589.72  |
| Rubber Tired Dozer            | 1 | 8         | 247           | 0.40   | Grading      | 18,800.89  |
| Scrapers                      | 2 | 8         | 367           | 0.48   | Grading      | 67,043.81  |
| Tractors/Loaders/Backhoes     | 2 | 8         | 97            | 0.37   | Grading      | 15,185.15  |
| Cranes                        | 1 | 7         | 231           | 0.29   | Building     | 24,787.17  |
| Forklifts                     | 3 | 8         | 89            | 0.20   | Building     | 25,104.08  |
| Generator Sets                | 1 | 8         | 84            | 0.74   | Building     | 29,222.27  |
| Tractors/Loaders/Backhoes     | 3 | 7         | 97            | 0.37   | Building     | 44,290.01  |
| Welders                       | 1 | 8         | 46            | 0.45   | Building     | 9,731.36   |
| Air Compressors               | 1 | 6         | 78            | 0.48   | Arch Coating | 3,960.24   |
| Pavers                        | 2 | 8         | 130           | 0.42   | Paving       | 13,853.29  |
| Paving Equipment              | 2 | 8         | 132           | 0.36   | Paving       | 12,056.93  |
| Rollers                       | 2 | 8         | 80            | 0.38   | Paving       | 8,574.88   |
|                               |   |           |               |        | I - I - I    | 267 402 45 |

Total Fuel Used 367,103.15

(Gallons)

| Construction Phase                 | Days of Operation |
|------------------------------------|-------------------|
| Demolition Phase                   | 150               |
| Site Preparation Phase             | 150               |
| Grading Phase                      | 450               |
| <b>Building Construction Phase</b> | 1,000             |
| Paving Phase                       | 300               |
| Architectural Coating Phase        | 300               |
| Total Days                         | 2,350             |

1 10/26/2020 9:46 AM

| WORKER TRIPS                |         |       |                     |            |  |  |  |
|-----------------------------|---------|-------|---------------------|------------|--|--|--|
| APC (2) Tring Tring (4 t)   |         |       |                     |            |  |  |  |
| Constuction Phase           | MPG [2] | Trips | Trip Length (miles) | (gallons)  |  |  |  |
| Demolition                  | 24.4    | 15    | 10.8                | 995.90     |  |  |  |
| Site Prep Phase             | 24.4    | 18    | 10.8                | 1,195.08   |  |  |  |
| Grading Phase               | 24.4    | 20    | 10.8                | 3,983.61   |  |  |  |
| Building Phase              | 24.4    | 1,071 | 10.8                | 474,049.18 |  |  |  |
| Paving Phase                | 24.4    | 15    | 10.8                | 1,991.80   |  |  |  |
| Architectural Coating Phase | 24.4    | 214   | 10.8                | 28,416.39  |  |  |  |
|                             |         |       | Total               | 510,631.97 |  |  |  |

|                             | HAULING ANI | D VENDOR TRIP | PS                  |                        |
|-----------------------------|-------------|---------------|---------------------|------------------------|
| Trip Class                  | MPG [2]     | Trips         | Trip Length (miles) | Fuel Used<br>(gallons) |
|                             | HAULI       | NG TRIPS      |                     |                        |
| Demolition                  | 7.5         | 3,411         | 20.0                | 9,096.00               |
| Site Prep Phase             | 7.5         | -             | 20.0                | -                      |
| Grading Phase               | 7.5         | 10,800        | 20.0                | 28,800.00              |
| Building Phase              | 7.5         | -             | 20.0                | -                      |
| Paving Phase                | 7.5         | -             | 20.0                | -                      |
| Architectural Coating Phase | 7.5         | -             | 20.0                | -                      |
|                             |             |               | Total               | 37,896.00              |
|                             | VEND        | OR TRIPS      |                     |                        |
| Demolition                  | 7.5         | -             | 7.3                 | -                      |
| Site Prep Phase             | 7.5         | -             | 7.3                 | -                      |
| Grading Phase               | 7.5         | -             | 7.3                 | -                      |
| Building Phase              | 7.5         | 318           | 7.3                 | 309,520.00             |
| Paving Phase                | 7.5         | -             | 7.3                 | -                      |
| Architectural Coating Phase | 7.5         | -             | 7.3                 | -                      |
|                             |             |               | Total               | 309,520.00             |

| Total Gasoline Consumption (gallons) | 510,631.97 |  |  |  |
|--------------------------------------|------------|--|--|--|
| Total Diesel Consumption (gallons)   | 714,519.15 |  |  |  |

#### Sources:

[1] United States Environmental Protection Agency. 2018. Exhaust and Crankcase Emission Factors for Nonroad Compression-Ignition Engines in MOVES2014b . July 2018. Available at: https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100UXEN.pdf.

[2] United States Department of Transportation, Bureau of Transportation Statistics. 2018. *National Transportation Statistics 2018*. Available at: https://www.bts.gov/topics/national-transportation-statistics.

2 10/26/2020 9:46 AM

## **Rezoning Sites for Housing**

Last Updated: October 26, 2020

### Populate one of the following tables (Leave the other blank):

| Annual VMT             | <u>OR</u> | Daily Vehicle Trips     |
|------------------------|-----------|-------------------------|
| Annual VMT: 34,011,855 |           | Daily Vehicle<br>Trips: |
|                        | •         | Average Trip            |
|                        |           | Distance:               |

| Fleet Class               | Fleet Mix | Fuel Economy (        | MPG) |
|---------------------------|-----------|-----------------------|------|
| Light Duty Auto (LDA)     | 0.625329  | Passenger Vehicles    | 24.4 |
| Light Duty Truck 1 (LDT1) | 0.031298  | Light-Med Duty Trucks | 17.9 |
| Light Duty Truck 2 (LDT2) | 0.162135  | Heavy Trucks/Other    | 7.5  |
| Medium Duty Vehicle (MDV) | 0.089092  | Motorcycles           | 44.0 |
| Light Heavy Duty 1 (LHD1) | 0.014618  |                       |      |
| Light Heavy Duty 2 (LHD2) | 0.004632  |                       |      |
| Medium Heavy Duty (MHD)   | 0.032111  |                       |      |
| Heavy Heavy Duty (HHD)    | 0.030354  |                       |      |
| Other Bus (OBUS)          | 0.003196  |                       |      |
| Urban Bus (UBUS)          | 0.001373  |                       |      |
| School Bus (SBUS)         | 0.000897  |                       |      |
| Motorhome (MH)            | 0.000662  |                       |      |
| Motorcycle (MCY)          | 0.004305  |                       |      |

| Fleet Mix                |             |           |                                  |      |            |  |  |  |  |
|--------------------------|-------------|-----------|----------------------------------|------|------------|--|--|--|--|
|                          | Fuel        |           |                                  |      |            |  |  |  |  |
|                          | Consumption |           |                                  |      |            |  |  |  |  |
| Vehicle Type             | Percent     | Fuel Type | Fuel Type VMT Vehicle Trips: VMT |      |            |  |  |  |  |
| Passenger Vehicles       | 62.53%      | Gasoline  | 21,268,599                       | 0.00 | 871,663.90 |  |  |  |  |
| Light-Medium Duty Trucks | 28.25%      | Gasoline  | 9,609,199                        | 0.00 | 536,826.78 |  |  |  |  |
| Heavy Trucks/Other       | 8.78%       | Diesel    | 2,987,703                        | 0.00 | 398,360.45 |  |  |  |  |
| Motorcycle               | 0.43%       | Gasoline  | 146.421                          | 0.00 | 3.327.75   |  |  |  |  |

| Total Gasoline Consumption (gallons) | 1,411,818.43 |
|--------------------------------------|--------------|
| Total Diesel Consumption (gallons)   | 398,360.45   |

3 10/26/2020 9:46 AM

## Appendix TRA

Transportation Impact Assessment



# Memorandum

Date: August 26, 2020

To: Darcy Kremin, Rincon Consultants, Inc.

From: Ashlee Takushi and Ian Barnes, PE, Fehr & Peers

**Subject:** Summary of Transportation Assessment for Sonoma Housing Rezone Project

WC20-3682

### **Introduction and Background**

Fehr & Peers has completed a transportation assessment of the Sonoma County Housing Rezone project, which aims to modify zoning at 59 Potential Sites throughout the unincorporated area of Sonoma County. The modifications to zoning allow for additional housing units to be developed beyond those currently envisioned as part of the County's adopted General Plan; accordingly, the effects of these additional housing units on the transportation system are required to be analyzed at a programmatic level. The assessment is comprised of two parts:

- An analysis of total home-based residential vehicle-miles traveled (VMT) per resident, as required by the California Environmental Quality Act (CEQA)
- An informational analysis of the program's projected effects on operations at select intersections in the County's circulation system (this analysis is not subject to CEQA per CEQA Guidelines Section 21099(b)(2))

The near-term baseline conditions (i.e. Existing Conditions) referred to in this assessment reflect conditions that prevailed prior to the COVID-19 pandemic which substantially affected transportation conditions within the study area during the spring and summer of 2020. The VMT data, traffic counts and other data used within the evaluation were collected prior to the pandemic. Subsequent forecasts of future conditions are based off models and predictions which do not account for the current, or potential on-going, effects that the pandemic may have on transportation demand. As the predominant effects of the pandemic have been an overall decrease in travel activity within the study area, this assessment likely provides a conservative estimate of transportation conditions.

The remainder of this memorandum outlines the assumptions, methods and outcomes of the analyses described.



### **CEQA Vehicle-Miles Traveled Analysis**

Senate Bill 743 (Steinberg, 2013) instructed the State Office of Planning and Research (OPR) to update the CEQA Guidelines to remove congestion-based analysis (such as Level of Service analysis) from CEQA Transportation analysis, and to install a new metric (vehicle-miles traveled, or VMT). The intent of SB 743 was to encourage infill development, promote healthier communities through active transportation (e.g. walking and bicycling), and align CEQA Transportation analysis to aid California in meeting greenhouse gas reduction targets set by other pieces of legislation (i.e. AB 32). Ultimately, SB 743 has shifted CEQA transportation analysis from measuring the effects on a project on drivers, to measuring the environmental effects of driving generated by a project. Adopted in December 2018, Section 15064.3 of the CEQA Guidelines notes that vehicle-miles traveled (VMT) is the most appropriate metric for the analysis of impacts in the Transportation section of CEQA analysis.

VMT measures the amount of driving that a project generates. For example, a project generating 100 total (inbound and outbound) vehicle trips per day that travel an average of 5.0 miles per trip results in 500 project-generated VMT per day. VMT has historically been used in CEQA as an input for the Air Quality and Greenhouse Gas sections, but VMT can also show how efficient the connection between the transportation system and existing or proposed land uses is. For the purposes of analyzing the CEQA Transportation impacts of residential projects, the VMT generated by the project is converted to an efficiency metric by dividing the amount of VMT generated by the number of residents; efficiency metrics are used in CEQA Transportation VMT analysis because the goal of the analysis is to show whether or not a particular development will generate low enough VMT to aid the State in meeting its climate targets relative to projected growth in population, employment, etc.

The State Office of Planning and Research (OPR) has provided guidance in its *Technical Advisory* on *Evaluating Transportation Impacts in CEQA* (December 2018) as to how the analysis of VMT could be performed and what CEQA thresholds of significance could be applied. The guidance in the *Technical Advisory* is non-binding; however, County staff have given direction that the metrics, methods and thresholds provided in the *Technical Advisory* should be used in the analysis. Based on this direction from the County in its capacity as a lead agency for CEQA purposes, the VMT analysis of the proposed program includes the following approach:

- Metric: Total weekday home-based VMT per resident
- Method: Sonoma County Transportation Authority (SCTA) countywide travel demand model



- <u>Threshold:</u> 15 percent below regional baseline (nine-county Bay Area) total weekday home-based VMT per resident<sup>1</sup>
- Analysis Scenario: Impacts evaluated against the near-term baseline (i.e. a Cumulative analysis is not required)

The summer 2020 version of the SCTA model has been refined to reflect a Year 2015 base year as well as to incorporate "Big Data" trip length estimates at the model gateways. The incorporation of Big Data trip length estimates provides a more precise understanding of the length of trips that occur beyond the County boundary, thus alleviating the trip length truncation issues associated with earlier versions of the model. New housing units were modeled assuming that 90 percent of the units would take the characteristics of multifamily housing, while the remaining 10 percent of the units would take the characteristics of single-family housing. These assumptions, while conservative, did not materially affect the outcomes of the VMT analysis (described further in this memorandum).

Based on data from MTC Travel Model One, the baseline value of the nine-county Bay Area average total home-based VMT per resident is 15.3. A threshold of 15 percent below this value is 13.0. The analysis is performed at the near-term baseline level; a Cumulative scenario analysis is also provided. Year 2015 conditions (as reflected in the SCTA and MTC models) was used as the baseline year because (1) the 2015 horizon year reflects conditions before the 2017 and 2019 Sonoma County wildfires and ongoing recovery effects, and (2) the 2015 horizon year reflects conditions before the COVID-19 pandemic, which has substantially altered transportation conditions in Sonoma County. Given that travel characteristics (i.e. trip lengths) in 2015 and 2016 are likely to be substantially similar as there were no major transportation network improvements nor major changes in the prevailing economic activity pattern, the Year 2015 horizon year is the most appropriate baseline year given current travel demand model information and the typical practice of avoiding the defining of baseline transportation conditions for periods when factors outside of economic activity or transportation network changes result in major disruptions to typical transportation conditions.

#### **Potential Screening Opportunities**

VMT screening is a process related to reviewing the location and operating parameters of land use projects and programs to determine if a project or program does not need to perform a VMT analysis because it is presumed to generate a low amount of VMT. The *Technical Advisory* provides a number of potential screening criteria, including:

<sup>&</sup>lt;sup>1</sup> The *Technical Advisory* notes that for land use projects or programs located in the unincorporated areas of a county that is included in an MPO region, the threshold should be based on (1) the region (i.e. MPO) VMT per capita or (2) the aggregate population-weighted VMT per capita of all incorporated cities and towns in the region (i.e. MPO).



- Development in a low VMT generating area per the SCTA travel model (relative to suggested CEQA impact criteria presented in the *Technical Advisory*)
- Development located within a 0.5 mile walkshed of an existing major transit stop or existing stop along a high-quality transit corridor
- Development in infill locations that are (1) 100 percent affordable and (2) in an area where a jobs/housing imbalance exists such that the infill development would promote shorter commute trips
- Small developments that generate or attract fewer than 110 trips per day (about 17 residential units in suburban areas)

All Potential Sites under consideration do not meet the transit proximity or low VMT generating area definitions. Depending on the conditions placed on the Potential Sites, some sites may qualify for the affordable infill housing exemption, and some sites may be sufficiently small that they do not generate more than 110 trips per day. Based on the proposed zoning changes, it is anticipated that the following parcels would generate less than 110 trips per day if they were to be built out at the density proposed under the Program: GLE-2, LAR-4, PEN-1, and PEN-3. Projects on these sites may be exempted from required mitigation if a significant VMT impact is found (discussed later in this document).

Given the programmatic effort envisioned as part of the project, it was assumed that all Potential Sites would be incorporated into the analysis, including those that are small enough to potentially meet the small development screening criteria discussed above. Entitlements for development on sites rezoned as part of the program may then tier off of this transportation assessment and the EIR for the program as a whole.

#### **Program-Level VMT Analysis**

Home-based VMT per resident data from the July 2020 version of the SCTA model (the most recent available version) were output for the Base Year (Year 2015), Base Year plus Program, Cumulative (Year 2040), and Cumulative plus Program scenarios. Data from program-affected traffic analysis zones (TAZs) in the model were considered as part of the analysis. The results of the analysis are presented below in **Table 1**.

**Table 1: Home-Based Residential VMT per Resident Analysis** 

| Scenario               | Program TAZs  Total Home-Based VMT per Resident | Threshold Value | Impact? |
|------------------------|-------------------------------------------------|-----------------|---------|
| Base Year (Year 2015)  | 16.4                                            | N/A             | N/A     |
| Base Year + Program    | 16.0                                            | 13.0            | Yes     |
| Cumulative (Year 2040) | 14.8                                            | N/A             | N/A     |
| Cumulative + Program   | 14.8                                            | 13.0            | Yes     |

Source: Fehr & Peers, July 2020.



As noted in **Table 1**, the program's effect on VMT in the affected TAZs is a small decrease in average total home-based VMT per resident. However, the resulting value of 16.0 is greater than the threshold value of 13.0, and thus the program would result in a **significant impact**. It is noted that the net change VMT value for the "new" housing units was about 14.7, which is above the threshold value. The Cumulative scenario analysis showed a minor reduction in total home-based VMT per resident (less than 0.1); if Cumulative scenario analysis is considered to be part of the CEQA analysis, then it would also be considered a **significant impact**.

#### **Mitigation Measures**

Based on the results in **Table 1**, mitigation measures, if feasible, would need to reduce program TAZ VMT per resident by 3.0 VMT per resident, which represents a reduction of about 18.8 percent below the Base Year plus Program value of 16.0 VMT per resident. If mitigation measures were to be designed to reduce solely the net increment of change in VMT per resident (13.0), this 1.7 VMT per resident reduction represents an 11.5 percent reduction in the Base Year plus Program value of 14.7.

Transportation Demand Management (TDM) strategies work best when they are applied at a city or regional scale and when the travel characteristics of the users or tenants of a site are known. The proposed program aims to rezone 59 Potential Sites in 11 distinct subareas throughout Sonoma County, and the timeline for construction of the housing units envisioned as part of this program is unknown. Because of the large-scale geographic spread of the Potential Sites, and uncertainty regarding the buildout of the Potential Sites, the County should consider implementing a TDM ordinance or other TDM-related policies as part of the next General Plan update.

Additionally, the effectiveness of TDM measures for land use projects in unincorporated areas of Sonoma County is difficult to quantify as the literature documenting the effectiveness of land use project-level TDM strategies are generally related to suburban and urban areas, not unincorporated areas. Studies<sup>2</sup> show the maximum VMT reduction that can be expected for projects located within suburban settings in California ranges from 5 to 10 percent. The requirement to reduce daily VMT and vehicle trips by 11.5 percent (depending on the calculation method chosen) exceeds the range of trip reduction for communities similar to Sonoma County. However, while the level of VMT reduction associated with TDM measures are unlikely to mitigate the program's impact to a less-than-significant level, CEQA requires that feasible mitigation measures be implemented to reduce a project or program's level of impact.

<sup>&</sup>lt;sup>2</sup> Quantifying Greenhouse Gas Mitigation Measures: A Resource for Local Government to Assess Emission Reductions from Greenhouse Gas Mitigation Measures, California Air Pollution Control Officers Association, August, 2010, page 55.



**Mitigation Measure 1: TDM Program.** Prior to issuance of building permits, project applicants shall develop a TDM program for the proposed project, including any anticipated phasing, and shall submit the TDM Program to the County Department of Transportation and Public Works for review and approval. The TDM Program shall identify trip reduction strategies as well as mechanisms for funding and overseeing the delivery of trip reduction programs and strategies. The TDM Program shall be designed to achieve the following trip reduction, as required to meet thresholds identified by OPR:

Reduce daily VMT and vehicle trips, as forecast for the project, by 11.5 percent.

Trip reduction strategies may include, but are not limited to, the following:

- 1. Provision of bus stop improvements or on-site mobility hubs
- 2. Pedestrian improvements, on-site or off-site, to connect to nearby transit stops, services, schools, shops, etc.
- 3. Bicycle programs including bike purchase incentives, storage, maintenance programs, and on-site education program
- 4. Enhancements to countywide bicycle network
- 5. Parking reductions and/or fees set at levels sufficient to incentivize transit, active transportation, or shared modes
- 6. Cash allowances, passes, or other public transit subsidies and purchase incentives
- 7. Enhancements to bus service
- 8. Implementation of shuttle service
- 9. Establishment of carpool, buspool, or vanpool programs
- 10. Vanpool purchase incentives
- 11. Low emission vehicle purchase incentives/subsidies
- 12. Compliance with a future County VMT/TDM ordinance
- 13. Participation in a future County VMT fee program
- 14. Participate in future VMT exchange or mitigation bank programs

Development at Potential Sites GLE-2, LAR-4, PEN-1 and PEN-3 may be exempt from the development of a TDM program as the weekday trip generation for these developments would be less than 110 trips per weekday under the Program. As the above TDM strategies are heavily dependent on context, a matrix detailing which TDM strategies may be most effective when taking in account local contexts (by Potential Site group) has been included as **Table 2** (presented on page 8).

The VMT forecasts presented in this assessment do not take into consideration some foreseeable travel changes, including increased use of transportation network companies, such as Uber and

Darcy Kremin, Rincon Consultants, Inc. August 26, 2020 Page 7 of 21



Lyft, nor the potential for autonomous vehicles. Although the technology for autonomous vehicles is expected to be available over the planning horizon, the federal and State legal and policy frameworks are uncertain. Initial modeling of an autonomous future indicates that with automated and connected vehicles, the capacity of the existing transportation system would increase as vehicles can travel closer together; however, these efficiencies are only realized when a high percentage of vehicles on the roadway are automated and connected. There is also the potential for vehicle travel to increase with zero-occupancy vehicles on the roadway. Additionally, the VMT forecasts are based on a model that was developed using data reflecting travel conditions before COVID-19; the effects of COVID-19 may be a near-term suppression in travel activity on the basis of reduced economic output and permanently modified travel habits.

However, a TDM program would likely not result in the 11.5 percent or 18.8 percent reductions required, and thus the impact is **significant and unavoidable**.



**Table 2: Potential Effectiveness of TDM Strategies by Potential Site Group** 

| TDI | M Strategy                                                                                                             | AGU | FOR | GEY | GLE | GRA | GUE | LAR | PEN | PET | SAN | SON |
|-----|------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1.  | Provision of bus stop improvements or on-site mobility hubs                                                            | М   | М   | М   | М   | М   | Н   | Н   | Н   | L   | Н   | Н   |
| 2.  | Pedestrian improvements, on-site or off-site, to connect to nearby transit stops, services, schools, shops, etc.       | М   | н   | н   | М   | М   | Н   | Н   | Н   | М   | Н   | н   |
| 3.  | Bicycle programs including bike purchase incentives, storage, maintenance programs, and on-site education program      | М   | н   | н   | М   | М   | Н   | н   | М   | М   | н   | М   |
| 4.  | Enhancements to countywide bicycle network                                                                             | М   | М   | М   | М   | М   | М   | Н   | М   | М   | Н   | М   |
| 5.  | Parking reductions and/or fees set at levels sufficient to incentivize transit, active transportation, or shared modes | Н   | н   | н   | н   | н   | Н   | н   | Н   | Н   | н   | н   |
| 6.  | Cash allowances, passes, or other public transit subsidies and purchase incentives                                     | Н   | н   | н   | Н   | Н   | Н   | н   | Н   | М   | Н   | н   |
| 7.  | Enhancements to bus service                                                                                            | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | М   | Н   | Н   |
| 8.  | Implementation of shuttle service                                                                                      | М   | Н   | М   | М   | М   | Н   | Н   | Н   | Н   | Н   | Н   |
| 9.  | Establishment of carpool, buspool, or vanpool programs                                                                 | М   | М   | М   | М   | М   | Н   | Н   | Н   | М   | Н   | Н   |
| 10. | Vanpool purchase incentives                                                                                            | L   | L   | L   | L   | L   | М   | Н   | М   | L   | Н   | М   |
| 11. | Low emission vehicle purchase incentives/subsidies                                                                     | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   |
| 12. | Compliance with a future County VMT/TDM ordinance                                                                      | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   |
| 13. | Participation in a future County VMT fee program                                                                       | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   | Н   |
| 14. | Participate in future VMT exchange or mitigation bank programs                                                         | Н   | н   | н   | Н   | Н   | Н   | н   | Н   | Н   | Н   | Н   |

#### Notes:

Potential effectiveness ratings: L = low, M = medium, H = high

Based on CAPCOA research, global maximum VMT reduction using all TDM measures for projects in rural and suburban contexts is 5-10 percent Potential effectiveness of strategies based on Potential Site Group density, access to transit, and nearby destinations within walking or bicycling distance Source: Fehr & Peers, July 2020.



### Informational (Non-CEQA) Intersection Operations Analysis

Intersection operations analysis was performed at 20 intersections throughout Sonoma County located near the 59 Potential Sites. The 20 intersections, their locations within Sonoma County, and nearby Potential Sites are presented in **Table 3**.

**Table 3: Study Intersections** 

| No. | Intersection                                          | Intersection<br>Control <sup>1</sup> | Area of County                | Adjacent/Nearby<br>Potential Sites                      |
|-----|-------------------------------------------------------|--------------------------------------|-------------------------------|---------------------------------------------------------|
| 1   | Geyserville Ave/Canyon Rd                             | AWSC                                 | Geyserville                   | GEY-1 through GEY-4                                     |
| 2   | River Rd (SR 116)/Armstrong Woods<br>Rd-First St      | Signal                               | Guerneville <sup>C</sup>      | GUE-1 through GUE-4                                     |
| 3   | River Rd/Gravenstein Hwy (SR 116)                     | Signal                               | Guerneville <sup>C</sup>      | GUE-1 through GUE-4                                     |
| 4   | Old Redwood Hwy/Fulton Rd                             | SSSC                                 | Larkfield/Wikiup              | LAR-1 through LAR-8                                     |
| 5   | Airport Blvd/Fulton Rd                                | Signal                               | Larkfield/Wikiup              | LAR-1 through LAR-8                                     |
| 6   | Old Redwood Hwy/Airport Blvd                          | Signal                               | Larkfield/Wikiup              | LAR-1 through LAR-8                                     |
| 7   | Old Redwood Hwy/Faught Rd                             | SSSC                                 | Larkfield/Wikiup              | LAR-1 through LAR-8                                     |
| 8   | Old Redwood Hwy/Wikiup Dr-<br>Mark West Commons Cir   | Signal                               | Larkfield/Wikiup              | LAR-1 through LAR-8                                     |
| 9   | Front St (SR 116)/Mirabel Rd                          | SSSC                                 | Forestville <sup>C</sup>      | FOR-1 through FOR-6<br>GUE-1 through GUE-4 <sup>2</sup> |
| 10  | Gravenstein Hwy (SR 116)/Graton Rd-<br>Frei Rd        | Signal                               | Graton <sup>C</sup>           | GRA-1 through GRA-5                                     |
| 11  | Todd Rd/Moorland Ave                                  | SSSC                                 | South Santa Rosa              | SAN-1 through SAN-10                                    |
| 12  | Todd Rd/South Moorland Ave/US 101<br>Southbound Ramps | Signal                               | South Santa Rosa <sup>C</sup> | SAN-1 through SAN-10                                    |
| 13  | Todd Rd/Todd Rd Overcrossing                          | Signal                               | South Santa Rosa <sup>C</sup> | SAN-1 through SAN-10                                    |
| 14  | Todd Rd/Santa Rosa Ave                                | Signal                               | South Santa Rosa              | SAN-1 through SAN-10                                    |
| 15  | Arnold Dr/Warm Springs Rd                             | AWSC                                 | Glen Ellen                    | GLE-1 and GLE-2                                         |
| 16  | Verano Ave/Riverside Dr                               | SSSC                                 | Agua Caliente                 | AGU-1 through AGU-3                                     |
| 17  | Adobe Rd/Petaluma Hill Rd-Main St                     | Signal                               | Penngrove                     | PEN-1 through PEN-9                                     |
| 18  | Old Redwood Hwy/Main St                               | Signal                               | Penngrove                     | PEN-1 through PEN-9                                     |
| 19  | Bodega Ave/Paula Ln                                   | SSSC                                 | Petaluma                      | PET-1 through PET-4                                     |
| 20  | Broadway (SR 12)/Leveroni Rd-<br>Napa Rd              | Signal                               | Sonoma <sup>C</sup>           | SON-1 through SON-4                                     |

#### Notes

<sup>1.</sup> AWSC = All-Way Stop-Controlled, SSSC= Side-Street Stop-Controlled

<sup>2.</sup> Potential Sites GUE-1 through GUE-4 also contribute a substantial number of AM and PM peak hour trips to this intersection.

<sup>&</sup>lt;sup>c</sup> indicates a Caltrans intersection Source: Fehr & Peers, July 2020.



#### **Analysis Methods, Parameters and Substantial Effect Criteria**

Intersection operations analysis was performed for Existing, Existing plus Program, Cumulative (Year 2040), and Cumulative plus Program Conditions. Year 2040 forecasts were developed using outputs from the SCTA travel demand model, and program-generated traffic volumes were estimated using the outputs from the Base Year (without program) and Base Year plus Program SCTA model runs. Cumulative scenario analysis was performed assuming no changes to intersection configurations or signal timings in order to assess whether they would contribute to projected operations deficiencies related to the County's Level of Service (LOS) D operations policy, and whether projects resulting from the program should contribute funds to previously-identified improvements at intersections that are projected to operate deficiently before the implementation of the program.

The analysis was performed for the weekday AM and PM peak hours, consistent with the County's *Guidelines for Traffic Impact Studies*, which use intersection LOS as a basis for measuring the operating conditions of intersections. The *Highway Capacity Manual*, 6<sup>th</sup> Edition was used as the methodology for the analysis. Delay and LOS definitions are provided in **Attachment A**. The following criteria were used in the analysis to identify substantial operations effects. Intersection improvement measures have been identified in cases where the program would result in substantial intersection operations effects.

#### Signalized Intersections

A substantial operation effect would occur if:

- For intersections operating acceptably before the addition of program-generated traffic (LOS D or better): The addition of program-generated traffic results in operations degrading from LOS A, B, C, or D to LOS E or F.
- For intersections operating unacceptably before the addition of program-generated traffic (LOS E or LOS F): The addition of program-generated traffic results in an increase in average delay of 5.0 seconds or more.

#### Stop-Controlled Intersections

A substantial operation effect would occur if:

- For intersections operating acceptably before the addition of program-generated traffic (LOS D or better): The addition of program-generated traffic results in operations degrading from LOS A, B, C, or D to LOS E or F, and the Peak Hour Signal Warrant is met.
- For side-street stop-controlled intersections operating unacceptably before the addition of program-generated traffic (LOS E or LOS F): The addition of program-generated traffic results in an increase in delay on the worst movement or approach of 5.0 seconds or more, and the Peak Hour Signal Warrant is met.



• For all-way stop-controlled intersections operating unacceptably before the addition of program-generated traffic (LOS E or LOS F): The addition of program-generated traffic results in an increase in average delay of 5.0 seconds or more, and the Peak Hour Signal Warrant is met.

#### Near-Term (Existing and Existing plus Program) Conditions Analysis

This section presents the results of the near-term operations analysis, comprised of Existing Conditions and Existing plus Program Conditions. Because the of the long-term nature of the program, the assumption that all development facilitated by the program would occur in the short-term is conservative.

#### Intersection Operations Analysis

Intersection operations for Existing Conditions were analyzed using existing signal timing data, lane configurations, and traffic volume data from the StreetLight Data traffic volume estimate database, which leverages location-based service data from cellular devices to estimate traffic volumes. Year 2019 data from non-holiday Tuesdays, Wednesdays and Thursdays from the months of February, March, April, May, September, October, and November were used to estimate traffic volumes for 2019 conditions; the estimates were compared against count data from the County's database or other studies, where available. This approach reflects conditions before the COVID-19 pandemic and associated economic and travel effects. Generally, the StreetLight Data process slightly overestimates traffic volumes against counts; however, because traditional traffic counts are performed for only one day and the StreetLight Data method uses data from nearly 90 days, the StreetLight Data method better accounts for day-to-day fluctuations in traffic volumes. Existing Conditions volumes are presented in **Attachment B** as **Figure 1**.

Intersection operations Existing with Program Conditions were analyzed by adding program-generated traffic volume (per the SCTA model) to the Existing Conditions models. Existing with Program Conditions traffic volumes are included in **Attachment B** as **Figure 2**; signal timing and lane configurations were held constant. The results of the near-term intersection operations analysis are presented in **Table 4**. Intersection analysis model outputs are provided in **Attachment C**.



**Table 4: Near-Term Intersection Operations Analysis** 

|    | bie 4. Near-Term intersect                             | Peak     | Existing Con                        | •                     | Existing plus                       | s Pro <u>gran</u>     | n Conditions                    |
|----|--------------------------------------------------------|----------|-------------------------------------|-----------------------|-------------------------------------|-----------------------|---------------------------------|
|    | Intersection                                           | Hour     | Delay <sup>1</sup>                  | LOS <sup>2</sup>      | Delay <sup>1</sup>                  | LOS <sup>2</sup>      | Δ Delay³                        |
| 1  | Geyserville Ave/Canyon Rd                              | AM<br>PM | 8.3<br>8.5                          | A<br>A                | 8.6<br>8.8                          | A<br>A                | +0.3<br>+0.3                    |
| 2  | River Rd (SR 116)/Armstrong<br>Woods Rd-First St       | AM<br>PM | 8.4<br>8.9                          | A<br>A                | 9.3<br>9.6                          | A<br>A                | +0.9<br>+0.7                    |
| 3  | River Rd/Gravenstein Hwy (SR 116)                      | AM<br>PM | 8.7<br>9.7                          | A<br>A                | 9.0<br>10.0                         | A<br>B                | +0.3<br>+0.3                    |
| 4  | Old Redwood Hwy/Fulton Rd                              | AM<br>PM | 3.6 (26.7)<br><b>45.9 (&gt;120)</b> | A (D)<br><b>E (F)</b> | 3.7 (27.7)<br><b>53.0 (&gt;120)</b> | A (D) <b>F (F)</b>    | +0.1 (+1.0)                     |
| 5  | Airport Blvd/Fulton Rd                                 | AM<br>PM | >120<br>107.1                       | F<br>F                | >120<br>111.3                       | F<br>F                | +4.9<br>+4.2                    |
| 6  | Old Redwood Hwy/Airport Blvd                           | AM<br>PM | <b>58.2</b> 19.6                    | <b>E</b><br>B         | <b>62.9</b> 19.7                    | <b>E</b><br>B         | <b>+4.7</b><br>+0.1             |
| 7  | Old Redwood Hwy/Faught Rd                              | AM<br>PM | 41.5 (>120)<br>22.2 (>120)          | E (F)<br>C (F)        | 46.8 (>120)<br>24.7 (>120)          | E (F)<br>C (F)        | **                              |
| 8  | Old Redwood Hwy/Wikiup Dr-<br>Mark West Commons Cir    | AM<br>PM | 16.1<br>15.3                        | B<br>B                | 20.3<br>18.3                        | C<br>B                | +4.2<br>+3.0                    |
| 9  | Front St (SR 116)/Mirabel Rd                           | AM<br>PM | 9.7 (24.9)<br>4.5 (15.5)            | A (C)<br>A (C)        | <b>15.0 (39.0)</b> 5.4 (18.8)       | <b>B (E)</b><br>A (C) | <b>+5.3 (+14.1)</b> +0.9 (+3.3) |
| 10 | Gravenstein Hwy (SR 116)/<br>Graton Rd-Frei Rd         | AM<br>PM | 15.2<br>16.4                        | B<br>B                | 15.7<br>16.9                        | B<br>B                | +0.5<br>+0.5                    |
| 11 | Todd Rd/Moorland Ave                                   | AM<br>PM | 87.9 (>120)<br>>120 (>120)          | F (F)                 | >120 (>120)<br>>120 (>120)          | F (F)<br>F (F)        | **                              |
| 12 | Todd Rd/South Moorland Ave/<br>US 101 Southbound Ramps | AM<br>PM | 21.4<br>29.7                        | C<br>C                | 36.1<br><b>56.7</b>                 | D<br><b>E</b>         | +14.7<br><b>+27.0</b>           |
| 13 | Todd Rd/Todd Rd Overcrossing                           | AM<br>PM | 9.0<br>9.6                          | A<br>A                | 10.0<br>10.8                        | A<br>B                | +1.0<br>+1.2                    |
| 14 | Todd Rd/Santa Rosa Ave                                 | AM<br>PM | 20.6<br>31.9                        | C<br>C                | 23.0<br>36.8                        | C<br>D                | +2.4<br>+4.9                    |
| 15 | Arnold Dr/Warm Springs Rd                              | AM<br>PM | 11.4<br>11.0                        | B<br>B                | 11.4<br>11.2                        | B<br>B                | +0.0<br>+0.2                    |
| 16 | Verano Ave/Riverside Dr                                | AM<br>PM | 11.3 (44.9)<br>31.3 (>120)          | B (E)<br>D (F)        | 15.3 (64.6)<br>53.1 (>120)          | C (F)<br>F (F)        | +4.0 (+19.7)<br>**              |
| 17 | Adobe Rd/Petaluma Hill Rd-<br>Main St                  | AM<br>PM | 47.4<br>> <b>120</b>                | D<br><b>F</b>         | 53.5<br>> <b>120</b>                | D<br><b>F</b>         | +6.1<br><b>+4.0</b>             |
| 18 | Old Redwood Hwy/Main St                                | AM<br>PM | 14.0<br>23.8                        | B<br>C                | 14.7<br>26.3                        | B<br>C                | +0.7<br>+2.5                    |
| 19 | Bodega Ave/Paula Ln                                    | AM<br>PM | 1.5 (21.7)<br>1.0 (16.3)            | A (C)<br>A (C)        | 2.8 (28.7)<br>2.1 (20.9)            | A (D)<br>A (C)        | +1.3 (+7.0)<br>+1.1 (+4.6)      |



**Table 4: Near-Term Intersection Operations Analysis** 

|    |                                          | Peak     | Existing Con       | ditions          | Existing plu       | s Progran        | n Conditions |
|----|------------------------------------------|----------|--------------------|------------------|--------------------|------------------|--------------|
|    | Intersection                             | Hour     | Delay <sup>1</sup> | LOS <sup>2</sup> | Delay <sup>1</sup> | LOS <sup>2</sup> | Δ Delay³     |
| 20 | Broadway (SR 12)/Leveroni Rd-<br>Napa Rd | AM<br>PM | 49.3<br>45.8       | D<br>D           | 50.1<br>46.0       | D<br>D           | +0.8<br>+0.2 |

### Notes:

**Bold** indicates operations below the County's LOS D standard. **Bold and highlighted** indicates a substantial operations effect.

- 1. Delay for signalized intersections and All-Way Stop-Controlled intersections presented whole-intersection average delay. Delay for Side-Street Stop-Controlled intersections presented as: whole-intersection average delay (delay on worst movement or single-lane approach).
- 2. LOS per Highway Capacity Manual, 6th Edition
- 3. Change in delay between Existing plus Program Conditions and Existing Conditions
- \*\* indicates that the Synchro program is indicating that the intersection is supersaturated, and the change in delay values are likely greater than 5.0 seconds on the worst movement or single-lane approach.

  Source: Fehr & Peers, July 2020.

# Signal Warrant Analysis

The Peak Hour Signal Warrant (Warrant 3B) analysis was performed for intersections that operate unacceptably with respect to the County's LOS D operations standard under Existing Conditions or Existing plus Program Conditions. Signal warrant worksheets are provided in **Attachment D.** Traffic volumes at the following intersections meet the Peak Hour Signal Warrant for the time periods noted:

- Old Redwood Highway/Fulton Road (Existing Conditions, PM peak hour)
- Front Street (SR 116)/Mirabel Road (Existing plus Program Conditions, AM peak hour)
- Todd Road/Moorland Avenue (Existing Conditions, AM and PM peak hours)

Traffic volumes at all other unsignalized intersections operating unacceptably do not meet the Peak Hour Signal Warrant under Existing Conditions or Existing plus Program Conditions.

## **Findings**

Based on the results in **Table 4** and the Peak Hour Signal Warrant analysis, the program would have a substantial effect on intersection operations at the following locations during the time periods noted:

- <u>Intersection 4: Old Redwood Highway/Fulton Road (PM peak hour)</u> The addition of traffic from Potential Sites LAR-1 through LAR-8 exacerbates unacceptable LOS F conditions by increasing delay by more than 5.0 seconds and the Peak Hour Signal Warrant is met.
- <u>Intersection 9: Front Street (SR 116)/Mirabel Road (AM Peak hour)</u> The addition of traffic from Potential Sites FOR-1 through FOR-6 and Potential Sites GUE-1 through GUE-4



- causes operations to degrade from an acceptable LOS C to an unacceptable LOS E and the Peak Hour Signal Warrant is met.
- Intersection 11: Todd Road/Moorland Avenue (AM and PM peak hours) The addition of traffic from Potential Sites SAN-1 through SAN-10 exacerbates unacceptable LOS E/F conditions by increasing delay by more than 5.0 seconds and the Peak Hour Signal Warrant is met.
- Intersection 12: Todd Road/South Moorland Avenue/US 101 southbound ramps (PM peak hour) – The addition of traffic from Potential Sites SAN-1 through SAN-10 causes operations at the intersection to degrade from an acceptable LOS C to an unacceptable LOS E.

It is noted that the substantial effects at Old Redwood Highway/Fulton Road and Todd Road/Moorland Avenue are cases where the intersection operates unacceptably before the development at Potential Sites LAR-1 through LAR-8 and Potential Sites SAN-1 through SAN-10 (respectively). The substantial effects at Front Street (SR 116)/Mirabel Road is a case where development at Potential Sites FOR-1 through FOR-6 and Potential Sites GUE-1 through GUE-4 results in a new deficiency; a similar situation occurs for the intersection of Todd Road/South Moorland Avenue/US 101 southbound ramps with respect to the addition of traffic generated by Potential Sites SAN-1 through SAN-10.

Because all of the development is not anticipated to be built in the near-term, the substantial effects noted above may take years to materialize. Thus, no near-term intersection improvements have been identified as required, and the Cumulative scenario improvements will be the main focus of improvements for further consideration.

# **Cumulative (Year 2040) Conditions Analysis**

This section presents the results of the Cumulative (Year 2040) operations analysis, comprised of Cumulative (without Program) Conditions and Cumulative plus Program Conditions. The Cumulative (Year 2040) horizon assumes that all long-range development (except the program being studied) from all agencies in Sonoma County is built, as modeled in the SCTA model. The analysis assumes that the transportation network and signal timing parameters are held to Existing Conditions to provide a conservative baseline and to assess if development proposed by the program should contribute to planned transportation system improvements already in the project pipeline.

# Intersection Operations Analysis

Intersection operations Cumulative Conditions were analyzed by growing Existing Conditions volumes using growth factors derived from SCTA model outputs; traffic volume information for Cumulative Conditions are included in **Attachment B** as **Figure 3**. Cumulative with Program Conditions traffic volumes are included in **Attachment B** as **Figure 4**. The results of the



Cumulative intersection operations analysis are presented in **Table 5**. Intersection analysis model outputs are provided in **Attachment C**.

**Table 5: Cumulative Conditions Intersection Operations Analysis** 

|    | Intersection                                           | Peak<br>Hour | Cumulati<br>Conditio        |                  | Cumulative p               | lus Progr        | am Conditions        |
|----|--------------------------------------------------------|--------------|-----------------------------|------------------|----------------------------|------------------|----------------------|
|    | intersection                                           | rioui        | Delay <sup>1</sup>          | LOS <sup>2</sup> | Delay <sup>1</sup>         | LOS <sup>2</sup> | Δ Delay³             |
| 1  | Geyserville Ave/Canyon Rd                              | AM<br>PM     | 9.2<br>9.4                  | A<br>A           | 9.5<br>9.8                 | A<br>A           | +0.3<br>+0.4         |
| 2  | River Rd (SR 116)/Armstrong<br>Woods Rd-First St       | AM<br>PM     | 10.9<br>10.8                | B<br>B           | 12.9<br>12.4               | B<br>B           | +2.0<br>+1.6         |
| 3  | River Rd/Gravenstein Hwy (SR 116)                      | AM<br>PM     | 10.6<br>12.6                | B<br>B           | 11.1<br>14.2               | B<br>B           | +0.5<br>+1.6         |
| 4  | Old Redwood Hwy/Fulton Rd                              | AM<br>PM     | 12.7 (113.8)<br>>120 (>120) | B (F)<br>F (F)   | 13.8 (>120)<br>>120 (>120) | B (F)<br>F (F)   | **                   |
| 5  | Airport Blvd/Fulton Rd                                 | AM<br>PM     | >120<br>>120                | F<br>F           | >120<br>>120               | F<br>F           | +5.3<br>+4.0         |
| 6  | Old Redwood Hwy/Airport<br>Blvd                        | AM<br>PM     | > <b>120</b><br>37.8        | <b>F</b><br>D    | > <b>120</b><br>38.7       | <b>F</b><br>D    | <b>+3.7</b><br>+0.9  |
| 7  | Old Redwood Hwy/Faught Rd                              | AM<br>PM     | >120 (>120)<br>>120 (>120)  | F (F)<br>F (F)   | >120 (>120)<br>>120 (>120) | F (F)<br>F (F)   | **                   |
| 8  | Old Redwood Hwy/Wikiup Dr-<br>Mark West Commons Cir    | AM<br>PM     | 39.2<br><b>64.9</b>         | D<br><b>E</b>    | 51.4<br><b>72.8</b>        | D<br><b>E</b>    | +12.2<br><b>+7.9</b> |
| 9  | Front St (SR 116)/Mirabel Rd                           | AM<br>PM     | 100.5 (>120)<br>18.7 (78.4) | F (F)<br>C (F)   | >120 (>120)<br>31.9 (>120) | F (F)<br>C (F)   | **                   |
| 10 | Gravenstein Hwy (SR 116)<br>/Graton Rd-Frei Rd         | AM<br>PM     | 24.2<br>35.3                | C<br>D           | 27.1<br>36.7               | C<br>D           | +2.9<br>+1.4         |
| 11 | Todd Rd/Moorland Ave                                   | AM<br>PM     | >120 (>120)<br>>120 (>120)  | F (F)<br>F (F)   | >120 (>120)<br>>120 (>120) | F (F)<br>F (F)   | **                   |
| 12 | Todd Rd/South Moorland Ave/<br>US 101 Southbound Ramps | AM<br>PM     | 41.5<br><b>75.0</b>         | D<br><b>E</b>    | 69.6<br>>120               | E<br>F           | +28.1<br>+48.3       |
| 13 | Todd Rd/Todd Rd<br>Overcrossing                        | AM<br>PM     | 9.7<br>10.1                 | A<br>B           | 10.8<br>11.6               | B<br>B           | +1.1<br>+1.5         |
| 14 | Todd Rd/Santa Rosa Ave                                 | AM<br>PM     | 23.2<br>41.0                | C<br>D           | 26.4<br>47.3               | C<br>D           | +3.2<br>+6.3         |
| 15 | Arnold Dr/Warm Springs Rd                              | AM<br>PM     | 13.6<br>13.5                | B<br>B           | 13.7<br>13.6               | B<br>B           | +0.1<br>+0.1         |
| 16 | Verano Ave/Riverside Dr                                | AM<br>PM     | 26.6 (113.9)<br>91.5 (>120) | D (F)<br>F (F)   | 38.8 (>120)<br>>120 (>120) | E (F)<br>F (F)   | **                   |
| 17 | Adobe Rd/Petaluma Hill Rd-<br>Main St                  | AM<br>PM     | >120<br>>120                | F<br>F           | >120<br>>120               | F<br>F           | +12.1<br>+4.6        |



**Table 5: Cumulative Conditions Intersection Operations Analysis** 

|    | Late and all a                           | Peak     | Cumulat<br>Conditio      |                  | Cumulative p                 | lus Progr             | am Conditions                      |
|----|------------------------------------------|----------|--------------------------|------------------|------------------------------|-----------------------|------------------------------------|
|    | Intersection                             | Hour     | Delay <sup>1</sup>       | LOS <sup>2</sup> | Delay <sup>1</sup>           | LOS <sup>2</sup>      | Δ Delay³                           |
| 18 | Old Redwood Hwy/Main St                  | AM<br>PM | 27.4<br><b>90.0</b>      | C<br><b>F</b>    | 33.4<br><b>97.4</b>          | C<br><b>F</b>         | +6.0<br><b>+7.4</b>                |
| 19 | Bodega Ave/Paula Ln                      | AM<br>PM | 2.2 (27.5)<br>1.5 (21.0) | A (D)<br>A (C)   | <b>3.9 (39.4)</b> 2.8 (28.5) | <b>A (E)</b><br>A (D) | <b>+1.7 (+11.9)</b><br>+1.3 (+7.5) |
| 20 | Broadway (SR 12)/Leveroni Rd-<br>Napa Rd | AM<br>PM | 66.2<br>59.3             | E<br>E           | 66.9<br>59.5                 | E<br>E                | +0.7<br>+0.2                       |

### Notes:

**Bold** indicates operations below the County's LOS D standard. **Bold and highlighted** indicates a substantial operations effect

- 1. Delay for signalized intersections and All-Way Stop-Controlled intersections presented whole-intersection average delay. Delay for Side-Street Stop-Controlled intersections presented as: whole-intersection average delay (delay on worst movement or single-lane approach).
- 2. LOS per Highway Capacity Manual, 6<sup>th</sup> Edition
- 3. Change in delay between Cumulative plus Program and Cumulative Conditions
- \*\* indicates that the Synchro program is indicating that the intersection is supersaturated, and the change in delay values are likely greater than 5.0 seconds on the worst movement or single-lane approach.

  Source: Fehr & Peers, July 2020.

# Signal Warrant Analysis

The Peak Hour Signal Warrant (Warrant 3B) analysis was performed for intersections that operate unacceptably with respect to the County's LOS D operations standard under Cumulative Conditions or Cumulative plus Program Conditions. Signal warrant worksheets are provided in **Attachment D.** Traffic volumes at the following intersections meet the Peak Hour Signal Warrant for the time periods noted:

- Old Redwood Highway/Fulton Road (Cumulative Conditions, AM and PM peak hours)
- Old Redwood Highway/Faught Road (Cumulative Conditions, AM and PM peak hours)
- Front Street (SR 116)/Mirabel Road (Cumulative Conditions, AM and PM peak hours)
- Todd Road/Moorland Avenue (Cumulative Conditions, AM and PM peak hours)
- Verano Avenue/Riverside Drive (Cumulative Conditions, PM peak hour)

Traffic volumes at all other unsignalized intersections operating unacceptably do not meet the Peak Hour Signal Warrant under Cumulative Conditions or Cumulative plus Program Conditions.

# **Findings**

Based on the results in **Table 5** and the Peak Hour Signal Warrant analysis, the program would have a substantial effect on intersection operations at the following locations during the time periods noted:



- Intersection 4: Old Redwood Highway/Fulton Road (AM and PM peak hours) The addition of traffic development at Potential Sites LAR-1 through LAR-8 exacerbates unacceptable LOS F conditions by increasing the delay by more than 5.0 seconds and the Peak Hour Signal Warrant is met.
- Intersection 5: Airport Boulevard/Fulton Road (AM peak hour) The addition of traffic development at Potential Sites LAR-1 through LAR-8 exacerbates unacceptable LOS F conditions by increasing the delay by more than 5.0 seconds.
- Intersection 7: Old Redwood Highway/Faught Road (AM and PM peak hours) The
  addition of traffic development at Potential Sites LAR-1 through LAR-8 exacerbates
  unacceptable LOS F conditions by increasing the delay by more than 5.0 seconds and the
  Peak Hour Signal Warrant is met.
- Intersection 8: Old Redwood Highway/Wikiup Drive-Mark West Commons Circle (PM peak hour) The addition of traffic development at Potential Sites LAR-1 through LAR-8 exacerbates unacceptable LOS F conditions by increasing the delay by more than 5.0 seconds.
- Intersection 9: Front Street (SR 116)/Mirabel Road (AM and PM peak hours) The addition of traffic development at Potential Sites FOR-1 through FOR-6 and Potential Sites GUE-1 through GUE-4 exacerbates unacceptable LOS F conditions by increasing the delay by more than 5.0 seconds and the Peak Hour Signal Warrant is met.
- Intersection 11: Todd Road/Moorland Avenue (AM and PM peak hours) The addition of traffic development at Potential Sites SAN-1 through SAN-10 exacerbates unacceptable LOS F conditions by increasing the delay by more than 5.0 seconds and the Peak Hour Signal Warrant is met.
- Intersection 12: Todd Road/South Moorland Avenue/US 101 southbound ramps (AM and PM peak hours) – The addition of traffic development at Potential Sites SAN-1 through SAN-10 exacerbates unacceptable LOS F conditions by increasing the delay by more than 5.0 seconds.
- Intersection 16: Verano Avenue/Riverside Drive (AM and PM peak hours) The addition of traffic development at Potential Sites AGU-1 through AGU-3 exacerbates unacceptable LOS F conditions by increasing the delay by more than 5.0 seconds and the Peak Hour Signal Warrant is met.
- Intersection 17: Old Adobe Road/Petaluma Hill Road-Main Street (AM peak hour) The addition of traffic development at Potential Sites PEN-1 through PEN-9 exacerbates unacceptable LOS F conditions by increasing the delay by more than 5.0 seconds.
- Intersection 18: Old Redwood Highway/Main Street (PM peak hour) The addition of traffic development at Potential Sites PEN-1 through PEN-9 exacerbates unacceptable LOS F conditions by increasing the delay by more than 5.0 seconds.

It is noted that the identified substantial effects under Cumulative Conditions are almost exclusively cases where the program would exacerbate operations that would already be unacceptable prior to the addition of program traffic (i.e. intersections are projected to operate at



LOS E or F without the implementation of the program). Generally, this suggests that the projects should be conditioned to contribute a fair share amount towards improvements. The identified improvements to improve conditions at the identified locations of substantial effects are presented in the next subsection.

## Improvement Measures

As noted previously, buildout of the program will take years to complete, and thus the program's effects on operations at study intersections will similarly take years to occur. Therefore, the improvements noted below have been developed to alleviate the effects of the program under Cumulative conditions. Many of the improvements, once implemented, will positively affect transportation for existing and future drivers as well as bicyclists and pedestrians. Funding arrangements should be considered on a fair-share basis as the substantial effects indicated are generally related to the exacerbation of operations estimated to be deficient prior to the addition of program-generated traffic volumes. The County may choose to require that projects directly fund the improvements, with reimbursements at later dates, or the County may choose to incorporate these improvements into the County's existing AB1600 development impact fee program.

Intersection 4 – Old Redwood Highway/Fulton Road (Potential Sites LAR-1 through LAR-8)

Old Redwood Highway/Fulton Road is a side-street stop-controlled intersection that operates unacceptably under Cumulative Conditions in both the AM and PM peak hours; the intersection meets the Peak Hour Signal Warrant under both the AM and PM peak hour. The improvement measure is for program-related development to fund the construction of a traffic signal or roundabout at the intersection. Construction of a signal would result in the intersection operating at LOS B conditions in both the AM and PM peak hours. Construction of a roundabout would result in LOS A operations in the AM peak hour and LOS D operations in the PM peak hour.

Intersection 5 – Old Redwood Highway/Airport Boulevard (Potential Sites LAR-1 through LAR-8)

Old Redwood Highway/Fulton Road is a signalized intersection that operates unacceptably under Cumulative Conditions in both the AM and PM peak hours; substantial intersection operations effects occur during the AM peak hour only. The improvement measure is for program-related development to fund periodic signal timing adjustments at the intersection. While the intersection operations would remain at an unacceptable LOS F, the signal timing adjustments would result in an average intersection delay value that is lower than the Cumulative (without Program Conditions) value (225.5 seconds of delay after retiming versus 230.4 seconds of delay under Cumulative Conditions). Major widening of the intersection would need to occur in order to return the intersection to acceptable (LOS D or better) operations.



Intersection 7 – Old Redwood Highway/Faught Road (Potential Sites LAR-1 through LAR-8)

Old Redwood Highway/Faught Road is a side-street stop-controlled intersection that operates unacceptably under Cumulative Conditions in both the AM and PM peak hours; the intersection meets the Peak Hour Signal Warrant under both the AM and PM peak hour. The improvement measure is for program-related development to fund the construction of a traffic signal at the intersection; a roundabout is not advised because the intersection is between two existing signalized intersections. Construction of a signal would result in the intersection operating at LOS D conditions in the AM peak hour and LOS C conditions in the PM peak hour.

Intersection 8 – Old Redwood Highway/Wikiup Drive-Mark West Commons Circle (Potential Sites LAR-1 through LAR-8)

Old Redwood Highway/Wikiup Drive-Mark West Commons Circle is a signalized intersection that operates unacceptably under Cumulative Conditions in the PM peak hour; substantial intersection operations effects occur during the PM peak hour only. The improvement measure is for program-related development to fund periodic signal timing adjustments at the intersection. Implementing signal timing adjustments would return PM peak hour operations to LOS D conditions.

Intersection 9 – Front Street (SR 116)/Mirabel Road (Potential Sites FOR-1 through FOR-6 and GUE-1 through GUE-4)

Front Street (SR 116)/Mirabel Road is a side-street stop-controlled intersection that operates unacceptably under Cumulative Conditions in both the AM and PM peak hours; the intersection meets the Peak Hour Signal Warrant under both the AM and PM peak hour. The improvement measure is for program-related development to fund the construction of a traffic signal or roundabout at the intersection. Construction of a signal would result in the intersection operating at LOS B conditions in both the AM and PM peak hours. Construction of a roundabout would result in LOS B operations in the AM peak hour and LOS B operations in the PM peak hour.

Intersection 11 – Todd Road/Moorland Avenue (Potential Sites SAN-1 through SAN-10)

Todd Road/Moorland Avenue is a side-street stop-controlled intersection that operates unacceptably under Cumulative Conditions in both the AM and PM peak hours; the intersection meets the Peak Hour Signal Warrant under both the AM and PM peak hour. The improvement measure is for program-related development to fund the construction of the following improvements:

- A traffic signal at the intersection, including protected left turns for eastbound and westbound Todd Road and split phases for the northbound and southbound movements
- Modify striping on westbound Todd Road to accommodate a left turn lane, a through lane, and a right turn lane

Darcy Kremin, Rincon Consultants, Inc. August 26, 2020 Page 20 of 21



A roundabout is not advised because the intersection is located very near to an existing traffic signal. Construction of a signal and associate striping improvements would result in the intersection operating at LOS C conditions in the AM peak hour and LOS D in the PM peak hour.

Intersection 12 – Todd Road/South Moorland Avenue/US 101 Southbound Ramps (Potential Sites SAN-1 through SAN-10)

Todd Road/South Moorland Avenue/US 101 Southbound Ramps is a signalized intersection that operates unacceptably under Cumulative Conditions in both the AM and PM peak hours. The improvement measure is for program-related development to fund the following improvements:

- Modification of the traffic signal to include an eastbound right turn overlap phase
- Modification of striping on the northbound approach to include one left turn lane, one through-left turn shared lane, and one right turn lane
- Widening of westbound Todd Road leaving the intersection to accommodate two receiving lanes (would be consistent with mitigation measure proposed for Intersection 11)
- Updates to signal timing at intersection

Construction of the proposed improvements would result in LOS C operations in the AM peak hour and LOS D operations in the PM peak hour. Updates to signal timings may require corresponding updates at the nearby intersection of South Moorland Avenue/Todd Road Overcrossing.

Intersection 16 – Verano Avenue/Riverside Drive (Potential Sites AGU-1 through AGU-3)

Verano Avenue/Riverside Drive is a side-street stop-controlled intersection that operates unacceptably under Cumulative Conditions in both the AM and PM peak hours; the intersection meets the Peak Hour Signal Warrant in the PM peak hour only. The improvement measure is for program-related development to fund the construction of a slow-speed roundabout at the intersection. Construction of a roundabout would result in the intersection operating at LOS A conditions in the AM peak hour and LOS B conditions and PM peak hours.

Intersection 17 – Adobe Road/Petaluma Hill Road-Main Street (Potential Sites PEN-1 through PEN-9)

Adobe Road/Petaluma Hill Road-Main Street is a signalized intersection that operates unacceptably under Cumulative Conditions in both the AM and PM peak hours; substantial intersection operations effects occur during the AM peak hour only. The improvement measure is for program-related development to fund periodic signal timing adjustments at the intersection. While the intersection operations would remain at an unacceptable LOS F, the signal timing adjustments would result in an average intersection delay value that is lower than the Cumulative (without Program Conditions) value (104.8 seconds of delay after retiming versus 188.4 seconds

Darcy Kremin, Rincon Consultants, Inc. August 26, 2020 Page 21 of 21



of delay under Cumulative Conditions). Major widening of the intersection would need to occur in order to return the intersection to acceptable (LOS D or better) operations.

Intersection 18 – Old Redwood Highway/Main Street (Potential Sites PEN-1 through PEN-9)

Old Redwood Highway/Main Street is a signalized intersection that operates unacceptably under Cumulative Conditions in the PM peak hour; substantial intersection operations effects occur during the PM peak hour only. The improvement measure is for program-related development to fund periodic signal timing adjustments at the intersection. Implementing signal timing adjustments would return PM peak hour operations to LOS D conditions.

# **Conclusions**

Results of the VMT analysis indicate that the program would result in significant and unavoidable impacts. Mitigation measures that could be added would likely not result in a substantial enough reduction of VMT needed to meet the threshold values.

The informational operational analysis results suggest that several improvement measures (to be funded on a fair share basis) should be constructed to reduce the program's effect to less-than-substantial levels. Improvement measures are designed with a longer-term horizon in mind, as development under the program is not anticipated to be built in the near-term.

This concludes the transportation assessment of the Sonoma Housing Rezone project transportation assessment. Please call Ian Barnes or Ashlee Takushi at (925) 930-7100 with any questions.

# **Attachments**

**Attachment A** Intersection Level of Service Definitions

**Attachment B** Volume Figures

**Attachment C** Synchro HCM 6<sup>th</sup> Edition Outputs

**Attachment D** Signal Warrant Analysis Worksheets

# ATTACHMENT A VEHICLE LEVEL OF SERVICE DEFNIITIONS

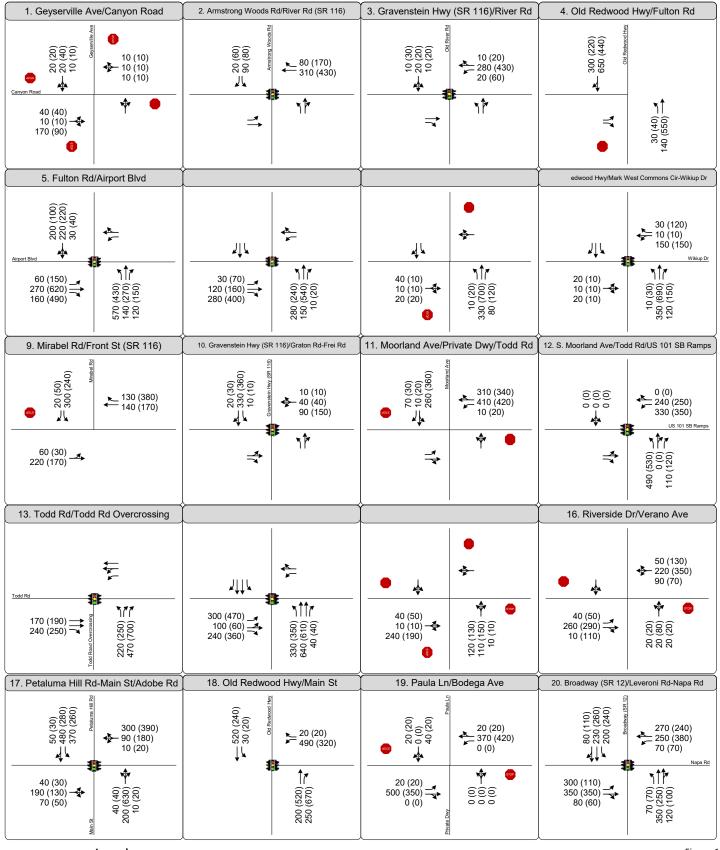




**Table A1: Signalized Intersection Level of Service Definitions** 

| Level of<br>Service | Description                                                                                                                                                                                                   | Average Control Delay per Vehicle (seconds) |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Α                   | Operations with very low delay occurring with favorable progression and/or short cycle lengths.                                                                                                               | ≤ 10.0                                      |
| В                   | Operations with low delay occurring with good progression and/or short cycle lengths.                                                                                                                         | 10.1 to 20.0                                |
| С                   | Operations with average delays resulting from fair progression and/or longer cycle lengths. Individual cycle failures begin to appear.                                                                        | 20.1 to 35.0                                |
| D                   | Operations with longer delays due to a combination of unfavorable progression, long cycle lengths, and high volume-to-capacity (V/C) ratios. Many vehicles stop and individual cycle failures are noticeable. | 35.1 to 55.0                                |
| E                   | Operations with high delay values indicating poor progression, long cycle lengths, and high V/C ratios. Individual cycle failures are frequent occurrences.                                                   | 55.1 to 80.0                                |
| F                   | Operations with delays unacceptable to most drivers occurring due to oversaturation, poor progression, or very long cycle lengths.                                                                            | > 80.0                                      |

Source: Highway Capacity Manual, 6th Edition.


**Table A2: Unsignalized Intersection Level of Service Definitions** 

| Level of<br>Service | Description                                                 | Average Control Delay per Vehicle (seconds) |
|---------------------|-------------------------------------------------------------|---------------------------------------------|
| Α                   | Little or no delay.                                         | ≤ 10.0                                      |
| В                   | Short traffic delays.                                       | 10.1 to 15.0                                |
| C                   | Average traffic delays.                                     | 15.1 to 25.0                                |
| D                   | Long traffic delays.                                        | 25.1 to 35.0                                |
| Е                   | Very long traffic delays.                                   | 35.1 to 50.0                                |
| F                   | Extreme traffic delays with intersection capacity exceeded. | > 50.0                                      |

Source: Highway Capacity Manual, 6<sup>th</sup> Edition.

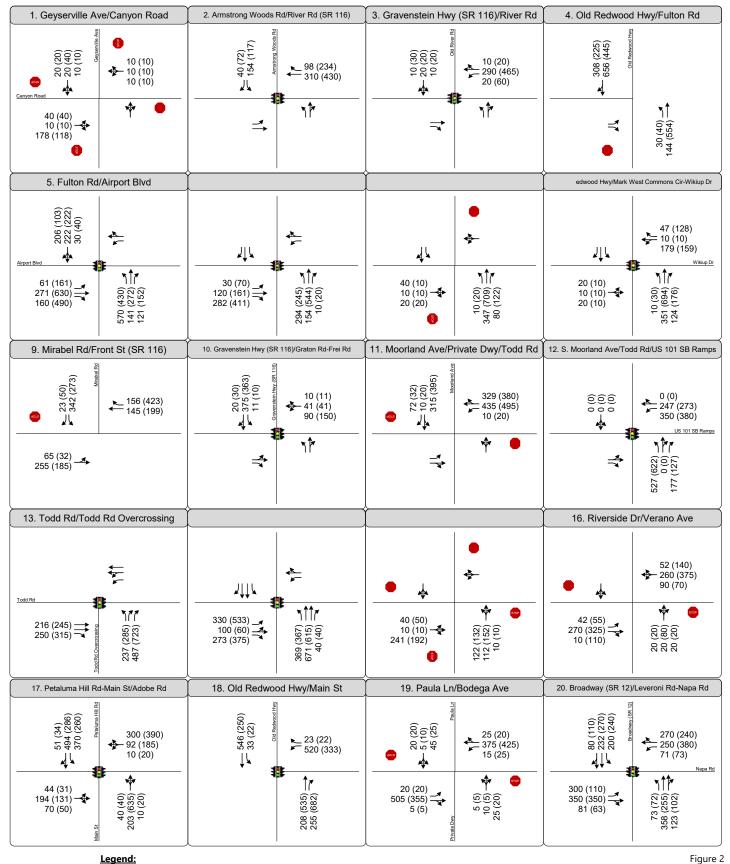
# ATTACHMENT B VOLUME FIGURES



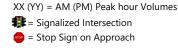


<u>Legend:</u>

riguici

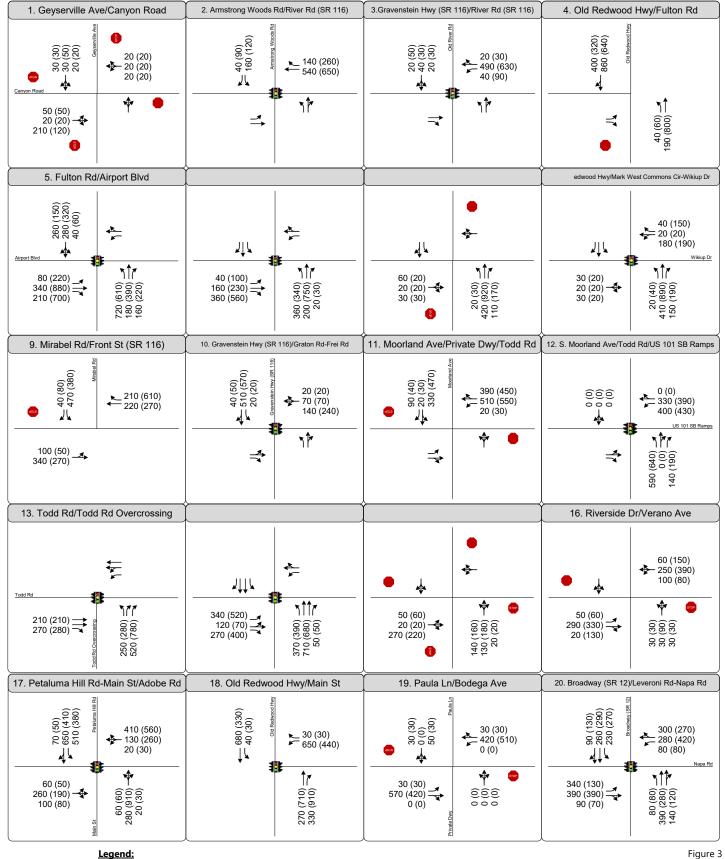

XX (YY) = AM (PM) Peak hour Volumes

**\$** = Signalized Intersection


= Stop Sign on Approach



Existing Conditions (Year 2019)
Weekday Peak Hour Intersection Traffic Volumes,
Lane Configurations, and Intersection Control Devices








Existing plus Program Conditions
Weekday Peak Hour Intersection Traffic Volumes,
Lane Configurations, and Intersection Control Devices







XX (YY) = AM (PM) Peak hour Volumes

= Signalized Intersection

= Stop Sign on Approach

Cumulative Conditions (Year 2040)
Weekday Peak Hour Intersection Traffic Volumes,
Lane Configurations, and Intersection Control Devices



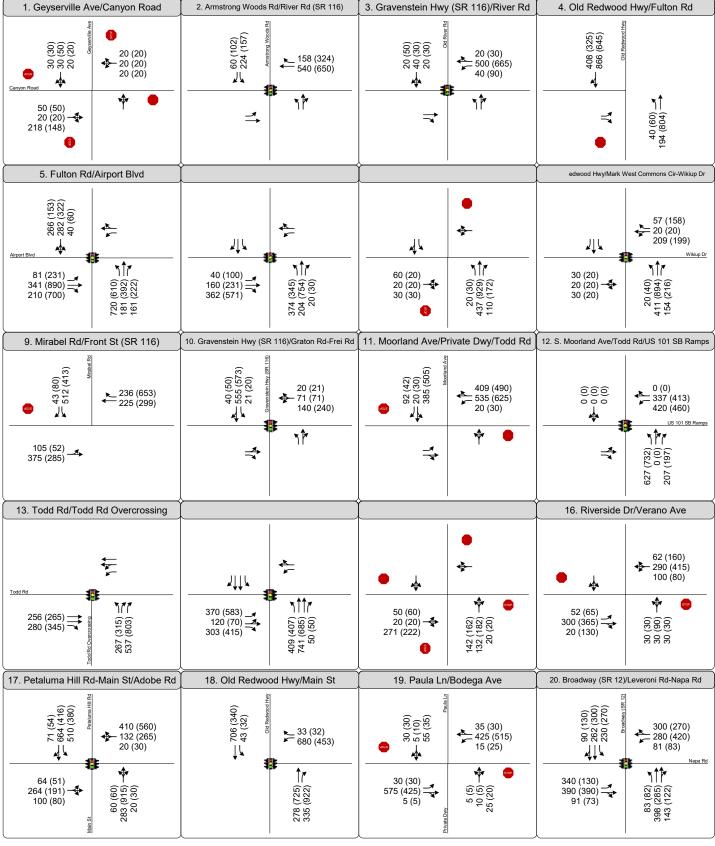
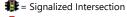
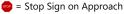







Figure 4

XX (YY) = AM (PM) Peak hour Volumes







Cumulative plus Program Conditions
Weekday Peak Hour Intersection Traffic Volumes,
Lane Configurations, and Intersection Control Devices

# ATTACHMENT C SYNCHRO HCM $6^{\text{TH}}$ EDITION OUTPUTS



# ATTACHMENT C-1 EXISTING CONDITIONS (YEAR 2019) OUPUTS



| ntersection              |     |
|--------------------------|-----|
| ntersection Delay, s/veh | 8.3 |
| ntersection LOS          | Α   |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 40   | 10   | 170  | 10   | 10   | 10   | 90   | 20   | 10   | 10   | 20   | 20   |
| Future Vol, veh/h          | 40   | 10   | 170  | 10   | 10   | 10   | 90   | 20   | 10   | 10   | 20   | 20   |
| Peak Hour Factor           | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 43   | 11   | 185  | 11   | 11   | 11   | 98   | 22   | 11   | 11   | 22   | 22   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.4  |      |      | 7.7  |      |      | 8.6  |      |      | 7.8  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 75%   | 18%   | 33%   | 20%   |  |
| Vol Thru, %            | 17%   | 5%    | 33%   | 40%   |  |
| Vol Right, %           | 8%    | 77%   | 33%   | 40%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 120   | 220   | 30    | 50    |  |
| LT Vol                 | 90    | 40    | 10    | 10    |  |
| Through Vol            | 20    | 10    | 10    | 20    |  |
| RT Vol                 | 10    | 170   | 10    | 20    |  |
| Lane Flow Rate         | 130   | 239   | 33    | 54    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.169 | 0.265 | 0.041 | 0.067 |  |
| Departure Headway (Hd) | 4.669 | 3.985 | 4.485 | 4.464 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 770   | 904   | 800   | 803   |  |
| Service Time           | 2.692 | 1.998 | 2.506 | 2.49  |  |
| HCM Lane V/C Ratio     | 0.169 | 0.264 | 0.041 | 0.067 |  |
| HCM Control Delay      | 8.6   | 8.4   | 7.7   | 7.8   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.6   | 1.1   | 0.1   | 0.2   |  |

|                           | ۶    | <b>→</b> | •    | •     | <b>←</b> | •     | 4    | †              | <u> </u> | <b>&gt;</b> | ļ    | ✓    |  |
|---------------------------|------|----------|------|-------|----------|-------|------|----------------|----------|-------------|------|------|--|
| Movement                  | EBL  | EBT      | EBR  | WBL   | WBT      | WBR   | NBL  | NBT            | NBR      | SBL         | SBT  | SBR  |  |
| Lane Configurations       | ٦    | <b>↑</b> |      |       | <b>†</b> | 7     | ሻ    | <del>(</del> î |          | ሻ           | ĵ,   |      |  |
| Traffic Volume (veh/h)    | 50   | 300      | 0    | 0     | 310      | 80    | 10   | 20             | 20       | 90          | 0    | 20   |  |
| Future Volume (veh/h)     | 50   | 300      | 0    | 0     | 310      | 80    | 10   | 20             | 20       | 90          | 0    | 20   |  |
| Initial Q (Qb), veh       | 0    | 0        | 0    | 0     | 0        | 0     | 0    | 0              | 0        | 0           | 0    | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00 |          | 1.00 | 1.00  |          | 0.99  | 0.99 |                | 0.99     | 0.99        |      | 0.99 |  |
| Parking Bus, Adj          | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00           | 1.00     | 1.00        | 1.00 | 1.00 |  |
| Work Zone On Approac      |      | No       |      |       | No       |       |      | No             |          |             | No   |      |  |
| Adj Sat Flow, veh/h/ln    | 1870 | 1870     | 0    | 0     | 1870     | 1870  | 1870 | 1870           | 1870     | 1870        | 1870 | 1870 |  |
| Adj Flow Rate, veh/h      | 54   | 326      | 0    | 0     | 337      | 42    | 11   | 22             | 4        | 98          | 0    | 4    |  |
| Peak Hour Factor          | 0.92 | 0.92     | 0.92 | 0.92  | 0.92     | 0.92  | 0.92 | 0.92           | 0.92     | 0.92        | 0.92 | 0.92 |  |
| Percent Heavy Veh, %      | 2    | 2        | 0    | 0     | 2        | 2     | 2    | 2              | 2        | 2           | 2    | 2    |  |
| Cap, veh/h                | 511  | 981      | 0    | 0     | 560      | 471   | 482  | 294            | 53       | 463         | 0    | 300  |  |
| Arrive On Green           | 0.08 | 0.52     | 0.00 | 0.00  | 0.30     | 0.30  | 0.19 | 0.19           | 0.19     | 0.19        | 0.00 | 0.19 |  |
| Sat Flow, veh/h           | 1781 | 1870     | 0    | 0     | 1870     | 1572  | 1394 | 1537           | 279      | 1368        | 0    | 1569 |  |
| Grp Volume(v), veh/h      | 54   | 326      | 0    | 0     | 337      | 42    | 11   | 0              | 26       | 98          | 0    | 4    |  |
| Grp Sat Flow(s),veh/h/lr  |      | 1870     | 0    | 0     | 1870     | 1572  | 1394 | 0              | 1817     | 1368        | 0    | 1569 |  |
| Q Serve(g_s), s           | 0.6  | 3.3      | 0.0  | 0.0   | 5.1      | 0.6   | 0.2  | 0.0            | 0.4      | 2.1         | 0.0  | 0.1  |  |
| Cycle Q Clear(g_c), s     | 0.6  | 3.3      | 0.0  | 0.0   | 5.1      | 0.6   | 0.3  | 0.0            | 0.4      | 2.5         | 0.0  | 0.1  |  |
| Prop In Lane              | 1.00 |          | 0.00 | 0.00  |          | 1.00  | 1.00 |                | 0.15     | 1.00        |      | 1.00 |  |
| Lane Grp Cap(c), veh/h    |      | 981      | 0    | 0     | 560      | 471   | 482  | 0              | 348      | 463         | 0    | 300  |  |
| V/C Ratio(X)              | 0.11 | 0.33     | 0.00 | 0.00  | 0.60     | 0.09  | 0.02 | 0.00           | 0.07     | 0.21        | 0.00 | 0.01 |  |
| Avail Cap(c_a), veh/h     | 740  | 1809     | 0    | 0     | 2375     | 1996  | 973  | 0              | 989      | 946         | 0    | 854  |  |
| HCM Platoon Ratio         | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00           | 1.00     | 1.00        | 1.00 | 1.00 |  |
| Upstream Filter(I)        | 1.00 | 1.00     | 0.00 | 0.00  | 1.00     | 1.00  | 1.00 | 0.00           | 1.00     | 1.00        | 0.00 | 1.00 |  |
| Uniform Delay (d), s/vel  |      | 4.5      | 0.0  | 0.0   | 9.9      | 8.3   | 11.0 | 0.0            | 11.0     | 12.0        | 0.0  | 10.8 |  |
| Incr Delay (d2), s/veh    | 0.1  | 0.2      | 0.0  | 0.0   | 1.0      | 0.1   | 0.0  | 0.0            | 0.1      | 0.2         | 0.0  | 0.0  |  |
| Initial Q Delay(d3),s/veh |      | 0.0      | 0.0  | 0.0   | 0.0      | 0.0   | 0.0  | 0.0            | 0.0      | 0.0         | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),vel     |      | 0.7      | 0.0  | 0.0   | 1.7      | 0.2   | 0.1  | 0.0            | 0.1      | 0.5         | 0.0  | 0.0  |  |
| Unsig. Movement Delay     |      |          | 0.0  | 0.0   | 40.0     | 0.4   | 44.0 | 0.0            | 44.4     | 40.0        | 0.0  | 40.0 |  |
| LnGrp Delay(d),s/veh      | 6.2  | 4.7      | 0.0  | 0.0   | 10.9     | 8.4   | 11.0 | 0.0            | 11.1     | 12.2        | 0.0  | 10.9 |  |
| LnGrp LOS                 | A    | A        | A    | A     | В        | Α     | В    | Α              | В        | В           | A    | В    |  |
| Approach Vol, veh/h       |      | 380      |      |       | 379      |       |      | 37             |          |             | 102  |      |  |
| Approach Delay, s/veh     |      | 4.9      |      |       | 10.7     |       |      | 11.0           |          |             | 12.2 |      |  |
| Approach LOS              |      | Α        |      |       | В        |       |      | В              |          |             | В    |      |  |
| Timer - Assigned Phs      |      | 2        |      | 4     | 5        | 6     |      | 8              |          |             |      |      |  |
| Phs Duration (G+Y+Rc)     |      | 22.0     |      | 11.0  | 7.4      | 14.6  |      | 11.0           |          |             |      |      |  |
| Change Period (Y+Rc),     |      | * 4.7    |      | * 4.7 | * 4.7    | * 4.7 |      | * 4.7          |          |             |      |      |  |
| Max Green Setting (Gm     | , ,  | * 32     |      | * 18  | * 7      | * 42  |      | * 18           |          |             |      |      |  |
| Max Q Clear Time (g_c     |      | 5.3      |      | 4.5   | 2.6      | 7.1   |      | 2.4            |          |             |      |      |  |
| Green Ext Time (p_c), s   | 5    | 2.1      |      | 0.2   | 0.0      | 2.5   |      | 0.1            |          |             |      |      |  |
| Intersection Summary      |      |          |      |       |          |       |      |                |          |             |      |      |  |
| HCM 6th Ctrl Delay        |      |          | 8.4  |       |          |       |      |                |          |             |      |      |  |
| HCM 6th LOS               |      |          | Α    |       |          |       |      |                |          |             |      |      |  |
|                           |      |          |      |       |          |       |      |                |          |             |      |      |  |

User approved pedestrian interval to be less than phase max green.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|                                       | <b>*</b> | <b>→</b> | •    | •     | <b>←</b> | •     | •    | †     | <b>/</b> | <b>/</b> | ļ    | 4    |
|---------------------------------------|----------|----------|------|-------|----------|-------|------|-------|----------|----------|------|------|
| Movement E                            | EBL      | EBT      | EBR  | WBL   | WBT      | WBR   | NBL  | NBT   | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations                   |          | <b>†</b> | 7    |       | 1→       |       |      | ĵ.    |          |          | 4    |      |
| Traffic Volume (veh/h)                | 0        | 300      | 110  | 20    | 280      | 10    | 100  | 30    | 70       | 10       | 20   | 10   |
| Future Volume (veh/h)                 | 0        | 300      | 110  | 20    | 280      | 10    | 100  | 30    | 70       | 10       | 20   | 10   |
| Initial Q (Qb), veh                   | 0        | 0        | 0    | 0     | 0        | 0     | 0    | 0     | 0        | 0        | 0    | 0    |
| Ped-Bike Adj(A_pbT) 1                 | .00      |          | 0.99 | 1.00  |          | 0.99  | 0.99 |       | 1.00     | 1.00     |      | 0.99 |
|                                       | .00      | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00  | 1.00     | 1.00     | 1.00 | 1.00 |
| Work Zone On Approach                 |          | No       |      |       | No       |       |      | No    |          |          | No   |      |
| Adj Sat Flow, veh/h/ln                | 0        | 1870     | 1870 | 1870  | 1870     | 1870  | 1870 | 1870  | 1870     | 1870     | 1870 | 1870 |
| Adj Flow Rate, veh/h                  | 0        | 326      | 68   | 22    | 304      | 10    | 109  | 33    | 17       | 11       | 22   | 2    |
| Peak Hour Factor 0                    | ).92     | 0.92     | 0.92 | 0.92  | 0.92     | 0.92  | 0.92 | 0.92  | 0.92     | 0.92     | 0.92 | 0.92 |
| Percent Heavy Veh, %                  | 0        | 2        | 2    | 2     | 2        | 2     | 2    | 2     | 2        | 2        | 2    | 2    |
| Cap, veh/h                            | 0        | 577      | 485  | 462   | 895      | 29    | 528  | 262   | 135      | 206      | 303  | 22   |
|                                       | 00.0     | 0.31     | 0.31 | 0.05  | 0.50     | 0.50  | 0.22 | 0.22  | 0.22     | 0.22     | 0.22 | 0.22 |
| Sat Flow, veh/h                       | 0        | 1870     | 1572 | 1781  | 1800     | 59    | 1373 | 1163  | 599      | 293      | 1348 | 99   |
| Grp Volume(v), veh/h                  | 0        | 326      | 68   | 22    | 0        | 314   | 109  | 0     | 50       | 35       | 0    | 0    |
| Grp Sat Flow(s),veh/h/ln              | 0        | 1870     | 1572 | 1781  | 0        | 1859  | 1373 | 0     | 1762     | 1740     | 0    | 0    |
|                                       | 0.0      | 4.9      | 1.1  | 0.2   | 0.0      | 3.5   | 1.6  | 0.0   | 8.0      | 0.0      | 0.0  | 0.0  |
| Cycle Q Clear(g_c), s                 | 0.0      | 4.9      | 1.1  | 0.2   | 0.0      | 3.5   | 2.1  | 0.0   | 8.0      | 0.5      | 0.0  | 0.0  |
|                                       | 0.00     |          | 1.00 | 1.00  |          | 0.03  | 1.00 |       | 0.34     | 0.31     |      | 0.06 |
| Lane Grp Cap(c), veh/h                | 0        | 577      | 485  | 462   | 0        | 924   | 528  | 0     | 396      | 531      | 0    | 0    |
|                                       | 0.00     | 0.57     | 0.14 | 0.05  | 0.00     | 0.34  | 0.21 | 0.00  | 0.13     | 0.07     | 0.00 | 0.00 |
| Avail Cap(c_a), veh/h                 | 0        | 1328     | 1116 | 847   | 0        | 1320  | 1437 | 0     | 1564     | 649      | 0    | 0    |
|                                       | .00      | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00  | 1.00     | 1.00     | 1.00 | 1.00 |
|                                       | 0.00     | 1.00     | 1.00 | 1.00  | 0.00     | 1.00  | 1.00 | 0.00  | 1.00     | 1.00     | 0.00 | 0.00 |
| , , ,                                 | 0.0      | 9.8      | 8.5  | 6.5   | 0.0      | 5.1   | 10.9 | 0.0   | 10.5     | 10.3     | 0.0  | 0.0  |
|                                       | 0.0      | 0.9      | 0.1  | 0.0   | 0.0      | 0.2   | 0.2  | 0.0   | 0.1      | 0.1      | 0.0  | 0.0  |
| , , , , , , , , , , , , , , , , , , , | 0.0      | 0.0      | 0.0  | 0.0   | 0.0      | 0.0   | 0.0  | 0.0   | 0.0      | 0.0      | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/lr              |          | 1.7      | 0.3  | 0.1   | 0.0      | 0.8   | 0.6  | 0.0   | 0.3      | 0.2      | 0.0  | 0.0  |
| Unsig. Movement Delay, s              |          |          |      |       |          |       |      |       |          |          |      |      |
| 1 7 7                                 | 0.0      | 10.7     | 8.6  | 6.6   | 0.0      | 5.4   | 11.1 | 0.0   | 10.6     | 10.4     | 0.0  | 0.0  |
| LnGrp LOS                             | A        | В        | Α    | Α     | Α        | Α     | В    | Α     | В        | В        | Α    | Α    |
| Approach Vol, veh/h                   |          | 394      |      |       | 336      |       |      | 159   |          |          | 35   |      |
| Approach Delay, s/veh                 |          | 10.3     |      |       | 5.4      |       |      | 11.0  |          |          | 10.4 |      |
| Approach LOS                          |          | В        |      |       | Α        |       |      | В     |          |          | В    |      |
| Timer - Assigned Phs                  | _1       | 2        |      | 4     |          | 6     |      | 8     |          |          |      |      |
| Phs Duration (G+Y+Rc), s              | 6.4      | 15.1     |      | 12.3  |          | 21.5  |      | 12.3  |          |          |      |      |
| Change Period (Y+Rc), s*              |          | * 4.7    |      | * 4.7 |          | * 4.7 |      | * 4.7 |          |          |      |      |
| Max Green Setting (Gmax               |          | * 24     |      | * 10  |          | * 24  |      | * 30  |          |          |      |      |
| Max Q Clear Time (g_c+l1              |          | 6.9      |      | 2.5   |          | 5.5   |      | 4.1   |          |          |      |      |
| Green Ext Time (p_c), s               |          | 2.1      |      | 0.0   |          | 1.8   |      | 0.6   |          |          |      |      |
| Intersection Summary                  |          |          |      |       |          |       |      |       |          |          |      |      |
| HCM 6th Ctrl Delay                    |          |          | 8.7  |       |          |       |      |       |          |          |      |      |
| HCM 6th LOS                           |          |          | Α    |       |          |       |      |       |          |          |      |      |
| Notos                                 |          |          |      |       |          |       |      |       |          |          |      |      |

Notes

User approved pedestrian interval to be less than phase max green.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection           |          |       |          |         |          |      |     |
|------------------------|----------|-------|----------|---------|----------|------|-----|
| Int Delay, s/veh       | 3.6      |       |          |         |          |      |     |
| Movement               | EDI      | EDD   | NDI      | NDT     | CDT      | CDD  |     |
| Movement               | EBL      | EBR   | NBL      | NBT     | SBT      | SBR  |     |
| Lane Configurations    | <b>أ</b> | 7     | <u>ች</u> | 140     | <b>↑</b> | 700  |     |
| Traffic Vol, veh/h     | 130      | 30    | 30       | 140     | 650      | 300  |     |
| Future Vol, veh/h      | 130      | 30    | 30       | 140     | 650      | 300  |     |
| Conflicting Peds, #/hr | 0        | 0     | 0        | 0       | 0        | 0    |     |
| Sign Control           | Stop     | Stop  | Free     | Free    | Free     | Free |     |
| RT Channelized         | -        | Stop  | -        | None    | -        | None |     |
| Storage Length         | 0        | 90    | 70       | -       | -        | 100  |     |
| Veh in Median Storage  | e, # 0   | -     | -        | 0       | 0        | -    |     |
| Grade, %               | 0        | -     | -        | 0       | 0        | -    |     |
| Peak Hour Factor       | 92       | 92    | 92       | 92      | 92       | 92   |     |
| Heavy Vehicles, %      | 2        | 2     | 2        | 2       | 2        | 2    |     |
| Mvmt Flow              | 141      | 33    | 33       | 152     | 707      | 326  |     |
|                        |          | - 00  | - 00     | .02     | . 01     | ULU  |     |
|                        |          |       |          |         |          |      |     |
| Major/Minor            | Minor2   |       | Major1   | ا       | Major2   |      |     |
| Conflicting Flow All   | 925      | 707   | 1033     | 0       | -        | 0    |     |
| Stage 1                | 707      | -     | -        | -       | -        | -    |     |
| Stage 2                | 218      | -     | _        | -       | _        | -    |     |
| Critical Hdwy          | 6.42     | 6.22  | 4.12     | _       | _        | _    |     |
| Critical Hdwy Stg 1    | 5.42     | -     |          | _       | _        | _    |     |
| Critical Hdwy Stg 2    | 5.42     | _     | -        | _       | _        | _    |     |
| Follow-up Hdwy         |          | 3.318 | 2 212    |         | _        | _    |     |
|                        | 299      | 435   | 673      | -       |          | -    |     |
| Pot Cap-1 Maneuver     |          |       | 0/3      |         |          |      |     |
| Stage 1                | 489      | -     | -        | -       | -        | -    |     |
| Stage 2                | 818      | -     | -        | -       | -        | -    |     |
| Platoon blocked, %     |          |       |          | -       | -        | -    |     |
| Mov Cap-1 Maneuver     |          | 435   | 673      | -       | -        | -    |     |
| Mov Cap-2 Maneuver     | 284      | -     | -        | -       | -        | -    |     |
| Stage 1                | 465      | -     | -        | -       | -        | -    |     |
| Stage 2                | 818      | -     | -        | -       | -        | -    |     |
|                        |          |       |          |         |          |      |     |
| A                      |          |       | NE       |         | 0.0      |      |     |
| Approach               | EB       |       | NB       |         | SB       |      |     |
| HCM Control Delay, s   | 26.7     |       | 1.9      |         | 0        |      |     |
| HCM LOS                | D        |       |          |         |          |      |     |
|                        |          |       |          |         |          |      |     |
| M:                     | _1       | NDI   | NDT      | EDL 4 I | -DIO     | CDT  | CDD |
| Minor Lane/Major Mvn   | nt       | NBL   |          | EBLn1 I |          | SBT  | SBR |
| Capacity (veh/h)       |          | 673   | -        |         | 435      | -    | -   |
| HCM Lane V/C Ratio     |          | 0.048 | -        | 0.498   |          | -    | -   |
| HCM Control Delay (s)  | )        | 10.6  | -        | 29.6    | 13.9     | -    | -   |
| HCM Lane LOS           |          | В     | -        | D       | В        | -    | -   |
| HCM 95th %tile Q(veh   | 1)       | 0.2   | -        | 2.6     | 0.2      | -    | -   |
|                        | ,        |       |          |         |          |      |     |

|                              | ၨ    | <b>→</b> | •          | •    | <b>←</b> | •    | •     | <b>†</b> | /    | <b>&gt;</b> | ļ     | 4    |
|------------------------------|------|----------|------------|------|----------|------|-------|----------|------|-------------|-------|------|
| Movement                     | EBL  | EBT      | EBR        | WBL  | WBT      | WBR  | NBL   | NBT      | NBR  | SBL         | SBT   | SBR  |
| Lane Configurations          | ሻ    | <b>↑</b> | 7          | ሻ    | ₽        |      | ሻ     |          | 7    |             | 4     |      |
| Traffic Volume (veh/h)       | 60   | 270      | 160        | 180  | 480      | 20   | 570   | 140      | 120  | 30          | 220   | 200  |
| Future Volume (veh/h)        | 60   | 270      | 160        | 180  | 480      | 20   | 570   | 140      | 120  | 30          | 220   | 200  |
| Initial Q (Qb), veh          | 0    | 0        | 0          | 0    | 0        | 0    | 0     | 0        | 0    | 0           | 0     | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.99       | 1.00 |          | 0.99 | 1.00  |          | 0.99 | 1.00        |       | 0.99 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00       | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00        | 1.00  | 1.00 |
| Work Zone On Approach        |      | No       |            |      | No       |      |       | No       |      |             | No    |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870       | 1870 | 1870     | 1870 | 1870  | 1870     | 1870 | 1870        | 1870  | 1870 |
| Adj Flow Rate, veh/h         | 65   | 293      | 38         | 196  | 522      | 21   | 620   | 152      | 34   | 33          | 239   | 194  |
| Peak Hour Factor             | 0.92 | 0.92     | 0.92       | 0.92 | 0.92     | 0.92 | 0.92  | 0.92     | 0.92 | 0.92        | 0.92  | 0.92 |
| Percent Heavy Veh, %         | 2    | 2        | 2          | 2    | 2        | 2    | 2     | 2        | 2    | 2           | 2     | 2    |
| Cap, veh/h                   | 84   | 378      | 316        | 227  | 497      | 20   | 496   | 521      | 437  | 23          | 164   | 133  |
| Arrive On Green              | 0.05 | 0.20     | 0.20       | 0.13 | 0.28     | 0.28 | 0.28  | 0.28     | 0.28 | 0.19        | 0.19  | 0.19 |
| Sat Flow, veh/h              | 1781 | 1870     | 1565       | 1781 | 1785     | 72   | 1781  | 1870     | 1571 | 122         | 886   | 719  |
| Grp Volume(v), veh/h         | 65   | 293      | 38         | 196  | 0        | 543  | 620   | 152      | 34   | 466         | 0     | 0    |
| Grp Sat Flow(s), veh/h/ln    | 1781 | 1870     | 1565       | 1781 | 0        | 1857 | 1781  | 1870     | 1571 | 1728        | 0     | 0    |
| Q Serve(g_s), s              | 3.9  | 16.0     | 2.1        | 11.6 | 0.0      | 30.0 | 30.0  | 6.9      | 1.7  | 20.0        | 0.0   | 0.0  |
| Cycle Q Clear(g_c), s        | 3.9  | 16.0     | 2.1        | 11.6 | 0.0      | 30.0 | 30.0  | 6.9      | 1.7  | 20.0        | 0.0   | 0.0  |
| Prop In Lane                 | 1.00 | 10.0     | 1.00       | 1.00 | 0.0      | 0.04 | 1.00  | 0.5      | 1.00 | 0.07        | 0.0   | 0.42 |
| Lane Grp Cap(c), veh/h       | 84   | 378      | 316        | 227  | 0        | 517  | 496   | 521      | 437  | 321         | 0     | 0.42 |
| V/C Ratio(X)                 | 0.77 | 0.78     | 0.12       | 0.86 | 0.00     | 1.05 | 1.25  | 0.29     | 0.08 | 1.45        | 0.00  | 0.00 |
| Avail Cap(c_a), veh/h        | 331  | 521      | 436        | 331  | 0.00     | 517  | 496   | 521      | 437  | 321         | 0.00  | 0.00 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00       | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00        | 1.00  | 1.00 |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00       | 1.00 | 0.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00        | 0.00  | 0.00 |
| Uniform Delay (d), s/veh     | 50.8 | 40.7     | 35.2       | 46.1 | 0.00     | 38.9 | 38.9  | 30.6     | 28.7 | 43.9        | 0.00  | 0.00 |
|                              | 5.6  | 3.1      | 0.1        | 10.8 | 0.0      | 53.6 | 128.6 | 0.1      | 0.0  | 220.7       | 0.0   | 0.0  |
| Incr Delay (d2), s/veh       | 0.0  | 0.0      | 0.0        | 0.0  | 0.0      | 0.0  | 0.0   | 0.0      | 0.0  | 0.0         | 0.0   | 0.0  |
| Initial Q Delay(d3),s/veh    | 1.8  | 7.4      | 0.0        | 5.7  | 0.0      |      |       | 3.0      |      | 28.0        | 0.0   |      |
| %ile BackOfQ(50%),veh/ln     |      | 7.4      | 0.0        | 5.1  | 0.0      | 20.8 | 30.1  | 3.0      | 0.6  | 20.0        | 0.0   | 0.0  |
| Unsig. Movement Delay, s/veh |      | 40.0     | 25.0       | FC 0 | 0.0      | 00.5 | 407 F | 20.7     | 00.7 | 004.0       | 0.0   | 0.0  |
| LnGrp Delay(d),s/veh         | 56.3 | 43.8     | 35.2       | 56.9 | 0.0      | 92.5 | 167.5 | 30.7     | 28.7 | 264.6       | 0.0   | 0.0  |
| LnGrp LOS                    | E    | D        | D          | E    | A 700    | F    | F     | С        | С    | F           | A     | A    |
| Approach Vol, veh/h          |      | 396      |            |      | 739      |      |       | 806      |      |             | 466   |      |
| Approach Delay, s/veh        |      | 45.1     |            |      | 83.0     |      |       | 135.9    |      |             | 264.6 |      |
| Approach LOS                 |      | D        |            |      | F        |      |       | F        |      |             | F     |      |
| Timer - Assigned Phs         | 1    | 2        |            | 4    | 5        | 6    |       | 8        |      |             |       |      |
| Phs Duration (G+Y+Rc), s     | 19.1 | 27.8     |            | 25.1 | 10.9     | 36.0 |       | 35.8     |      |             |       |      |
| Change Period (Y+Rc), s      | 5.4  | 6.0      |            | 5.1  | 5.8      | 6.0  |       | 5.8      |      |             |       |      |
| Max Green Setting (Gmax), s  | 20.0 | 30.0     |            | 20.0 | 20.0     | 30.0 |       | 30.0     |      |             |       |      |
| Max Q Clear Time (g_c+l1), s | 13.6 | 18.0     |            | 22.0 | 5.9      | 32.0 |       | 32.0     |      |             |       |      |
| Green Ext Time (p_c), s      | 0.1  | 0.8      |            | 0.0  | 0.0      | 0.0  |       | 0.0      |      |             |       |      |
| Intersection Summary         |      |          |            |      |          |      |       |          |      |             |       |      |
| HCM 6th Ctrl Delay           |      |          | 129.6      |      |          |      |       |          |      |             |       |      |
| HCM 6th LOS                  |      |          | 129.0<br>F |      |          |      |       |          |      |             |       |      |
|                              |      |          | '          |      |          |      |       |          |      |             |       |      |
| Notes                        |      |          |            |      |          |      |       |          |      |             |       |      |

User approved pedestrian interval to be less than phase max green.

|                           | ۶     | <b>→</b>  | •         | •         | <b>←</b> | •     | •    | <b>†</b>  | /        | <b>&gt;</b> | ţ       | ✓        |  |
|---------------------------|-------|-----------|-----------|-----------|----------|-------|------|-----------|----------|-------------|---------|----------|--|
| Movement                  | EBL   | EBT       | EBR       | WBL       | WBT      | WBR   | NBL  | NBT       | NBR      | SBL         | SBT     | SBR      |  |
| Lane Configurations       | ች     | <b></b>   | 1         | ች         | <b>1</b> |       | ች    | <b></b>   | 7        | ች           | <b></b> | 7        |  |
| Traffic Volume (veh/h)    | 30    | 120       | 280       | 30        | 240      | 30    | 280  | 150       | 10       | 30          | 660     | 60       |  |
| Future Volume (veh/h)     | 30    | 120       | 280       | 30        | 240      | 30    | 280  | 150       | 10       | 30          | 660     | 60       |  |
| Initial Q (Qb), veh       | 0     | 0         | 0         | 0         | 0        | 0     | 0    | 0         | 0        | 0           | 0       | 0        |  |
| Ped-Bike Adj(A_pbT)       | 1.00  |           | 0.99      | 1.00      |          | 0.99  | 1.00 |           | 1.00     | 1.00        |         | 0.99     |  |
| Parking Bus, Adj          | 1.00  | 1.00      | 1.00      | 1.00      | 1.00     | 1.00  | 1.00 | 1.00      | 1.00     | 1.00        | 1.00    | 1.00     |  |
| Work Zone On Approac      | ch    | No        |           |           | No       |       |      | No        |          |             | No      |          |  |
| Adj Sat Flow, veh/h/ln    | 1870  | 1870      | 1870      | 1870      | 1870     | 1870  | 1870 | 1870      | 1870     | 1870        | 1870    | 1870     |  |
| Adj Flow Rate, veh/h      | 33    | 130       | 57        | 33        | 261      | 28    | 304  | 163       | 6        | 33          | 717     | 23       |  |
| Peak Hour Factor          | 0.92  | 0.92      | 0.92      | 0.92      | 0.92     | 0.92  | 0.92 | 0.92      | 0.92     | 0.92        | 0.92    | 0.92     |  |
| Percent Heavy Veh, %      | 2     | 2         | 2         | 2         | 2        | 2     | 2    | 2         | 2        | 2           | 2       | 2        |  |
| Cap, veh/h                | 45    | 369       | 309       | 45        | 312      | 33    | 339  | 965       | 813      | 45          | 656     | 552      |  |
| Arrive On Green           | 0.03  | 0.20      | 0.20      | 0.03      | 0.19     | 0.19  | 0.19 | 0.52      | 0.52     | 0.03        | 0.35    | 0.35     |  |
| Sat Flow, veh/h           | 1781  | 1870      | 1565      | 1781      | 1659     | 178   | 1781 | 1870      | 1577     | 1781        | 1870    | 1574     |  |
| Grp Volume(v), veh/h      | 33    | 130       | 57        | 33        | 0        | 289   | 304  | 163       | 6        | 33          | 717     | 23       |  |
| Grp Sat Flow(s),veh/h/li  |       | 1870      | 1565      | 1781      | 0        | 1837  | 1781 | 1870      | 1577     | 1781        | 1870    | 1574     |  |
| Q Serve(g_s), s           | 1.6   | 5.1       | 2.6       | 1.6       | 0.0      | 13.0  | 14.3 | 4.0       | 0.2      | 1.6         | 30.0    | 0.8      |  |
| Cycle Q Clear(g_c), s     | 1.6   | 5.1       | 2.6       | 1.6       | 0.0      | 13.0  | 14.3 | 4.0       | 0.2      | 1.6         | 30.0    | 0.8      |  |
| Prop In Lane              | 1.00  | V.,       | 1.00      | 1.00      | 0.0      | 0.10  | 1.00 | 1.0       | 1.00     | 1.00        | 00.0    | 1.00     |  |
| Lane Grp Cap(c), veh/h    |       | 369       | 309       | 45        | 0        | 345   | 339  | 965       | 813      | 45          | 656     | 552      |  |
| V/C Ratio(X)              | 0.73  | 0.35      | 0.18      | 0.73      | 0.00     | 0.84  | 0.90 | 0.17      | 0.01     | 0.73        | 1.09    | 0.04     |  |
| Avail Cap(c_a), veh/h     | 250   | 874       | 732       | 250       | 0.00     | 558   | 416  | 965       | 813      | 208         | 656     | 552      |  |
| HCM Platoon Ratio         | 1.00  | 1.00      | 1.00      | 1.00      | 1.00     | 1.00  | 1.00 | 1.00      | 1.00     | 1.00        | 1.00    | 1.00     |  |
| Upstream Filter(I)        | 1.00  | 1.00      | 1.00      | 1.00      | 0.00     | 1.00  | 1.00 | 1.00      | 1.00     | 1.00        | 1.00    | 1.00     |  |
| Uniform Delay (d), s/vel  |       | 29.6      | 28.6      | 41.4      | 0.0      | 33.5  | 33.8 | 11.0      | 10.1     | 41.4        | 27.8    | 18.3     |  |
| Incr Delay (d2), s/veh    | 8.0   | 0.2       | 0.1       | 8.1       | 0.0      | 2.9   | 16.9 | 0.0       | 0.0      | 8.0         | 63.4    | 0.0      |  |
| Initial Q Delay(d3),s/vel |       | 0.0       | 0.0       | 0.0       | 0.0      | 0.0   | 0.0  | 0.0       | 0.0      | 0.0         | 0.0     | 0.0      |  |
| %ile BackOfQ(50%),vel     |       | 2.2       | 1.0       | 0.8       | 0.0      | 6.0   | 7.5  | 1.5       | 0.1      | 0.8         | 24.0    | 0.3      |  |
| Unsig. Movement Delay     |       |           | 1.0       | 0.0       | 0.0      | 0.0   | 1.0  | 1.0       | 0.1      | 0.0         | 21.0    | 0.0      |  |
| LnGrp Delay(d),s/veh      | 49.4  | 29.8      | 28.7      | 49.5      | 0.0      | 36.4  | 50.7 | 11.0      | 10.1     | 49.4        | 91.2    | 18.3     |  |
| LnGrp LOS                 | TJ.T  | C         | 20.7<br>C | 73.5<br>D | Α        | D     | D    | В         | В        | D           | F       | В        |  |
| Approach Vol, veh/h       |       | 220       |           |           | 322      |       |      | 473       | <u> </u> |             | 773     | <u> </u> |  |
| Approach Delay, s/veh     |       | 32.5      |           |           | 37.7     |       |      | 36.5      |          |             | 87.2    |          |  |
| Approach LOS              |       | 32.3<br>C |           |           | D        |       |      | 50.5<br>D |          |             | 67.Z    |          |  |
|                           |       |           |           |           |          |       | _    |           |          |             | '       |          |  |
| Timer - Assigned Phs      | 1     | 2         | 3         | 4         | 5        | 6     | 7    | 8         |          |             |         |          |  |
| Phs Duration (G+Y+Rc)     |       | 22.3      | 21.4      | 35.1      | 7.6      | 21.5  | 7.3  | 49.2      |          |             |         |          |  |
| Change Period (Y+Rc),     |       | 5.4       | 5.1       | 5.1       | 5.4      | * 5.4 | 5.1  | 5.1       |          |             |         |          |  |
| Max Green Setting (Gm     | , .   | 40.0      | 20.0      | 30.0      | 12.0     | * 26  | 10.0 | 30.0      |          |             |         |          |  |
| Max Q Clear Time (g_c     |       | 7.1       | 16.3      | 32.0      | 3.6      | 15.0  | 3.6  | 6.0       |          |             |         |          |  |
| Green Ext Time (p_c), s   | s 0.0 | 0.2       | 0.1       | 0.0       | 0.0      | 0.5   | 0.0  | 0.3       |          |             |         |          |  |
| Intersection Summary      |       |           |           |           |          |       |      |           |          |             |         |          |  |
| HCM 6th Ctrl Delay        |       |           | 58.2      |           |          |       |      |           |          |             |         |          |  |
| HCM 6th LOS               |       |           | Е         |           |          |       |      |           |          |             |         |          |  |
|                           |       |           |           |           |          |       |      |           |          |             |         |          |  |

User approved pedestrian interval to be less than phase max green.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection           |        |       |          |         |        |          |          |           |         |        |         |           |              |
|------------------------|--------|-------|----------|---------|--------|----------|----------|-----------|---------|--------|---------|-----------|--------------|
| Int Delay, s/veh       | 41.5   |       |          |         |        |          |          |           |         |        |         |           |              |
| Movement               | EBL    | EBT   | EBR      | WBL     | WBT    | WBR      | NBL      | NBT       | NBR     | SBL    | SBT     | SBR       |              |
| Lane Configurations    |        | 4     | LDIX     | *****   | 4      | WDIX     | ሻ        | <u> </u>  | 7       | ODL    | 4       | OBIT      |              |
| Traffic Vol, veh/h     | 40     | 10    | 20       | 140     | 10     | 10       | 10       | 330       | 80      | 20     | 850     | 20        |              |
| Future Vol, veh/h      | 40     | 10    | 20       | 140     | 10     | 10       | 10       | 330       | 80      | 20     | 850     | 20        |              |
| Conflicting Peds, #/hr | 0      | 0     | 0        | 0       | 0      | 0        | 0        | 0         | 0       | 0      | 0       | 0         |              |
| Sign Control           | Stop   | Stop  | Stop     | Stop    | Stop   | Stop     | Free     | Free      | Free    | Free   | Free    | Free      |              |
| RT Channelized         | -      | -     | None     | -       | -      | None     | -        | -         | None    | -      | -       | None      |              |
| Storage Length         | -      | -     | -        | _       | -      | -        | 50       | _         | 270     | _      | _       | -         |              |
| Veh in Median Storage  | e,# -  | 0     | -        | -       | 0      | -        | -        | 0         | -       | -      | 0       | -         |              |
| Grade, %               | _      | 0     | -        | -       | 0      | -        | -        | 0         | -       | -      | 0       | -         |              |
| Peak Hour Factor       | 92     | 92    | 92       | 92      | 92     | 92       | 92       | 92        | 92      | 92     | 92      | 92        |              |
| Heavy Vehicles, %      | 2      | 2     | 2        | 2       | 2      | 2        | 2        | 2         | 2       | 2      | 2       | 2         |              |
| Mvmt Flow              | 43     | 11    | 22       | 152     | 11     | 11       | 11       | 359       | 87      | 22     | 924     | 22        |              |
|                        |        |       |          |         |        |          |          |           |         |        |         |           |              |
| Major/Minor I          | Minor2 |       |          | Minor1  |        |          | Major1   |           | 1       | Major2 |         |           |              |
| Conflicting Flow All   | 1415   | 1447  | 935      | 1377    | 1371   | 359      | 946      | 0         | 0       | 446    | 0       | 0         |              |
| Stage 1                | 979    | 979   | -        | 381     | 381    | -        | -        | -         | -       | -      | -       | -         |              |
| Stage 2                | 436    | 468   | -        | 996     | 990    | -        | -        | -         | -       | -      | -       | -         |              |
| Critical Hdwy          | 7.12   | 6.52  | 6.22     | 7.12    | 6.52   | 6.22     | 4.12     | -         | -       | 4.12   | -       | -         |              |
| Critical Hdwy Stg 1    | 6.12   | 5.52  | -        | 6.12    | 5.52   | -        | -        | -         | -       | -      | -       | -         |              |
| Critical Hdwy Stg 2    | 6.12   | 5.52  | -        | 6.12    | 5.52   | -        | -        | -         | -       | -      | -       | -         |              |
| Follow-up Hdwy         | 3.518  | 4.018 | 3.318    | 3.518   | 4.018  | 3.318    | 2.218    | -         | -       | 2.218  | -       | -         |              |
| Pot Cap-1 Maneuver     | 115    | 131   | 322      | ~ 122   | 146    | 685      | 725      | -         | -       | 1114   | -       | -         |              |
| Stage 1                | 301    | 328   | -        | 641     | 613    | -        | -        | -         | -       | -      | -       | -         |              |
| Stage 2                | 599    | 561   | -        | 294     | 324    | -        | -        | -         | -       | -      | -       | -         |              |
| Platoon blocked, %     |        |       |          |         |        |          |          | -         | -       |        | -       | -         |              |
| Mov Cap-1 Maneuver     | 102    | 124   |          | ~ 102   | 138    | 685      | 725      | -         | -       | 1114   | -       | -         |              |
| Mov Cap-2 Maneuver     | 102    | 124   | -        | ~ 102   | 138    | -        | -        | -         | -       | -      | -       | -         |              |
| Stage 1                | 296    | 314   | -        | 631     | 604    | -        | -        | -         | -       | -      | -       | -         |              |
| Stage 2                | 570    | 553   | -        | 254     | 310    | -        | -        | -         | -       | -      | -       | -         |              |
|                        |        |       |          |         |        |          |          |           |         |        |         |           |              |
| Approach               | EB     |       |          | WB      |        |          | NB       |           |         | SB     |         |           |              |
| HCM Control Delay, s   | 65     |       | \$       | 369.4   |        |          | 0.2      |           |         | 0.2    |         |           |              |
| HCM LOS                | F      |       |          | F       |        |          |          |           |         |        |         |           |              |
|                        |        |       |          |         |        |          |          |           |         |        |         |           |              |
| Minor Lane/Major Mvm   | nt     | NBL   | NBT      | NBR     | EBLn1V | VBLn1    | SBL      | SBT       | SBR     |        |         |           |              |
| Capacity (veh/h)       |        | 725   | -        | -       | 131    | 110      | 1114     | -         | -       |        |         |           |              |
| HCM Lane V/C Ratio     |        | 0.015 | -        | _       | 0.581  |          | 0.02     | _         | -       |        |         |           |              |
| HCM Control Delay (s)  |        | 10    | -        | -       |        | 369.4    | 8.3      | 0         | -       |        |         |           |              |
| HCM Lane LOS           |        | В     | -        | -       | F      | F        | Α        | A         | -       |        |         |           |              |
| HCM 95th %tile Q(veh)  | )      | 0     | -        | -       | 2.9    | 13       | 0.1      | -         | -       |        |         |           |              |
| Notes                  |        |       |          |         |        |          |          |           |         |        |         |           |              |
| ~: Volume exceeds cap  | nacity | \$ D  | alay ay  | ceeds 3 | NΩe    | +· Com   | putation | Not D     | efined  | *· \ \ | majory  | olume i   | in platoon   |
| . Volume exceeds ca    | pacity | φ. D  | siay ext | Leeus 3 | 005    | ₹. CUIII | pulation | ו ואטנ טו | eiiiieu | . All  | major \ | oluffie i | iii piatuuii |

|                              | ۶    | <b>→</b> | *    | •    | <b>←</b> | •    | 1           | <b>†</b> | ~    | <b>/</b> | Ţ        | √    |
|------------------------------|------|----------|------|------|----------|------|-------------|----------|------|----------|----------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL         | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations          |      | 4        |      |      | र्स      | 7    | ሻ           | <b>↑</b> | 7    | ሻ        | <b>↑</b> | 7    |
| Traffic Volume (veh/h)       | 20   | 10       | 20   | 150  | 10       | 30   | 10          | 350      | 120  | 150      | 790      | 10   |
| Future Volume (veh/h)        | 20   | 10       | 20   | 150  | 10       | 30   | 10          | 350      | 120  | 150      | 790      | 10   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0           | 0        | 0    | 0        | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 0.99 |          | 0.98 | 0.99 |          | 0.98 | 1.00        |          | 0.99 | 1.00     |          | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |             | No       |      |          | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870        | 1870     | 1870 | 1870     | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 22   | 11       | 5    | 163  | 11       | 7    | 11          | 380      | 53   | 163      | 859      | 6    |
| Peak Hour Factor             | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92        | 0.92     | 0.92 | 0.92     | 0.92     | 0.92 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2           | 2        | 2    | 2        | 2        | 2    |
| Cap, veh/h                   | 170  | 71       | 18   | 376  | 15       | 248  | 20          | 754      | 635  | 209      | 951      | 802  |
| Arrive On Green              | 0.16 | 0.16     | 0.16 | 0.16 | 0.16     | 0.16 | 0.01        | 0.40     | 0.40 | 0.12     | 0.51     | 0.51 |
| Sat Flow, veh/h              | 293  | 447      | 112  | 1411 | 95       | 1560 | 1781        | 1870     | 1575 | 1781     | 1870     | 1577 |
| Grp Volume(v), veh/h         | 38   | 0        | 0    | 174  | 0        | 7    | 11          | 380      | 53   | 163      | 859      | 6    |
| Grp Sat Flow(s),veh/h/ln     | 853  | 0        | 0    | 1506 | 0        | 1560 | 1781        | 1870     | 1575 | 1781     | 1870     | 1577 |
| Q Serve(g_s), s              | 0.1  | 0.0      | 0.0  | 0.0  | 0.0      | 0.2  | 0.3         | 7.0      | 1.0  | 4.1      | 19.3     | 0.1  |
| Cycle Q Clear(g_c), s        | 5.0  | 0.0      | 0.0  | 4.9  | 0.0      | 0.2  | 0.3         | 7.0      | 1.0  | 4.1      | 19.3     | 0.1  |
| Prop In Lane                 | 0.58 |          | 0.13 | 0.94 |          | 1.00 | 1.00        |          | 1.00 | 1.00     |          | 1.00 |
| Lane Grp Cap(c), veh/h       | 259  | 0        | 0    | 391  | 0        | 248  | 20          | 754      | 635  | 209      | 951      | 802  |
| V/C Ratio(X)                 | 0.15 | 0.00     | 0.00 | 0.45 | 0.00     | 0.03 | 0.54        | 0.50     | 0.08 | 0.78     | 0.90     | 0.01 |
| Avail Cap(c_a), veh/h        | 412  | 0        | 0    | 929  | 0        | 846  | 463         | 1216     | 1024 | 463      | 1216     | 1026 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 1.00 | 1.00        | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 |
| Uniform Delay (d), s/veh     | 16.8 | 0.0      | 0.0  | 18.4 | 0.0      | 16.4 | 22.7        | 10.3     | 8.5  | 19.8     | 10.3     | 5.6  |
| Incr Delay (d2), s/veh       | 0.1  | 0.0      | 0.0  | 0.3  | 0.0      | 0.0  | 8.1         | 0.2      | 0.0  | 2.4      | 7.0      | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0         | 0.0      | 0.0  | 0.0      | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.3  | 0.0      | 0.0  | 1.6  | 0.0      | 0.1  | 0.2         | 2.2      | 0.3  | 1.6      | 6.9      | 0.0  |
| Unsig. Movement Delay, s/veh | l    |          |      |      |          |      |             |          |      |          |          |      |
| LnGrp Delay(d),s/veh         | 16.9 | 0.0      | 0.0  | 18.7 | 0.0      | 16.4 | 30.8        | 10.5     | 8.5  | 22.2     | 17.3     | 5.6  |
| LnGrp LOS                    | В    | Α        | Α    | В    | Α        | В    | С           | В        | Α    | С        | В        | Α    |
| Approach Vol, veh/h          |      | 38       |      |      | 181      |      |             | 444      |      |          | 1028     |      |
| Approach Delay, s/veh        |      | 16.9     |      |      | 18.6     |      |             | 10.8     |      |          | 18.0     |      |
| Approach LOS                 |      | В        |      |      | В        |      |             | В        |      |          | В        |      |
| Timer - Assigned Phs         |      | 2        | 3    | 4    |          | 6    | 7           | 8        |      |          |          |      |
| Phs Duration (G+Y+Rc), s     |      | 11.9     | 5.6  | 28.6 |          | 11.9 | 10.5        | 23.7     |      |          |          |      |
| Change Period (Y+Rc), s      |      | 4.6      | 5.1  | 5.1  |          | 4.6  | 5.1         | 5.1      |      |          |          |      |
| Max Green Setting (Gmax), s  |      | 12.0     | 12.0 | 30.0 |          | 25.0 | 12.0        | 30.0     |      |          |          |      |
| Max Q Clear Time (g_c+l1), s |      | 7.0      | 2.3  | 21.3 |          | 6.9  | 6.1         | 9.0      |      |          |          |      |
| Green Ext Time (p_c), s      |      | 0.0      | 0.0  | 2.2  |          | 0.6  | 0.1         | 1.1      |      |          |          |      |
| Intersection Summary         |      | 2.0      | J.,  |      |          | J.,  | <b>J</b> ., |          |      |          |          |      |
| HCM 6th Ctrl Delay           |      |          | 16.1 |      |          |      |             |          |      |          |          |      |
| HCM 6th LOS                  |      |          | 10.1 |      |          |      |             |          |      |          |          |      |
| Notes                        |      |          |      |      |          |      |             |          |      |          |          |      |

User approved pedestrian interval to be less than phase max green.

| Intersection   Int Delay, s/veh   9.7     Movement   EBL   EBT   WBT   WBR   SBL   SBR   Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                    |          |      |        |     |        |          |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------|------|--------|-----|--------|----------|-------|
| Int Delay, s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Intersection         |          |      |        |     |        |          |       |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 9.7      |      |        |     |        |          |       |
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |          | ED.T | MET    | ME  | 051    | 000      |       |
| Traffic Vol, veh/h 60 220 140 130 300 20  Future Vol, veh/h 60 220 140 130 300 20  Conflicting Peds, #/hr 0 0 0 0 0 0 0  Sign Control Free Free Free Free Stop Stop  RT Channelized - None - Yield - None  Storage Length 150 90 0  Veh in Median Storage, # - 0 0 0 - 0 -  Grade, % - 0 0 0 - 0 -  Peak Hour Factor 92 92 92 92 92 92  Heavy Vehicles, % 2 2 2 2 2 2 2  Mwnt Flow 65 239 152 141 326 22   Major/Minor Major1 Major2 Minor2  Conflicting Flow All 152 0 - 0 521 152  Stage 1 152 -  Stage 2 369 -  Critical Hdwy Stg 1 6.42 6.22  Critical Hdwy Stg 2 5.42 -  Critical Hdwy Stg 2 5.42 -  Follow-up Hdwy 2.218 5.42 -  Follow-up Hdwy 2.218 516 894  Stage 1 516 894  Stage 1 516 894  Stage 1 516 894  Mov Cap-1 Maneuver 1429 516 894  Stage 1 6876 -  Stage 2 699 -  Platoon blocked, % 699  Platoon blocked, % 689  Mov Cap-2 Maneuver 1429 489 894  Mov Cap-2 Maneuver 1429 560 699 560 699 - 600 600 600 600 600 600 600 600 600 6                                                                                                                                                                                                                                                                                                                                                                                       |                      | EBL      |      |        |     |        |          |       |
| Future Vol, veh/h Conflicting Peds, #/hr O O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |          |      |        |     |        |          |       |
| Conflicting Peds, #/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |          |      |        |     |        |          |       |
| Sign Control         Free Row RT Channelized         Free RT Channelized         Free RT Channelized         None RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                    |          |      |        |     |        |          |       |
| RT Channelized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |          |      |        |     |        |          |       |
| Storage Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | Free     |      | Free   |     | Stop   |          |       |
| Veh in Median Storage, #         -         0         0         -         0         -           Grade, %         -         0         0         -         0         -           Peak Hour Factor         92         92         92         92         92         92           Heavy Vehicles, %         2         2         2         2         2         2         2         2           Mvmt Flow         65         239         152         141         326         22           Mymt Flow         65         239         152         141         326         22           Mortical How         65         239         152         141         326         22           Minor         Minor         Minor         Minor         Minor         152         -           Stage 1         -         -         -         152         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RT Channelized       | -        | None | -      |     |        | None     |       |
| Grade, %         -         0         0         -         0         -           Peak Hour Factor         92         92         92         92         92         92           Heavy Vehicles, %         2         2         2         2         2         2         2         2           Mvmt Flow         65         239         152         141         326         22           Minor Major I         Major Minor         Minor Major I         Minor Major Minor         Minor Major Minor         Minor Major Minor         Minor Major Minor Min                                                                                                                                                                                                                                                                                                                                                | Storage Length       | -        | -    | -      | 150 | 90     | 0        |       |
| Grade, %         -         0         0         -         0         -           Peak Hour Factor         92         92         92         92         92         92           Heavy Vehicles, %         2         2         2         2         2         2         2         2           Mvmt Flow         65         239         152         141         326         22           Major/Minor         Major1         Major2         Minor2           Conflicting Flow All         152         0         -         0         521         152           Stage 1         -         -         -         152         -         -         152         -         -         -         152         -         -         -         152         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <td< td=""><td></td><td>e,# -</td><td>0</td><td>0</td><td>-</td><td>0</td><td>-</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | e,# -    | 0    | 0      | -   | 0      | -        |       |
| Peak Hour Factor   92   92   92   92   92   92   92   9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | -        | 0    | 0      | -   | 0      | -        |       |
| Major/Minor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | 92       | 92   | 92     | 92  | 92     | 92       |       |
| Mvmt Flow         65         239         152         141         326         22           Major/Minor         Major1         Major2         Minor2           Conflicting Flow All         152         0         -         0         521         152           Stage 1         -         -         -         152         -         Stage 2         -         -         369         -           Critical Hdwy         4.12         -         -         6.42         6.22         -         -         5.42         -         -         -         6.42         6.22         -         -         5.42         -         -         -         -         6.42         6.22         -         -         -         5.42         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |          |      |        |     |        |          |       |
| Major/Minor         Major1         Major2         Minor2           Conflicting Flow All         152         0         -         0         521         152           Stage 1         -         -         -         152         -         -         369         -           Critical Hdwy         4.12         -         -         6.42         6.22         -         -         5.42         -         -         -         5.42         -         -         -         5.42         -         -         -         5.42         -         -         -         5.42         -         -         -         5.42         -         -         -         5.42         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |          |      |        |     |        |          |       |
| Stage 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |          |      | .02    |     | 323    |          |       |
| Conflicting Flow All         152         0         -         0         521         152           Stage 1         -         -         -         -         152         -           Stage 2         -         -         -         -         369         -           Critical Hdwy         4.12         -         -         6.42         6.22           Critical Hdwy Stg 1         -         -         -         5.42         -           Critical Hdwy Stg 2         -         -         -         5.42         -           Follow-up Hdwy         2.218         -         -         5.16         894           Stage 1         -         -         -         699         -           Platoon blocked, %         -         -         -         -         489         894           Mov Cap-2 Maneuver         -         -         -         -         699         - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |          |      |        |     |        |          |       |
| Stage 1       -       -       -       152       -         Stage 2       -       -       -       369       -         Critical Hdwy       4.12       -       -       6.42       6.22         Critical Hdwy Stg 1       -       -       -       5.42       -         Critical Hdwy Stg 2       -       -       -       5.42       -         Follow-up Hdwy       2.218       -       -       5.699       -         Stage 1       -       -       -       699       -         Stage 2       -       -       -       489       894         Mov Cap-2 Maneuver       -       -       -       699       -         Stage 1       -       -       -       830       -         Stage 2       -       -       -       699       - </td <td>Major/Minor</td> <td></td> <td>N</td> <td>Major2</td> <td></td> <td>Minor2</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Major/Minor          |          | N    | Major2 |     | Minor2 |          |       |
| Stage 2       -       -       -       369       -         Critical Hdwy       4.12       -       -       6.42       6.22         Critical Hdwy Stg 1       -       -       -       5.42       -         Critical Hdwy Stg 2       -       -       -       5.42       -         Follow-up Hdwy       2.218       -       -       -       5.42       -         Follow-up Hdwy       2.218       -       -       -       5.42       -         Follow-up Hdwy       2.218       -       -       -       5.16       894         Stage 1       -       -       -       876       -       -       -       894         Stage 2       -       -       -       -       -       489       894         Mov Cap-1 Maneuver       1429       -       -       489       894         Mov Cap-2 Maneuver       -       -       -       830       -         Stage 1       -       -       -       699       -         Approach       EB       WB       SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conflicting Flow All | 152      | 0    | -      | 0   | 521    | 152      |       |
| Critical Hdwy       4.12       -       -       6.42       6.22         Critical Hdwy Stg 1       -       -       -       5.42       -         Critical Hdwy Stg 2       -       -       -       5.42       -         Follow-up Hdwy       2.218       -       -       3.518       3.318         Pot Cap-1 Maneuver       1429       -       -       516       894         Stage 1       -       -       -       699       -         Platoon blocked, %       -       -       -       -         Mov Cap-1 Maneuver       1429       -       -       489       894         Mov Cap-2 Maneuver       -       -       -       489       -       -       -       699       -         Stage 1       -       -       -       -       830       -       -       -       699       -         Approach       EB       WB       SB         HCM Control Delay, s       1.6       0       24.9       -       -       699       -         Approach       EB       WB       SB       -       -       -       699       -         Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | -        | -    | -      | -   | 152    | -        |       |
| Critical Hdwy Stg 1 6.42 6.22  Critical Hdwy Stg 1 5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42 5.42 7.5.518 3.318  Pot Cap-1 Maneuver 1429 516 894  Stage 1 876 - 876 - 876 - 699 7.518 894  Mov Cap-1 Maneuver 1429 699 7.518 894  Mov Cap-1 Maneuver 1429 489 894  Mov Cap-2 Maneuver 1429 489 894  Mov Cap-2 Maneuver 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 830 - 8 |                      | -        | -    | -      | -   | 369    | -        |       |
| Critical Hdwy Stg 1 5.42 - Critical Hdwy Stg 2 5.42 - Follow-up Hdwy 2.218 - Follow-                                                                                                                 |                      | 4.12     | -    | -      | -   | 6.42   | 6.22     |       |
| Critical Hdwy Stg 2       -       -       -       5.42       -         Follow-up Hdwy       2.218       -       -       3.518       3.318         Pot Cap-1 Maneuver       1429       -       -       516       894         Stage 1       -       -       -       699       -         Platoon blocked, %       -       -       -       -         Mov Cap-1 Maneuver       1429       -       -       489       894         Mov Cap-2 Maneuver       -       -       -       489       -         Stage 1       -       -       -       699       -         Stage 2       -       -       -       699       -         Approach       EB       WB       SB         HCM Control Delay, s       1.6       0       24.9         HCM LOS       C         Minor Lane/Major Mvmt       EBL       EBT       WBT       WBR SBLn1 SBLn2         Capacity (veh/h)       1429       -       -       -       489       894         HCM Lane V/C Ratio       0.046       -       -       -       0.667       0.024         HCM Lane LOS       A       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |          | -    | _      | -   |        |          |       |
| Follow-up Hdwy         2.218         -         -         3.518         3.318           Pot Cap-1 Maneuver         1429         -         -         516         894           Stage 1         -         -         -         876         -           Stage 2         -         -         -         699         -           Platoon blocked, %         -         -         -         -           Mov Cap-1 Maneuver         1429         -         -         489         894           Mov Cap-2 Maneuver         -         -         -         489         -         -           Stage 1         -         -         -         -         699         -           Stage 2         -         -         -         699         -           Approach         EB         WB         SB           HCM Control Delay, s         1.6         0         24.9           HCM Los         C         C    Minor Lane/Major Mvmt  EBL  EBT  WBT  WBR SBLn1 SBLn2  Capacity (veh/h)  1429  489  894  HCM Lane V/C Ratio 0.046  0.667 0.024  HCM Control Delay (s) 7.6 0 - 25.9 9.1  HCM Lane LOS  A A D A  Reserved  A D A  Reserved  A D A  Reserved  A D A  Reserved  A A - D A  Reserved  A A - B94  B94  B94  B94  B94  B95  B96  B97  B97  B97  B97  B97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | -        | -    | -      | _   |        | -        |       |
| Pot Cap-1 Maneuver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | 2.218    | -    | _      | _   |        | 3.318    |       |
| Stage 1       -       -       -       876       -         Stage 2       -       -       -       699       -         Platoon blocked, %       -       -       -       -         Mov Cap-1 Maneuver       1429       -       -       489       894         Mov Cap-2 Maneuver       -       -       -       489       -         Stage 1       -       -       -       699       -         Stage 2       -       -       -       699       -         Approach       EB       WB       SB         HCM Control Delay, s       1.6       0       24.9         HCM LOS       C         Minor Lane/Major Mvmt       EBL       EBT       WBT       WBR SBLn1 SBLn2         Capacity (veh/h)       1429       -       -       489       894         HCM Lane V/C Ratio       0.046       -       -       0.667       0.024         HCM Control Delay (s)       7.6       0       -       -       25.9       9.1         HCM Lane LOS       A       A       -       -       D       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |          | _    | _      |     |        |          |       |
| Stage 2       -       -       -       699       -         Platoon blocked, %       -       -       -       -       -         Mov Cap-1 Maneuver 1429       -       -       -       489       894         Mov Cap-2 Maneuver -       -       -       -       -       489       -         Stage 1       -       -       -       -       699       -         Stage 2       -       -       -       -       699       -         Approach       EB       WB       SB         HCM Control Delay, s       1.6       0       24.9         HCM LOS       C         Minor Lane/Major Mvmt       EBL       EBT       WBT       WBR SBLn1 SBLn2         Capacity (veh/h)         1429       -       -       -       489       894         HCM Lane V/C Ratio       0.046       -       -       -       0.667       0.024         HCM Lane LOS       A       A       -       -       D       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |          | _    | _      |     |        |          |       |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |          |      |        |     |        |          |       |
| Mov Cap-1 Maneuver         1429         -         -         489         894           Mov Cap-2 Maneuver         -         -         -         489         -           Stage 1         -         -         -         830         -           Stage 2         -         -         -         699         -           Approach         EB         WB         SB           HCM Control Delay, s         1.6         0         24.9           HCM LOS         C         C    Minor Lane/Major Mvmt  EBL  EBT  WBT  WBR SBLn1 SBLn2  Capacity (veh/h)  1429  489  894  HCM Lane V/C Ratio  0.046  0.667  0.024  HCM Control Delay (s)  7.6  0 - 25.9  9.1  HCM Lane LOS  A  A  - D  A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | <u>-</u> |      | _      |     | 033    | _        |       |
| Mov Cap-2 Maneuver         -         -         -         489         -           Stage 1         -         -         -         830         -           Stage 2         -         -         -         699         -           Approach         EB         WB         SB           HCM Control Delay, s         1.6         0         24.9           HCM LOS         C         C    Minor Lane/Major Mvmt  EBL  EBT  WBT  WBR SBLn1 SBLn2  Capacity (veh/h)  1429  489  894  HCM Lane V/C Ratio  0.046  0.667  0.024  HCM Control Delay (s)  7.6  0 - 25.9  9.1  HCM Lane LOS  A  A  - D  A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | 1/20     |      | -      |     | 100    | Q0.4     |       |
| Stage 1         -         -         -         830         -           Stage 2         -         -         -         699         -           Approach         EB         WB         SB           HCM Control Delay, s         1.6         0         24.9           HCM LOS         C         C    Minor Lane/Major Mvmt  EBL  EBT  WBT  WBR SBLn1 SBLn2  Capacity (veh/h)  1429  489  894  HCM Lane V/C Ratio  0.046  0.667  0.024  HCM Control Delay (s)  7.6  0 - 25.9  9.1  HCM Lane LOS  A  A  - D  A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |          |      | -      |     |        |          |       |
| Stage 2         -         -         -         -         699         -           Approach         EB         WB         SB           HCM Control Delay, s         1.6         0         24.9           HCM LOS         C           Minor Lane/Major Mvmt         EBL         EBT         WBT         WBR SBLn1 SBLn2           Capacity (veh/h)         1429         -         -         -         489         894           HCM Lane V/C Ratio         0.046         -         -         -         0.667         0.024           HCM Control Delay (s)         7.6         0         -         -         25.9         9.1           HCM Lane LOS         A         A         -         D         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |          |      |        |     |        |          |       |
| Approach         EB         WB         SB           HCM Control Delay, s         1.6         0         24.9           HCM LOS         C           Minor Lane/Major Mvmt         EBL         EBT         WBT         WBR SBLn1 SBLn2           Capacity (veh/h)         1429         -         -         489         894           HCM Lane V/C Ratio         0.046         -         -         0.667         0.024           HCM Control Delay (s)         7.6         0         -         25.9         9.1           HCM Lane LOS         A         A         -         D         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                    |          | -    | -      | -   |        |          |       |
| HCM Control Delay, s   1.6   0   24.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Stage 2              | -        | -    | -      | -   | 699    | -        |       |
| HCM Control Delay, s   1.6   0   24.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |          |      |        |     |        |          |       |
| HCM Control Delay, s   1.6   0   24.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Annroach             | FR       |      | WR     |     | SB     |          |       |
| Minor Lane/Major Mvmt         EBL         EBT         WBT         WBR SBLn1 SBLn2           Capacity (veh/h)         1429         -         -         -         489         894           HCM Lane V/C Ratio         0.046         -         -         -         0.667         0.024           HCM Control Delay (s)         7.6         0         -         -         25.9         9.1           HCM Lane LOS         A         A         -         D         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |          |      |        |     |        |          |       |
| Minor Lane/Major Mvmt         EBL         EBT         WBT         WBR SBLn1 SBLn2           Capacity (veh/h)         1429         -         -         -         489         894           HCM Lane V/C Ratio         0.046         -         -         -         0.667         0.024           HCM Control Delay (s)         7.6         0         -         -         25.9         9.1           HCM Lane LOS         A         A         -         D         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | 1.0      |      | U      |     |        |          |       |
| Capacity (veh/h)       1429       -       -       - 489       894         HCM Lane V/C Ratio       0.046       -       -       - 0.667       0.024         HCM Control Delay (s)       7.6       0       -       - 25.9       9.1         HCM Lane LOS       A       A       -       D       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HUM LUS              |          |      |        |     | C      |          |       |
| Capacity (veh/h)       1429       -       -       489       894         HCM Lane V/C Ratio       0.046       -       -       0.667       0.024         HCM Control Delay (s)       7.6       0       -       25.9       9.1         HCM Lane LOS       A       A       -       D       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |          |      |        |     |        |          |       |
| Capacity (veh/h)       1429       -       -       -       489       894         HCM Lane V/C Ratio       0.046       -       -       -       0.667       0.024         HCM Control Delay (s)       7.6       0       -       -       25.9       9.1         HCM Lane LOS       A       A       -       D       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Minor Lane/Major Myn | nt       | FBI  | FRT    | WRT | WBR    | SBL n1 S | BI n2 |
| HCM Lane V/C Ratio       0.046       -       -       -       0.667       0.024         HCM Control Delay (s)       7.6       0       -       -       25.9       9.1         HCM Lane LOS       A       A       -       -       D       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |          |      |        |     |        |          |       |
| HCM Control Delay (s)         7.6         0         -         -         25.9         9.1           HCM Lane LOS         A         A         -         -         D         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |          |      | _      | -   | -      |          |       |
| HCM Lane LOS A A D A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | \        |      |        |     |        |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | )        |      |        |     |        |          |       |
| 1014 0511 0/11 0/ 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | ,        |      |        | -   | -      |          |       |
| HCM 95th %tile Q(veh) 0.1 4.9 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HCM 95th %tile Q(veh |          | 0.1  | -      | -   | -      | 4.9      | 0.1   |

|                                                       | ۶           | <b>→</b>  | •           | •           | <b>←</b>  | •    | 4           | <b>†</b>  | <b>/</b>    | <b>/</b>     | ļ         | 4         |
|-------------------------------------------------------|-------------|-----------|-------------|-------------|-----------|------|-------------|-----------|-------------|--------------|-----------|-----------|
| Movement                                              | EBL         | EBT       | EBR         | WBL         | WBT       | WBR  | NBL         | NBT       | NBR         | SBL          | SBT       | SBR       |
| Lane Configurations                                   |             | र्स       | 7           |             | 4         |      | ሻ           | <b>₽</b>  |             | ሻ            | ₽         |           |
| Traffic Volume (veh/h)                                | 30          | 50        | 110         | 90          | 40        | 10   | 70          | 290       | 110         | 10           | 330       | 20        |
| Future Volume (veh/h)                                 | 30          | 50        | 110         | 90          | 40        | 10   | 70          | 290       | 110         | 10           | 330       | 20        |
| Initial Q (Qb), veh                                   | 0           | 0         | 0           | 0           | 0         | 0    | 0           | 0         | 0           | 0            | 0         | 0         |
| Ped-Bike Adj(A_pbT)                                   | 0.99        |           | 0.99        | 0.99        |           | 0.99 | 1.00        |           | 0.99        | 1.00         |           | 0.99      |
| Parking Bus, Adj                                      | 1.00        | 1.00      | 1.00        | 1.00        | 1.00      | 1.00 | 1.00        | 1.00      | 1.00        | 1.00         | 1.00      | 1.00      |
| Work Zone On Approach                                 | 10-0        | No        | 10-0        | 10=0        | No        | 10=0 | 10=0        | No        | 40=0        | 10=0         | No        | 40=0      |
| Adj Sat Flow, veh/h/ln                                | 1870        | 1870      | 1870        | 1870        | 1870      | 1870 | 1870        | 1870      | 1870        | 1870         | 1870      | 1870      |
| Adj Flow Rate, veh/h                                  | 33          | 54        | 29          | 98          | 43        | 9    | 76          | 315       | 113         | 11           | 359       | 20        |
| Peak Hour Factor                                      | 0.92        | 0.92      | 0.92        | 0.92        | 0.92      | 0.92 | 0.92        | 0.92      | 0.92        | 0.92         | 0.92      | 0.92      |
| Percent Heavy Veh, %                                  | 2           | 2         | 2           | 2           | 2         | 2    | 2           | 2         | 2           | 2            | 2         | 2         |
| Cap, veh/h                                            | 209         | 290       | 359         | 305         | 118       | 19   | 284         | 531       | 191         | 61           | 491       | 27        |
| Arrive On Green                                       | 0.23        | 0.23      | 0.23        | 0.23        | 0.23      | 0.23 | 0.16        | 0.41      | 0.41        | 0.03         | 0.28      | 0.28      |
| Sat Flow, veh/h                                       | 459         | 1268      | 1568        | 788         | 513       | 83   | 1781        | 1312      | 471         | 1781         | 1754      | 98        |
| Grp Volume(v), veh/h                                  | 87          | 0         | 29          | 150         | 0         | 0    | 76          | 0         | 428         | 11           | 0         | 379       |
| Grp Sat Flow(s), veh/h/ln                             | 1727        | 0         | 1568        | 1385        | 0         | 0    | 1781        | 0         | 1782        | 1781         | 0         | 1852      |
| Q Serve(g_s), s                                       | 0.0         | 0.0       | 0.7         | 3.0         | 0.0       | 0.0  | 1.8         | 0.0       | 9.0         | 0.3          | 0.0       | 8.9       |
| Cycle Q Clear(g_c), s                                 | 1.8         | 0.0       | 0.7         | 4.8         | 0.0       | 0.0  | 1.8         | 0.0       | 9.0         | 0.3          | 0.0       | 8.9       |
| Prop In Lane                                          | 0.38        | ^         | 1.00        | 0.65        | ^         | 0.06 | 1.00        | ^         | 0.26        | 1.00         | ^         | 0.05      |
| Lane Grp Cap(c), veh/h                                | 499         | 0         | 359         | 441         | 0         | 0    | 284         | 0         | 722         | 61           | 0         | 518       |
| V/C Ratio(X)                                          | 0.17        | 0.00      | 0.08        | 0.34        | 0.00      | 0.00 | 0.27        | 0.00      | 0.59        | 0.18         | 0.00      | 0.73      |
| Avail Cap(c_a), veh/h                                 | 1824        | 0         | 1635        | 592         | 0         | 0    | 595         | 0         | 1859        | 1858         | 0         | 966       |
| HCM Platoon Ratio                                     | 1.00        | 1.00      | 1.00        | 1.00        | 1.00      | 1.00 | 1.00        | 1.00      | 1.00        | 1.00         | 1.00      | 1.00      |
| Upstream Filter(I)                                    | 1.00        | 0.00      | 1.00        | 1.00        | 0.00      | 0.00 | 1.00        | 0.00      | 1.00        | 1.00<br>22.5 | 0.00      | 1.00      |
| Uniform Delay (d), s/veh                              | 14.9<br>0.2 | 0.0       | 14.5<br>0.1 | 16.1<br>0.5 | 0.0       | 0.0  | 17.7<br>0.5 | 0.0       | 11.2<br>0.8 | 1.4          | 0.0       | 15.6      |
| Incr Delay (d2), s/veh                                | 0.2         | 0.0       | 0.1         | 0.0         | 0.0       | 0.0  | 0.0         | 0.0       | 0.0         | 0.0          | 0.0       | 2.0       |
| Initial Q Delay(d3),s/veh<br>%ile BackOfQ(50%),veh/ln | 0.0         | 0.0       | 0.0         | 1.2         | 0.0       | 0.0  | 0.6         | 0.0       | 2.6         | 0.0          | 0.0       | 3.2       |
| Unsig. Movement Delay, s/veh                          |             | 0.0       | 0.2         | 1.2         | 0.0       | 0.0  | 0.0         | 0.0       | 2.0         | 0.1          | 0.0       | 3.2       |
| LnGrp Delay(d),s/veh                                  | 15.1        | 0.0       | 14.6        | 16.6        | 0.0       | 0.0  | 18.2        | 0.0       | 11.9        | 23.9         | 0.0       | 17.6      |
| LnGrp LOS                                             | 13.1<br>B   | Α         | 14.0<br>B   | 10.0<br>B   | Α         | Α    | 10.2<br>B   | Α         | 11.9<br>B   | 23.9<br>C    | Α         | 17.0<br>B |
| Approach Vol, veh/h                                   | ь           | 116       | В           | В           | 150       | ^    | ь           | 504       | ь           | <u> </u>     | 390       | В         |
| Approach Vol, ven/n Approach Delay, s/veh             |             | 15.0      |             |             | 16.6      |      |             | 12.9      |             |              | 17.8      |           |
| Approach LOS                                          |             | 15.0<br>B |             |             | 10.0<br>B |      |             | 12.9<br>B |             |              | 17.0<br>B |           |
| Approach LOS                                          |             | D         |             |             | Б         |      |             | Б         |             |              | D         |           |
| Timer - Assigned Phs                                  | 1           | 2         |             | 4           | 5         | 6    |             | 8         |             |              |           |           |
| Phs Duration (G+Y+Rc), s                              | 12.3        | 19.2      |             | 16.4        | 6.3       | 25.2 |             | 16.4      |             |              |           |           |
| Change Period (Y+Rc), s                               | * 4.7       | 5.8       |             | 5.4         | * 4.7     | 5.8  |             | 5.4       |             |              |           |           |
| Max Green Setting (Gmax), s                           | * 16        | 25.0      |             | 16.0        | * 50      | 50.0 |             | 50.0      |             |              |           |           |
| Max Q Clear Time (g_c+l1), s                          | 3.8         | 10.9      |             | 6.8         | 2.3       | 11.0 |             | 3.8       |             |              |           |           |
| Green Ext Time (p_c), s                               | 0.1         | 1.7       |             | 0.4         | 0.0       | 2.7  |             | 0.6       |             |              |           |           |
| Intersection Summary                                  |             |           |             |             |           |      |             |           |             |              |           | _         |
| HCM 6th Ctrl Delay                                    |             |           | 15.2        |             |           |      |             |           |             |              |           |           |
| HCM 6th LOS                                           |             |           | В           |             |           |      |             |           |             |              |           |           |

## Notes

User approved pedestrian interval to be less than phase max green.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection Int Delay, s/veh | 87.9     |           |          |          |           |        |          |         |        |        |       |            |
|-------------------------------|----------|-----------|----------|----------|-----------|--------|----------|---------|--------|--------|-------|------------|
|                               |          |           |          |          |           |        |          |         |        | 0.51   |       |            |
| Movement                      | EBL      | EBT       | EBR      | WBL      | WBT       | WBR    | NBL      | NBT     | NBR    | SBL    | SBT   | SBR        |
| Lane Configurations           | <b>*</b> | <b>\$</b> | 40       | <u>ነ</u> | <b>^}</b> | 0.40   | 40       | 4       | 40     | 000    | 4     | 7          |
| Traffic Vol, veh/h            | 50       | 360       | 10       | 10       | 410       | 310    | 10       | 10      | 10     | 260    | 10    | 70         |
| Future Vol, veh/h             | 50       | 360       | 10       | 10       | 410       | 310    | 10       | 10      | 10     | 260    | 10    | 70         |
| Conflicting Peds, #/hr        | 0        | 0         | 0        | 0        | 0         | 0      | 0        | 0       | 0      | 0      | 0     | 0          |
| Sign Control                  | Free     | Free      | Free     | Free     | Free      | Free   | Stop     | Stop    | Stop   | Stop   | Stop  | Stop       |
| RT Channelized                | 100      | -         | None     | 70       | -         | None   | -        | -       | None   | -      | -     | None<br>60 |
| Storage Length                |          | 0         | -        |          | 0         | -      | -        | 0       | -      | -      | 0     |            |
| Veh in Median Storage         | e, # -   | 0         | -        | -        | 0         | -      | -        | 0       | -      | -      | 0     | -          |
| Grade, %<br>Peak Hour Factor  | 92       | 92        | 92       | 92       | 92        | 92     | 92       | 92      | 92     | 92     | 92    | 92         |
|                               | 2        | 2         | 2        | 2        | 2         | 2      | 2        | 2       | 2      | 2      | 2     | 2          |
| Heavy Vehicles, % Mvmt Flow   | 54       | 391       | 11       | 11       | 446       | 337    | 11       | 11      | 11     | 283    | 11    | 76         |
| IVIVIIIL FIOW                 | 54       | 331       | 11       | 11       | 440       | 331    | 11       | 11      | 11     | 203    | 11    | 70         |
|                               |          |           |          |          |           |        |          |         |        |        |       |            |
| Major/Minor 1                 | Major1   |           |          | Major2   |           |        | Minor1   |         |        | Minor2 |       |            |
| Conflicting Flow All          | 783      | 0         | 0        | 402      | 0         | 0      | 1185     | 1310    | 397    | 1153   | 1147  | 615        |
| Stage 1                       | -        | -         | -        | -        | -         | -      | 505      | 505     | -      | 637    | 637   | -          |
| Stage 2                       | -        | -         | -        | -        | -         | -      | 680      | 805     | -      | 516    | 510   | -          |
| Critical Hdwy                 | 4.12     | -         | -        | 4.12     | -         | -      | 7.12     | 6.52    | 6.22   | 7.12   | 6.52  | 6.22       |
| Critical Hdwy Stg 1           | -        | -         | -        | -        | -         | -      | 6.12     | 5.52    | -      | 6.12   | 5.52  | -          |
| Critical Hdwy Stg 2           | -        | -         | -        | -        | -         | -      | 6.12     | 5.52    | -      | 6.12   | 5.52  | -          |
| Follow-up Hdwy                | 2.218    | -         | -        | 2.218    | -         | -      | 3.518    |         | 3.318  |        | 4.018 | 3.318      |
| Pot Cap-1 Maneuver            | 835      | -         | -        | 1157     | -         | -      | 166      | 159     |        | ~ 174  | 199   | 491        |
| Stage 1                       | -        | -         | -        | -        | -         | -      | 549      | 540     | -      | 465    | 471   | -          |
| Stage 2                       | -        | -         | -        | -        | -         | -      | 441      | 395     | -      | 542    | 538   | -          |
| Platoon blocked, %            | 005      | -         | -        | 4457     | -         | -      | 400      | 4.47    | 050    | 450    | 404   | 404        |
| Mov Cap-1 Maneuver            | 835      | -         | -        | 1157     | -         | -      | 126      | 147     |        | ~ 152  | 184   | 491        |
| Mov Cap-2 Maneuver            | -        | -         | -        | -        | -         | -      | 126      | 147     | -      | 102    | 184   | -          |
| Stage 1                       | -        | -         | -        | -        | -         | -      | 513      | 505     | -      | 435    | 466   | -          |
| Stage 2                       | -        | -         | -        | -        | -         | -      | 361      | 391     | -      | 488    | 503   | -          |
|                               |          |           |          |          |           |        |          |         |        |        |       |            |
| Approach                      | EB       |           |          | WB       |           |        | NB       |         |        | SB     |       |            |
| HCM Control Delay, s          | 1.1      |           |          | 0.1      |           |        | 28.7     |         | 9      | 388.8  |       |            |
| HCM LOS                       |          |           |          |          |           |        | D        |         |        | F      |       |            |
|                               |          |           |          |          |           |        |          |         |        |        |       |            |
| Minor Lane/Major Mvm          | nt       | NBLn1     | EBL      | EBT      | EBR       | WBL    | WBT      | WBR :   | SBLn1  | SBLn2  |       |            |
| Capacity (veh/h)              |          | 184       | 835      |          |           | 1157   |          |         | 153    | 491    |       |            |
| HCM Lane V/C Ratio            |          |           | 0.065    | _        |           | 0.009  | _        | _       | 1.918  |        |       |            |
| HCM Control Delay (s)         |          | 28.7      | 9.6      | _        | _         | 8.1    | _        |         | 486.1  | 13.7   |       |            |
| HCM Lane LOS                  |          | D         | Α        | _        | _         | A      | _        | -       | F      | В      |       |            |
| HCM 95th %tile Q(veh)         | )        | 0.6       | 0.2      | -        | -         | 0      | _        | -       | 22.5   | 0.5    |       |            |
| `                             |          | 0.5       | V        |          |           |        |          |         |        | 0.0    |       |            |
| Notes                         |          |           |          |          |           |        |          |         |        |        |       |            |
| ~: Volume exceeds cap         | pacity   | \$: De    | elay exc | eeds 3   | 00s       | +: Com | putation | n Not D | efined | *: All | major | volume     |

|                              | ۶    | <b>→</b> | •    | •    | <b>←</b> | 4    | 1    | <b>†</b> | ~    | <b>/</b> | <b>†</b> | ✓    |
|------------------------------|------|----------|------|------|----------|------|------|----------|------|----------|----------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations          |      | र्स      | 7    | ሻ    | f)       |      | ሻ    | <b>₽</b> | 7    |          | 4        |      |
| Traffic Volume (veh/h)       | 0    | 290      | 340  | 330  | 240      | 0    | 490  | 0        | 110  | 0        | 0        | 0    |
| Future Volume (veh/h)        | 0    | 290      | 340  | 330  | 240      | 0    | 490  | 0        | 110  | 0        | 0        | 0    |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0        | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00     |          | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No       |      |          | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870     | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 0    | 315      | 113  | 359  | 261      | 0    | 533  | 0        | 81   | 0        | 0        | 0    |
| Peak Hour Factor             | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92     | 0.92     | 0.92 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    | 2        | 2        | 2    |
| Cap, veh/h                   | 0    | 414      | 351  | 475  | 498      | 0    | 611  | 0        | 1088 | 0        | 3        | 0    |
| Arrive On Green              | 0.00 | 0.22     | 0.22 | 0.27 | 0.27     | 0.00 | 0.34 | 0.00     | 0.34 | 0.00     | 0.00     | 0.00 |
| Sat Flow, veh/h              | 0    | 1870     | 1585 | 1781 | 1870     | 0    | 1781 | 0        | 3170 | 0        | 1870     | 0    |
| Grp Volume(v), veh/h         | 0    | 315      | 113  | 359  | 261      | 0    | 533  | 0        | 81   | 0        | 0        | 0    |
| Grp Sat Flow(s),veh/h/ln     | 0    | 1870     | 1585 | 1781 | 1870     | 0    | 1781 | 0        | 1585 | 0        | 1870     | 0    |
| Q Serve(g_s), s              | 0.0  | 8.6      | 3.3  | 10.1 | 6.5      | 0.0  | 15.3 | 0.0      | 0.9  | 0.0      | 0.0      | 0.0  |
| Cycle Q Clear(g_c), s        | 0.0  | 8.6      | 3.3  | 10.1 | 6.5      | 0.0  | 15.3 | 0.0      | 0.9  | 0.0      | 0.0      | 0.0  |
| Prop In Lane                 | 0.00 |          | 1.00 | 1.00 |          | 0.00 | 1.00 |          | 1.00 | 0.00     |          | 0.00 |
| Lane Grp Cap(c), veh/h       | 0    | 414      | 351  | 475  | 498      | 0    | 611  | 0        | 1088 | 0        | 3        | 0    |
| V/C Ratio(X)                 | 0.00 | 0.76     | 0.32 | 0.76 | 0.52     | 0.00 | 0.87 | 0.00     | 0.07 | 0.00     | 0.00     | 0.00 |
| Avail Cap(c_a), veh/h        | 0    | 686      | 582  | 980  | 1029     | 0    | 817  | 0        | 1454 | 0        | 275      | 0    |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 |
| Upstream Filter(I)           | 0.00 | 1.00     | 1.00 | 1.00 | 1.00     | 0.00 | 1.00 | 0.00     | 1.00 | 0.00     | 0.00     | 0.00 |
| Uniform Delay (d), s/veh     | 0.0  | 19.9     | 17.8 | 18.4 | 17.0     | 0.0  | 16.8 | 0.0      | 12.1 | 0.0      | 0.0      | 0.0  |
| Incr Delay (d2), s/veh       | 0.0  | 2.9      | 0.5  | 2.5  | 0.9      | 0.0  | 8.0  | 0.0      | 0.0  | 0.0      | 0.0      | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.0  | 3.6      | 1.1  | 3.9  | 2.5      | 0.0  | 6.7  | 0.0      | 0.3  | 0.0      | 0.0      | 0.0  |
| Unsig. Movement Delay, s/veh |      |          | 40.0 |      | 4= 0     |      | 24.0 |          | 10.1 |          |          |      |
| LnGrp Delay(d),s/veh         | 0.0  | 22.8     | 18.3 | 20.9 | 17.9     | 0.0  | 24.8 | 0.0      | 12.1 | 0.0      | 0.0      | 0.0  |
| LnGrp LOS                    | A    | С        | В    | С    | В        | Α    | С    | Α        | В    | Α        | Α        | A    |
| Approach Vol, veh/h          |      | 428      |      |      | 620      |      |      | 614      |      |          | 0        |      |
| Approach Delay, s/veh        |      | 21.6     |      |      | 19.6     |      |      | 23.1     |      |          | 0.0      |      |
| Approach LOS                 |      | С        |      |      | В        |      |      | С        |      |          |          |      |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |      | 8        |      |          |          |      |
| Phs Duration (G+Y+Rc), s     |      | 0.0      |      | 15.3 |          | 21.7 |      | 17.5     |      |          |          |      |
| Change Period (Y+Rc), s      |      | 3.0      |      | 3.2  |          | 3.0  |      | 3.0      |      |          |          |      |
| Max Green Setting (Gmax), s  |      | 8.0      |      | 20.0 |          | 25.0 |      | 30.0     |      |          |          |      |
| Max Q Clear Time (g_c+l1), s |      | 0.0      |      | 10.6 |          | 17.3 |      | 12.1     |      |          |          |      |
| Green Ext Time (p_c), s      |      | 0.0      |      | 1.5  |          | 1.4  |      | 2.4      |      |          |          |      |
| Intersection Summary         |      |          |      |      |          |      |      |          |      |          |          |      |
| HCM 6th Ctrl Delay           |      |          | 21.4 |      |          |      |      |          |      |          |          |      |
| HCM 6th LOS                  |      |          | С    |      |          |      |      |          |      |          |          |      |

Notes

User approved pedestrian interval to be less than phase max green.

User approved volume balancing among the lanes for turning movement.

|                           | -        | $\rightarrow$ | •    | •    | •    | /    |      |  |   |
|---------------------------|----------|---------------|------|------|------|------|------|--|---|
| Movement                  | EBT      | EBR           | WBL  | WBT  | NBL  | NBR  |      |  |   |
| Lane Configurations       | <b>^</b> | 7             | ሻ    | 414  | ሻ    | 77   |      |  |   |
| Traffic Volume (veh/h)    | 170      | 240           | 350  | 250  | 220  | 470  |      |  |   |
| Future Volume (veh/h)     | 170      | 240           | 350  | 250  | 220  | 470  |      |  |   |
| Initial Q (Qb), veh       | 0        | 0             | 0    | 0    | 0    | 0    |      |  |   |
| Ped-Bike Adj(A_pbT)       |          | 1.00          | 1.00 |      | 1.00 | 1.00 |      |  |   |
| Parking Bus, Adj          | 1.00     | 1.00          | 1.00 | 1.00 | 1.00 | 1.00 |      |  |   |
| Work Zone On Approac      | h No     |               |      | No   | No   |      |      |  |   |
| Adj Sat Flow, veh/h/ln    | 1870     | 1870          | 1870 | 1870 | 1870 | 1870 |      |  |   |
| Adj Flow Rate, veh/h      | 185      | 56            | 380  | 272  | 239  | 272  |      |  |   |
| Peak Hour Factor          | 0.92     | 0.92          | 0.92 | 0.92 | 0.92 | 0.92 |      |  |   |
| Percent Heavy Veh, %      | 2        | 2             | 2    | 2    | 2    | 2    |      |  |   |
| Cap, veh/h                | 476      | 212           | 961  | 505  | 409  | 1393 |      |  |   |
| Arrive On Green           | 0.13     | 0.13          | 0.27 | 0.27 | 0.23 | 0.23 |      |  |   |
| Sat Flow, veh/h           | 3647     | 1585          | 3563 | 1870 | 1781 | 2790 |      |  |   |
| Grp Volume(v), veh/h      | 185      | 56            | 380  | 272  | 239  | 272  |      |  |   |
| Grp Sat Flow(s),veh/h/li  |          | 1585          | 1781 | 1870 | 1781 | 1395 |      |  |   |
| Q Serve(g_s), s           | 1.4      | 0.9           | 2.5  | 3.6  | 3.4  | 1.5  |      |  |   |
| Cycle Q Clear(g_c), s     | 1.4      | 0.9           | 2.5  | 3.6  | 3.4  | 1.5  |      |  |   |
| Prop In Lane              |          | 1.00          | 1.00 |      | 1.00 | 1.00 |      |  |   |
| Lane Grp Cap(c), veh/h    | 476      | 212           | 961  | 505  | 409  | 1393 |      |  |   |
| V/C Ratio(X)              | 0.39     | 0.26          | 0.40 | 0.54 | 0.58 | 0.20 |      |  |   |
| Avail Cap(c_a), veh/h     | 2481     | 1107          | 1866 | 979  | 871  | 2116 |      |  |   |
| HCM Platoon Ratio         | 1.00     | 1.00          | 1.00 | 1.00 | 1.00 | 1.00 |      |  |   |
| Upstream Filter(I)        | 1.00     | 1.00          | 1.00 | 1.00 | 1.00 | 1.00 |      |  |   |
| Uniform Delay (d), s/vel  |          | 11.1          | 8.5  | 8.9  | 9.8  | 4.0  |      |  |   |
| Incr Delay (d2), s/veh    | 0.5      | 0.7           | 0.3  | 0.9  | 1.3  | 0.1  |      |  |   |
| Initial Q Delay(d3),s/veh |          | 0.0           | 0.0  | 0.0  | 0.0  | 0.0  |      |  |   |
| %ile BackOfQ(50%),vel     |          | 0.3           | 0.7  | 1.1  | 1.0  | 0.5  |      |  |   |
| Unsig. Movement Delay     |          |               |      |      |      |      |      |  |   |
| LnGrp Delay(d),s/veh      | 11.8     | 11.8          | 8.8  | 9.8  | 11.1 | 4.0  |      |  |   |
| LnGrp LOS                 | В        | В             | A    | A    | В    | A    |      |  |   |
| Approach Vol, veh/h       | 241      |               |      | 652  | 511  |      |      |  |   |
| Approach Delay, s/veh     |          |               |      | 9.2  | 7.4  |      |      |  |   |
| Approach LOS              | В        |               |      | Α.Δ  | Α.   |      |      |  |   |
|                           | D        |               |      |      |      |      |      |  |   |
| Timer - Assigned Phs      |          | 2             |      |      |      | 6    | 8    |  |   |
| Phs Duration (G+Y+Rc)     |          | 7.3           |      |      |      | 11.2 | 10.1 |  |   |
| Change Period (Y+Rc),     |          | 3.5           |      |      |      | 3.5  | 3.5  |  |   |
| Max Green Setting (Gm     |          | 20.0          |      |      |      | 15.0 | 14.0 |  |   |
| Max Q Clear Time (g_c     | +I1), s  | 3.4           |      |      |      | 5.6  | 5.4  |  |   |
| Green Ext Time (p_c), s   | 3        | 1.1           |      |      |      | 2.2  | 1.3  |  |   |
| Intersection Summary      |          |               |      |      |      |      |      |  |   |
| HCM 6th Ctrl Delay        |          |               | 9.0  |      |      |      |      |  |   |
| HCM 6th LOS               |          |               | Α.   |      |      |      |      |  |   |
| Notes                     |          |               | , ,  |      |      |      |      |  | _ |
| NOIES                     |          |               |      |      |      |      |      |  |   |

User approved volume balancing among the lanes for turning movement.

| Movement   EBL   EBR   WBL   WBT   WBR   NBL   NBT   NBR   SBL   SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                       | <b>→</b>   | •    | •    | •    | •    | •    | <b>†</b> | /    | <b>&gt;</b> | <b>↓</b> | 1    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------|------|------|------|------|------|----------|------|-------------|----------|------|--|
| Traffic Volume (veh/h) 300 100 240 20 30 30 330 640 40 50 310 240 100 100 240 20 30 30 330 640 40 50 310 240 100 100 100 100 100 100 100 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Movement EB                             | L EBT      | EBR  | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |  |
| Traffic Volume (veh/h) 300 100 240 20 30 30 330 640 40 50 310 240 100 100 240 20 30 30 330 640 40 50 310 240 100 100 100 100 100 100 100 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lane Configurations                     | <b>ነ</b> ብ | 1    |      | ĵ.   |      | *    | 44       | 1    | ች           | <b>^</b> | 1    |  |
| Future Volume (veh/h) 300 100 240 20 30 30 330 640 40 50 310 240   Initial Q (Ob), veh   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |            |      | 20   |      | 30   |      |          |      |             |          |      |  |
| Ped-Bike Adji(A_pbT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                       | 0 100      | 240  | 20   | 30   | 30   | 330  | 640      | 40   | 50          | 310      | 240  |  |
| Parking Bus, Adj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Initial Q (Qb), veh                     | 0 0        | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0           | 0        | 0    |  |
| Work Zone On Ápproach         No         No         No         No         No         No         No         No         No         Agi Sat Flow, vehi/hin         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         56         284         2415         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20                                                                                         | Ped-Bike Adj(A_pbT) 1.0                 | 0          | 0.99 | 1.00 |      | 1.00 | 1.00 |          | 0.99 | 1.00        |          | 0.99 |  |
| Adj Sat Flow, veh/h/ln 1870 1870 1870 1870 1870 1870 1870 1870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         | 0 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |  |
| Adj Flow Rate, veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Work Zone On Approach                   | No         |      |      | No   |      |      | No       |      |             | No       |      |  |
| Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Adj Sat Flow, veh/h/ln 187              | 0 1870     | 1870 | 1870 | 1870 | 1870 | 1870 | 1870     | 1870 | 1870        | 1870     | 1870 |  |
| Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Adj Flow Rate, veh/h 21                 | 8 261      | 52   | 22   | 33   | 1    | 359  | 696      | 17   | 54          | 337      | 56   |  |
| Cap, veh/h 335 352 296 75 76 2 415 1201 532 73 540 238  Arrive On Green 0.19 0.19 0.19 0.04 0.04 0.04 0.23 0.34 0.34 0.04 0.15 0.15  Sat Flow, veh/h 1781 1870 1572 1781 1806 55 1781 3554 1573 1781 3554 1569  Grp Volume(v), veh/h 218 261 52 22 0 34 359 696 17 54 337 56  Grp Sat Flow(s), veh/h/In1781 1870 1572 1781 0 1861 1781 1777 1573 1781 1777 1569  Q Serve(g_s), s 6.1 7.1 1.5 0.6 0.0 1.0 10.4 8.7 0.4 1.6 4.8 1.7  Cycle Q Clear(g_c), s 6.1 7.1 1.5 0.6 0.0 1.0 10.4 8.7 0.4 1.6 4.8 1.7  Prop In Lane 1.00 1.00 1.00 0.03 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Peak Hour Factor 0.9                    | 2 0.92     | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92     | 0.92 | 0.92        | 0.92     | 0.92 |  |
| Arrive On Green 0.19 0.19 0.19 0.19 0.04 0.04 0.04 0.23 0.34 0.34 0.04 0.15 0.15 Sat Flow, veh/h 1781 1870 1572 1781 1806 55 1781 3554 1573 1781 3554 1569 Grp Volume(v), veh/h 218 261 52 22 0 34 359 696 17 54 337 56 Grp Sat Flow(s), veh/h/1811 1870 1572 1781 0 1861 1781 1777 1573 1781 1777 1569 Q Serve(g_s), s 6.1 7.1 1.5 0.6 0.0 1.0 10.4 8.7 0.4 1.6 4.8 1.7 Cycle Q Clear(g_c), s 6.1 7.1 1.5 0.6 0.0 1.0 10.4 8.7 0.4 1.6 4.8 1.7 Prop In Lane 1.00 1.00 1.00 0.03 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Percent Heavy Veh, %                    | 2 2        | 2    | 2    | 2    | 2    | 2    | 2        | 2    | 2           | 2        | 2    |  |
| Arrive On Green 0.19 0.19 0.19 0.19 0.04 0.04 0.04 0.23 0.34 0.34 0.04 0.15 0.15 Sat Flow, veh/h 1781 1870 1572 1781 1806 55 1781 3554 1573 1781 3554 1569 Grp Volume(v), veh/h 218 261 52 22 0 34 359 696 17 54 337 56 Grp Sat Flow(s), veh/h/1811 1870 1572 1781 0 1861 1781 1777 1573 1781 1777 1569 Q Serve(g_s), s 6.1 7.1 1.5 0.6 0.0 1.0 10.4 8.7 0.4 1.6 4.8 1.7 Cycle Q Clear(g_c), s 6.1 7.1 1.5 0.6 0.0 1.0 10.4 8.7 0.4 1.6 4.8 1.7 Prop In Lane 1.00 1.00 1.00 0.03 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                       | 5 352      | 296  | 75   | 76   | 2    | 415  | 1201     | 532  | 73          | 540      | 238  |  |
| Grp Volume(v), veh/h 218 261 52 22 0 34 359 696 17 54 337 56 Grp Sat Flow(s),veh/h/ln1781 1870 1572 1781 0 1861 1781 1777 1573 1781 1777 1569 Q Serve(g_s), s 6.1 7.1 1.5 0.6 0.0 1.0 10.4 8.7 0.4 1.6 4.8 1.7 Cycle Q Clear(g_c), s 6.1 7.1 1.5 0.6 0.0 1.0 10.4 8.7 0.4 1.6 4.8 1.7 Prop In Lane 1.00 1.00 1.00 0.03 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • •                                     | 9 0.19     | 0.19 | 0.04 | 0.04 | 0.04 | 0.23 | 0.34     | 0.34 | 0.04        | 0.15     | 0.15 |  |
| Grp Volume(v), veh/h 218 261 52 22 0 34 359 696 17 54 337 56 Grp Sat Flow(s),veh/h/ln1781 1870 1572 1781 0 1861 1781 1777 1573 1781 1777 1569 Q Serve(g_s), s 6.1 7.1 1.5 0.6 0.0 1.0 10.4 8.7 0.4 1.6 4.8 1.7 Cycle Q Clear(g_c), s 6.1 7.1 1.5 0.6 0.0 1.0 10.4 8.7 0.4 1.6 4.8 1.7 Cycle Q Clear(g_c), s 6.1 7.1 1.5 0.6 0.0 1.0 10.4 8.7 0.4 1.6 4.8 1.7 Cycle Q Clear(g_c), veh/h 335 352 296 75 0 78 415 1201 532 73 540 238 V/C Ratio(X) 0.65 0.74 0.18 0.29 0.00 0.43 0.87 0.58 0.03 0.74 0.62 0.23 Avail Cap(c_a), veh/h 596 626 526 331 0 346 563 1586 702 331 1057 467 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |            |      |      | 1806 |      |      |          |      | 1781        | 3554     |      |  |
| Grp Sat Flow(s),veh/h/ln1781 1870 1572 1781 0 1861 1781 1777 1573 1781 1777 1569  Q Serve(g_s), s 6.1 7.1 1.5 0.6 0.0 1.0 10.4 8.7 0.4 1.6 4.8 1.7  Cycle Q Clear(g_c), s 6.1 7.1 1.5 0.6 0.0 1.0 10.4 8.7 0.4 1.6 4.8 1.7  Cycle Q Clear(g_c), s 6.1 7.1 1.5 0.6 0.0 1.0 10.4 8.7 0.4 1.6 4.8 1.7  Prop In Lane 1.00 1.00 1.00 0.03 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |            |      |      |      |      |      |          |      |             |          |      |  |
| Q Serve(g_s), s 6.1 7.1 1.5 0.6 0.0 1.0 10.4 8.7 0.4 1.6 4.8 1.7  Cycle Q Clear(g_c), s 6.1 7.1 1.5 0.6 0.0 1.0 10.4 8.7 0.4 1.6 4.8 1.7  Cycle Q Clear(g_c), s 6.1 7.1 1.5 0.6 0.0 1.0 10.4 8.7 0.4 1.6 4.8 1.7  Prop In Lane 1.00 1.00 1.00 0.03 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 \ / /                                 |            |      |      |      |      |      |          |      |             |          |      |  |
| Cycle Q Clear(g_c), s 6.1 7.1 1.5 0.6 0.0 1.0 10.4 8.7 0.4 1.6 4.8 1.7  Prop In Lane 1.00 1.00 1.00 0.03 1.00 1.00 1.00 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |            |      |      |      |      |      |          |      |             |          |      |  |
| Prop In Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,,,                                     |            |      |      |      |      |      |          |      |             |          |      |  |
| Lane Grp Cap(c), veh/h 335 352 296 75 0 78 415 1201 532 73 540 238  V/C Ratio(X) 0.65 0.74 0.18 0.29 0.00 0.43 0.87 0.58 0.03 0.74 0.62 0.23  Avail Cap(c_a), veh/h 596 626 526 331 0 346 563 1586 702 331 1057 467  HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , (O— /·                                |            |      |      |      |      |      |          |      |             |          |      |  |
| V/C Ratio(X)         0.65         0.74         0.18         0.29         0.00         0.43         0.87         0.58         0.03         0.74         0.62         0.23           Avail Cap(c_a), veh/h         596         626         526         331         0         346         563         1586         702         331         1057         467           HCM Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1                                                            |                                         |            |      |      | 0    |      |      | 1201     |      |             | 540      |      |  |
| Avail Cap(c_a), veh/h 596 626 526 331 0 346 563 1586 702 331 1057 467  HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |            |      |      |      |      |      |          |      |             |          |      |  |
| HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . ,                                     |            |      |      |      |      |      |          |      |             |          |      |  |
| Upstream Filter(I) 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ |            |      |      |      |      |      |          |      |             |          |      |  |
| Uniform Delay (d), s/veh 20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |            |      |      |      |      |      |          |      |             |          |      |  |
| Incr Delay (d2), s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |            |      |      |      |      |      |          |      |             |          |      |  |
| Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |            |      |      |      |      |      |          |      |             |          |      |  |
| %ile BackOfQ(50%),veh/lr2.4 2.9 0.5 0.3 0.0 0.4 4.7 3.0 0.1 0.7 1.8 0.6 Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 21.0 21.8 18.4 25.8 0.0 26.5 28.0 14.8 11.9 30.7 21.8 20.2 LnGrp LOS C C B C A C C B B C C C Approach Vol, veh/h 531 56 1072 447 Approach Delay, s/veh 21.1 26.2 19.2 22.7 Approach LOS C C B C C B C C C B C  Timer - Assigned Phs 2 3 4 6 7 8 Phs Duration (G+Y+Rc), s 15.2 17.6 13.6 7.4 7.6 23.6 Change Period (Y+Rc), s 5.1 5.1 5.4 5.4 5.4 Max Green Setting (Gmax), s 18.0 17.0 16.0 10.0 10.0 *24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |            |      |      |      |      |      |          |      |             |          |      |  |
| Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 21.0 21.8 18.4 25.8 0.0 26.5 28.0 14.8 11.9 30.7 21.8 20.2 LnGrp LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |            |      |      |      |      |      |          |      |             |          |      |  |
| LnGrp Delay(d),s/veh         21.0         21.8         18.4         25.8         0.0         26.5         28.0         14.8         11.9         30.7         21.8         20.2           LnGrp LOS         C         C         B         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C <td>,</td> <td></td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.1</td> <td>•••</td> <td>0.0</td> <td>V. 1</td> <td>V.,</td> <td>1.0</td> <td>0.0</td> <td></td> | ,                                       |            | 0.0  | 0.0  | 0.0  | 0.1  | •••  | 0.0      | V. 1 | V.,         | 1.0      | 0.0  |  |
| LnGrp LOS         C         C         B         C         A         C         C         B         B         C         C           Approach Vol, veh/h         531         56         1072         447           Approach Delay, s/veh         21.1         26.2         19.2         22.7           Approach LOS         C         C         B         C           Timer - Assigned Phs         2         3         4         6         7         8           Phs Duration (G+Y+Rc), s         15.2         17.6         13.6         7.4         7.6         23.6           Change Period (Y+Rc), s         5.1         5.1         5.4         5.1         5.4         * 5.4           Max Green Setting (Gmax), s         18.0         17.0         16.0         10.0         10.0         * 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |            | 18 4 | 25.8 | 0.0  | 26.5 | 28.0 | 14 8     | 11.9 | 30.7        | 21.8     | 20.2 |  |
| Approach Vol, veh/h 531 56 1072 447  Approach Delay, s/veh 21.1 26.2 19.2 22.7  Approach LOS C C B C  Timer - Assigned Phs 2 3 4 6 7 8  Phs Duration (G+Y+Rc), s 15.2 17.6 13.6 7.4 7.6 23.6  Change Period (Y+Rc), s 5.1 5.1 5.4 5.1 5.4 * 5.4  Max Green Setting (Gmax), s 18.0 17.0 16.0 10.0 10.0 * 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . ,                                     |            |      |      |      |      |      |          |      |             |          |      |  |
| Approach Delay, s/veh 21.1 26.2 19.2 22.7  Approach LOS C C B C  Timer - Assigned Phs 2 3 4 6 7 8  Phs Duration (G+Y+Rc), s 15.2 17.6 13.6 7.4 7.6 23.6  Change Period (Y+Rc), s 5.1 5.1 5.4 5.1 5.4 * 5.4  Max Green Setting (Gmax), s 18.0 17.0 16.0 10.0 10.0 * 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |            |      |      |      |      |      |          |      |             |          |      |  |
| Approach LOS C C B C  Timer - Assigned Phs 2 3 4 6 7 8  Phs Duration (G+Y+Rc), s 15.2 17.6 13.6 7.4 7.6 23.6  Change Period (Y+Rc), s 5.1 5.1 5.4 5.1 5.4 * 5.4  Max Green Setting (Gmax), s 18.0 17.0 16.0 10.0 10.0 * 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • •                                     |            |      |      |      |      |      |          |      |             |          |      |  |
| Timer - Assigned Phs       2       3       4       6       7       8         Phs Duration (G+Y+Rc), s       15.2       17.6       13.6       7.4       7.6       23.6         Change Period (Y+Rc), s       5.1       5.1       5.4       5.1       5.4       * 5.4         Max Green Setting (Gmax), s       18.0       17.0       16.0       10.0       10.0       * 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |            |      |      |      |      |      |          |      |             |          |      |  |
| Phs Duration (G+Y+Rc), s 15.2 17.6 13.6 7.4 7.6 23.6<br>Change Period (Y+Rc), s 5.1 5.1 5.4 5.1 5.4 * 5.4<br>Max Green Setting (Gmax), s 18.0 17.0 16.0 10.0 10.0 * 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |            |      | 1    |      | 6    | 7    |          |      |             |          |      |  |
| Change Period (Y+Rc), s 5.1 5.1 5.4 5.1 5.4 * 5.4 Max Green Setting (Gmax), s 18.0 17.0 16.0 10.0 * 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                       |            |      |      |      |      |      |          |      |             |          |      |  |
| Max Green Setting (Gmax), s 18.0 17.0 16.0 10.0 10.0 * 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \                                       |            |      |      |      |      |      |          |      |             |          |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |            |      |      |      |      |      |          |      |             |          |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |            |      |      |      |      |      |          |      |             |          |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Max Q Clear Time (g_c+l1),              |            |      | 6.8  |      | 3.0  | 3.6  | 10.7     |      |             |          |      |  |
| Green Ext Time (p_c), s 0.7 0.2 0.8 0.0 0.0 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $u = \gamma$                            | 0.7        | 0.2  | U.8  |      | 0.0  | 0.0  | 2.1      |      |             |          |      |  |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |            |      |      |      |      |      |          |      |             |          |      |  |
| HCM 6th Ctrl Delay 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                       |            |      |      |      |      |      |          |      |             |          |      |  |
| HCM 6th LOS C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HCM 6th LOS                             |            | С    |      |      |      |      |          |      |             |          |      |  |

Notes

User approved pedestrian interval to be less than phase max green.

User approved volume balancing among the lanes for turning movement.

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection            |         |  |  |  |  |  |
|-------------------------|---------|--|--|--|--|--|
| Intersection Delay, s/v | veh11.4 |  |  |  |  |  |
| Intersection Delay, s/  | В       |  |  |  |  |  |
|                         |         |  |  |  |  |  |

| Movement                | EBL    | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|-------------------------|--------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations     |        | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h      | 40     | 10   | 240  | 10   | 10   | 10   | 120  | 110  | 10   | 10   | 190  | 40   |  |
| Future Vol, veh/h       | 40     | 10   | 240  | 10   | 10   | 10   | 120  | 110  | 10   | 10   | 190  | 40   |  |
| Peak Hour Factor        | 0.92   | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Heavy Vehicles, %       | 2      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow               | 43     | 11   | 261  | 11   | 11   | 11   | 130  | 120  | 11   | 11   | 207  | 43   |  |
| Number of Lanes         | 0      | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                | EB     |      |      | WB   |      |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach       | WB     |      |      | EB   |      |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes          | 1      |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Lo | eft SB |      |      | NB   |      |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left  | 1      |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach R  | ightNB |      |      | SB   |      |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right | t 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay       | 11.6   |      |      | 9.1  |      |      | 11.6 |      |      | 11.2 |      |      |  |
| HCM LOS                 | В      |      |      | Α    |      |      | В    |      |      | В    |      |      |  |

| Lane                   | NBLn1 EBLn1WBLn1 SBLn1 |       |       |       |  |
|------------------------|------------------------|-------|-------|-------|--|
| Vol Left, %            | 50%                    | 14%   | 33%   | 4%    |  |
| Vol Thru, %            | 46%                    | 3%    | 33%   | 79%   |  |
| Vol Right, %           | 4%                     | 83%   | 33%   | 17%   |  |
| Sign Control           | Stop                   | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 240                    | 290   | 30    | 240   |  |
| LT Vol                 | 120                    | 40    | 10    | 10    |  |
| Through Vol            | 110                    | 10    | 10    | 190   |  |
| RT Vol                 | 10                     | 240   | 10    | 40    |  |
| Lane Flow Rate         | 261                    | 315   | 33    | 261   |  |
| Geometry Grp           | 1                      | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.384                  | 0.43  | 0.052 | 0.373 |  |
| Departure Headway (Hd) | 5.3                    | 4.912 | 5.694 | 5.144 |  |
| Convergence, Y/N       | Yes                    | Yes   | Yes   | Yes   |  |
| Сар                    | 678                    | 738   | 627   | 699   |  |
| Service Time           | 3.337                  | 2.912 | 3.743 | 3.18  |  |
| HCM Lane V/C Ratio     | 0.385                  | 0.427 | 0.053 | 0.373 |  |
| HCM Control Delay      | 11.6                   | 11.6  | 9.1   | 11.2  |  |
| HCM Lane LOS           | В                      | В     | Α     | В     |  |
| HCM 95th-tile Q        | 1.8                    | 2.2   | 0.2   | 1.7   |  |

| Intersection             |        |       |       |        |      |       |            |            |       |            |            |       |
|--------------------------|--------|-------|-------|--------|------|-------|------------|------------|-------|------------|------------|-------|
| Int Delay, s/veh         | 11.3   |       |       |        |      |       |            |            |       |            |            |       |
| Movement                 | EBL    | EBT   | EBR   | WBL    | WBT  | WBR   | NBL        | NBT        | NBR   | SBL        | SBT        | SBR   |
| Lane Configurations      | ሻ      | \$    |       | ,,,,,, | 4    | 11511 | ,,,,,,     | 4          | 11511 |            | 4          | UDIK  |
| Traffic Vol, veh/h       | 40     | 260   | 10    | 90     | 220  | 50    | 20         | 20         | 20    | 120        | 20         | 40    |
| Future Vol, veh/h        | 40     | 260   | 10    | 90     | 220  | 50    | 20         | 20         | 20    | 120        | 20         | 40    |
| Conflicting Peds, #/hr   | 0      | 0     | 0     | 0      | 0    | 0     | 0          | 0          | 0     | 0          | 0          | 0     |
| Sign Control             | Free   | Free  | Free  | Free   | Free | Free  | Stop       | Stop       | Stop  | Stop       | Stop       | Stop  |
| RT Channelized           | -      | -     | None  | -      | -    | None  | -          | -          | None  | -          | -          | None  |
| Storage Length           | 100    | -     | -     | _      | _    | -     | -          | _          | -     | -          | -          | -     |
| Veh in Median Storage    |        | 0     | _     | _      | 0    | _     | -          | 0          | _     | _          | 0          | _     |
| Grade, %                 | -      | 0     | -     | -      | 0    | -     | -          | 0          | -     | -          | 0          | -     |
| Peak Hour Factor         | 92     | 92    | 92    | 92     | 92   | 92    | 92         | 92         | 92    | 92         | 92         | 92    |
| Heavy Vehicles, %        | 2      | 2     | 2     | 2      | 2    | 2     | 2          | 2          | 2     | 2          | 2          | 2     |
| Mvmt Flow                | 43     | 283   | 11    | 98     | 239  | 54    | 22         | 22         | 22    | 130        | 22         | 43    |
|                          |        |       |       |        |      |       |            |            |       |            |            |       |
| Major/Minor              | Major1 |       |       | Majora |      |       | Minor1     |            |       | Minor2     |            |       |
|                          | Major1 | 0     |       | Major2 | 0    |       |            | 004        |       |            | 0.40       | 000   |
| Conflicting Flow All     | 293    | 0     | 0     | 294    | 0    | 0     | 870<br>375 | 864<br>375 | 289   | 859<br>462 | 842<br>462 | 266   |
| Stage 1                  | -      | -     | -     | -      | -    | -     | 495        | 489        | -     | 397        | 380        | -     |
| Stage 2<br>Critical Hdwy | 4.12   | -     | -     | 4.12   | -    | -     | 7.12       | 6.52       | 6.22  | 7.12       | 6.52       | 6.22  |
| Critical Hdwy Stg 1      | 4.12   | -     | _     | 4.12   | -    | -     | 6.12       | 5.52       | 0.22  | 6.12       | 5.52       | 0.22  |
| Critical Hdwy Stg 2      | _      | _     | _     | _      | _    | _     | 6.12       | 5.52       | _     | 6.12       | 5.52       | _     |
| Follow-up Hdwy           | 2.218  | -     | -     | 2.218  | _    | -     | 3.518      | 4.018      | 3.318 | 3.518      | 4.018      | 3 318 |
| Pot Cap-1 Maneuver       | 1269   | _     | _     | 1268   | _    | _     | 272        | 292        | 750   | 277        | 301        | 773   |
| Stage 1                  | - 1203 | _     | _     | 1200   | _    |       | 646        | 617        | 750   | 580        | 565        | - 113 |
| Stage 2                  | _      | _     |       | _      | _    | _     | 556        | 549        | _     | 629        | 614        | _     |
| Platoon blocked, %       |        | _     | _     |        | _    | _     | 000        | 073        |       | 023        | 017        |       |
| Mov Cap-1 Maneuver       | 1269   | _     | _     | 1268   | _    | _     | 218        | 256        | 750   | 228        | 264        | 773   |
| Mov Cap-2 Maneuver       |        | _     | _     |        | _    | _     | 218        | 256        | -     | 228        | 264        | -     |
| Stage 1                  | -      | _     | -     | -      | -    | _     | 624        | 596        | _     | 560        | 512        | _     |
| Stage 2                  | -      | -     | -     | -      | -    | -     | 456        | 498        | -     | 569        | 593        | -     |
|                          |        |       |       |        |      |       |            |            |       | 300        | 200        |       |
| Δ                        |        |       |       | 16/0   |      |       | , LID      |            |       | 0.5        |            |       |
| Approach                 | EB     |       |       | WB     |      |       | NB         |            |       | SB         |            |       |
| HCM Control Delay, s     | 1      |       |       | 2      |      |       | 20         |            |       | 44.9       |            |       |
| HCM LOS                  |        |       |       |        |      |       | С          |            |       | Е          |            |       |
|                          |        |       |       |        |      |       |            |            |       |            |            |       |
| Minor Lane/Major Mvm     | nt N   | NBLn1 | EBL   | EBT    | EBR  | WBL   | WBT        | WBR        | SBLn1 |            |            |       |
| Capacity (veh/h)         |        | 305   | 1269  | -      | -    | 1268  | -          | -          | 275   |            |            |       |
| HCM Lane V/C Ratio       |        |       | 0.034 | -      | _    | 0.077 | _          | _          | 0.711 |            |            |       |
| HCM Control Delay (s)    |        | 20    | 7.9   | -      | -    | 8.1   | 0          | -          | 44.9  |            |            |       |
| HCM Lane LOS             |        | С     | A     | -      | -    | Α     | A          | -          | Ē     |            |            |       |
| HCM 95th %tile Q(veh     | )      | 0.8   | 0.1   | -      | -    | 0.2   | -          | -          | 4.9   |            |            |       |
|                          |        |       |       |        |      |       |            |            |       |            |            |       |

|                              | ۶    | <b>→</b> | •    | •     | <b>←</b> | •    | 1    | †    | ~    | <b>/</b> | <b>+</b> | ✓        |
|------------------------------|------|----------|------|-------|----------|------|------|------|------|----------|----------|----------|
| Movement                     | EBL  | EBT      | EBR  | WBL   | WBT      | WBR  | NBL  | NBT  | NBR  | SBL      | SBT      | SBR      |
| Lane Configurations          |      | 4        |      |       | 4        |      |      | 4    |      | ሻ        | ₽        |          |
| Traffic Volume (veh/h)       | 40   | 190      | 70   | 10    | 90       | 300  | 40   | 200  | 10   | 370      | 480      | 50       |
| Future Volume (veh/h)        | 40   | 190      | 70   | 10    | 90       | 300  | 40   | 200  | 10   | 370      | 480      | 50       |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0     | 0        | 0    | 0    | 0    | 0    | 0        | 0        | 0        |
| Ped-Bike Adj(A_pbT)          | 0.99 |          | 0.99 | 1.00  |          | 0.99 | 1.00 |      | 1.00 | 1.00     |          | 0.99     |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00     | 1.00     |
| Work Zone On Approach        |      | No       |      |       | No       |      |      | No   |      |          | No       |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870  | 1870     | 1870 | 1870 | 1870 | 1870 | 1870     | 1870     | 1870     |
| Adj Flow Rate, veh/h         | 43   | 207      | 59   | 11    | 98       | 158  | 43   | 217  | 9    | 402      | 522      | 50       |
| Peak Hour Factor             | 0.92 | 0.92     | 0.92 | 0.92  | 0.92     | 0.92 | 0.92 | 0.92 | 0.92 | 0.92     | 0.92     | 0.92     |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2     | 2        | 2    | 2    | 2    | 2    | 2        | 2        | 2        |
| Cap, veh/h                   | 117  | 290      | 77   | 81    | 151      | 228  | 57   | 285  | 12   | 486      | 458      | 44       |
| Arrive On Green              | 0.23 | 0.23     | 0.23 | 0.23  | 0.23     | 0.23 | 0.19 | 0.19 | 0.19 | 0.27     | 0.27     | 0.27     |
| Sat Flow, veh/h              | 155  | 1272     | 337  | 28    | 660      | 997  | 295  | 1488 | 62   | 1781     | 1679     | 161      |
| Grp Volume(v), veh/h         | 309  | 0        | 0    | 267   | 0        | 0    | 269  | 0    | 0    | 402      | 0        | 572      |
| Grp Sat Flow(s),veh/h/ln     | 1763 | 0        | 0    | 1685  | 0        | 0    | 1845 | 0    | 0    | 1781     | 0        | 1840     |
| Q Serve(g_s), s              | 0.7  | 0.0      | 0.0  | 0.0   | 0.0      | 0.0  | 6.9  | 0.0  | 0.0  | 10.6     | 0.0      | 13.7     |
| Cycle Q Clear(g_c), s        | 8.0  | 0.0      | 0.0  | 7.3   | 0.0      | 0.0  | 6.9  | 0.0  | 0.0  | 10.6     | 0.0      | 13.7     |
| Prop In Lane                 | 0.14 |          | 0.19 | 0.04  |          | 0.59 | 0.16 |      | 0.03 | 1.00     |          | 0.09     |
| Lane Grp Cap(c), veh/h       | 484  | 0        | 0    | 459   | 0        | 0    | 354  | 0    | 0    | 486      | 0        | 502      |
| V/C Ratio(X)                 | 0.64 | 0.00     | 0.00 | 0.58  | 0.00     | 0.00 | 0.76 | 0.00 | 0.00 | 0.83     | 0.00     | 1.14     |
| Avail Cap(c_a), veh/h        | 898  | 0        | 0    | 1022  | 0        | 0    | 698  | 0    | 0    | 486      | 0        | 502      |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00     | 1.00     |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00  | 0.00     | 0.00 | 1.00 | 0.00 | 0.00 | 1.00     | 0.00     | 1.00     |
| Uniform Delay (d), s/veh     | 18.0 | 0.0      | 0.0  | 17.8  | 0.0      | 0.0  | 19.2 | 0.0  | 0.0  | 17.1     | 0.0      | 18.2     |
| Incr Delay (d2), s/veh       | 0.5  | 0.0      | 0.0  | 0.4   | 0.0      | 0.0  | 2.5  | 0.0  | 0.0  | 10.6     | 0.0      | 84.2     |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0   | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0      | 0.0      |
| %ile BackOfQ(50%),veh/ln     | 2.9  | 0.0      | 0.0  | 2.4   | 0.0      | 0.0  | 3.0  | 0.0  | 0.0  | 5.1      | 0.0      | 16.6     |
| Unsig. Movement Delay, s/veh |      |          |      |       |          |      |      |      |      |          |          |          |
| LnGrp Delay(d),s/veh         | 18.5 | 0.0      | 0.0  | 18.2  | 0.0      | 0.0  | 21.7 | 0.0  | 0.0  | 27.7     | 0.0      | 102.5    |
| LnGrp LOS                    | В    | Α        | Α    | В     | Α        | Α    | С    | Α    | Α    | С        | Α        | <u> </u> |
| Approach Vol, veh/h          |      | 309      |      |       | 267      |      |      | 269  |      |          | 974      |          |
| Approach Delay, s/veh        |      | 18.5     |      |       | 18.2     |      |      | 21.7 |      |          | 71.6     |          |
| Approach LOS                 |      | В        |      |       | В        |      |      | С    |      |          | Е        |          |
| Timer - Assigned Phs         |      | 2        |      | 4     |          | 6    |      | 8    |      |          |          |          |
| Phs Duration (G+Y+Rc), s     |      | 14.2     |      | 16.9  |          | 19.1 |      | 16.9 |      |          |          |          |
| Change Period (Y+Rc), s      |      | 4.6      |      | * 5.4 |          | 5.4  |      | 5.4  |      |          |          |          |
| Max Green Setting (Gmax), s  |      | 19.0     |      | * 24  |          | 13.7 |      | 28.7 |      |          |          |          |
| Max Q Clear Time (g_c+l1), s |      | 8.9      |      | 10.0  |          | 15.7 |      | 9.3  |      |          |          |          |
| Green Ext Time (p_c), s      |      | 0.9      |      | 0.6   |          | 0.0  |      | 0.5  |      |          |          |          |
| Intersection Summary         |      |          |      |       |          |      |      |      |      |          |          |          |
| HCM 6th Ctrl Delay           |      |          | 47.4 |       |          |      |      |      |      |          |          |          |
| HCM 6th LOS                  |      |          | D    |       |          |      |      |      |      |          |          |          |

## Notes

User approved pedestrian interval to be less than phase max green.

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|                           | •    |                                         | •    | Ť        | /    | -    | ţ        |
|---------------------------|------|-----------------------------------------|------|----------|------|------|----------|
| Movement                  | WBL  | vement                                  | WBR  | NBT      | NBR  | SBL  | SBT      |
| Lane Configurations       | ሻ    |                                         | 7    | <b>↑</b> | 7    |      | <b>^</b> |
| Traffic Volume (veh/h)    | 490  |                                         | 20   | 200      | 250  | 30   | 520      |
| Future Volume (veh/h)     | 490  |                                         | 20   | 200      | 250  | 30   | 520      |
| Initial Q (Qb), veh       | 0    | al Q (Qb), veh                          | 0    | 0        | 0    | 0    | 0        |
| Ped-Bike Adj(A_pbT)       | 1.00 |                                         | 1.00 |          | 1.00 | 1.00 |          |
| Parking Bus, Adj          | 1.00 |                                         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     |
| Work Zone On Approac      | h No |                                         |      | No       |      |      | No       |
| Adj Sat Flow, veh/h/ln    | 1870 | Sat Flow, veh/h/ln                      | 1870 | 1870     | 1870 | 1870 | 1870     |
| Adj Flow Rate, veh/h      | 533  | Flow Rate, veh/h                        | 8    | 217      | 272  | 33   | 565      |
| Peak Hour Factor          | 0.92 | ak Hour Factor                          | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     |
| Percent Heavy Veh, %      | 2    | cent Heavy Veh, %                       | 2    | 2        | 2    | 2    | 2        |
| Cap, veh/h                | 600  |                                         | 534  | 414      | 351  | 54   | 751      |
| Arrive On Green           | 0.34 |                                         | 0.34 | 0.22     | 0.22 | 0.03 | 0.40     |
| Sat Flow, veh/h           | 1781 | Flow, veh/h                             | 1585 | 1870     | 1585 | 1781 | 1870     |
| Grp Volume(v), veh/h      | 533  | Volume(v), veh/h                        | 8    | 217      | 272  | 33   | 565      |
| Grp Sat Flow(s),veh/h/li  |      |                                         | 1585 | 1870     | 1585 | 1781 | 1870     |
| Q Serve(g_s), s           | 11.7 | · ,                                     | 0.1  | 4.2      | 6.7  | 0.8  | 10.7     |
| Cycle Q Clear(g_c), s     | 11.7 |                                         | 0.1  | 4.2      | 6.7  | 0.8  | 10.7     |
| Prop In Lane              | 1.00 |                                         | 1.00 |          | 1.00 | 1.00 |          |
| Lane Grp Cap(c), veh/h    |      |                                         | 534  | 414      | 351  | 54   | 751      |
| V/C Ratio(X)              | 0.89 |                                         | 0.01 | 0.52     | 0.78 | 0.61 | 0.75     |
| Avail Cap(c_a), veh/h     | 1293 | ` '                                     | 1151 | 1358     | 1151 | 517  | 1358     |
| HCM Platoon Ratio         | 1.00 | – /:                                    | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     |
| Upstream Filter(I)        | 1.00 |                                         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     |
| Uniform Delay (d), s/vel  |      |                                         | 9.1  | 14.2     | 15.1 | 19.8 | 10.6     |
| Incr Delay (d2), s/veh    | 1.8  |                                         | 0.0  | 0.4      | 1.4  | 4.0  | 0.6      |
| Initial Q Delay(d3),s/veh |      | * \ /:                                  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      |
| %ile BackOfQ(50%),vel     |      | • ( ):                                  | 0.0  | 1.4      | 2.0  | 0.3  | 3.0      |
| Unsig. Movement Delay     |      |                                         |      |          | 2.0  | 0.0  | 0.0      |
| LnGrp Delay(d),s/veh      | 14.8 |                                         | 9.1  | 14.6     | 16.5 | 23.8 | 11.2     |
| LnGrp LOS                 | В    | • • • • • • • • • • • • • • • • • • • • | A    | В        | В    | C    | В        |
| Approach Vol, veh/h       | 541  |                                         |      | 489      |      |      | 598      |
| Approach Delay, s/veh     | 14.7 |                                         |      | 15.7     |      |      | 11.9     |
| Approach LOS              | В    |                                         |      | В        |      |      | В        |
| ••                        | D    |                                         |      | D        |      |      | D        |
| Timer - Assigned Phs      | 1    |                                         | 2    |          | 4    |      | 6        |
| Phs Duration (G+Y+Rc)     |      | ,                                       | 15.3 |          | 18.5 |      | 22.8     |
| Change Period (Y+Rc),     |      |                                         | 6.2  |          | 4.6  |      | 6.2      |
| Max Green Setting (Gm     |      |                                         | 30.0 |          | 30.0 |      | 30.0     |
| Max Q Clear Time (g_c     |      |                                         | 8.7  |          | 13.7 |      | 12.7     |
| Green Ext Time (p_c), s   | 0.0  | en Ext Time (p_c),                      | 0.5  |          | 0.3  |      | 1.0      |
| Intersection Summary      |      | ersection Summary                       |      |          |      |      |          |
| HCM 6th Ctrl Delay        |      | •                                       |      | 14.0     |      |      |          |
| HCM 6th LOS               |      |                                         |      | В        |      |      |          |
|                           |      |                                         |      |          |      |      |          |
| Notes                     |      | es                                      |      |          |      |      |          |

| Intersection           |        |       |             |        |      |      |        |       |       |        |       |       |
|------------------------|--------|-------|-------------|--------|------|------|--------|-------|-------|--------|-------|-------|
| Int Delay, s/veh       | 1.5    |       |             |        |      |      |        |       |       |        |       |       |
| Movement               | EBL    | EBT   | EBR         | WBL    | WBT  | WBR  | NBL    | NBT   | NBR   | SBL    | SBT   | SBR   |
| Lane Configurations    | 7      | ĵ.    |             | Ť      | f)   |      |        | 4     |       |        | 4     |       |
| Traffic Vol, veh/h     | 20     | 500   | 0           | 0      | 370  | 20   | 0      | 0     | 0     | 40     | 0     | 20    |
| Future Vol, veh/h      | 20     | 500   | 0           | 0      | 370  | 20   | 0      | 0     | 0     | 40     | 0     | 20    |
| Conflicting Peds, #/hr | 0      | 0     | 0           | 0      | 0    | 0    | 0      | 0     | 0     | 0      | 0     | 0     |
| Sign Control           | Free   | Free  | Free        | Free   | Free | Free | Stop   | Stop  | Stop  | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -     | None        | -      | -    | None | -      | -     | None  | -      | -     | None  |
| Storage Length         | 90     | -     | -           | 90     | -    | -    | -      | -     | -     | -      | -     | -     |
| Veh in Median Storage  | e, # - | 0     | -           | -      | 0    | -    | -      | 0     | -     | -      | 0     | -     |
| Grade, %               | _      | 0     | -           | -      | 0    | -    | -      | 0     | -     | -      | 0     | -     |
| Peak Hour Factor       | 92     | 92    | 92          | 92     | 92   | 92   | 92     | 92    | 92    | 92     | 92    | 92    |
| Heavy Vehicles, %      | 2      | 2     | 2           | 2      | 2    | 2    | 2      | 2     | 2     | 2      | 2     | 2     |
| Mvmt Flow              | 22     | 543   | 0           | 0      | 402  | 22   | 0      | 0     | 0     | 43     | 0     | 22    |
|                        |        |       |             |        |      |      |        |       |       |        |       |       |
| Major/Minor I          | Major1 |       | ľ           | Major2 |      |      | Minor1 |       |       | Minor2 |       |       |
| Conflicting Flow All   | 424    | 0     | 0           | 543    | 0    | 0    | 1011   | 1011  | 543   | 1000   | 1000  | 413   |
| Stage 1                | -      | -     | -           | -      | -    | -    | 587    | 587   | -     | 413    | 413   | _     |
| Stage 2                | -      | -     | -           | -      | -    | -    | 424    | 424   | -     | 587    | 587   | -     |
| Critical Hdwy          | 4.12   | -     | -           | 4.12   | -    | -    | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -      | -     | -           | -      | -    | -    | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -      | -     | -           | -      | -    | -    | 6.12   | 5.52  | -     | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218  | -     | -           | 2.218  | -    | -    | 3.518  | 4.018 | 3.318 | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1135   | -     | -           | 1026   | -    | -    | 218    | 240   | 540   | 222    | 243   | 639   |
| Stage 1                | -      | -     | -           | -      | -    | -    | 496    | 497   | -     | 616    | 594   | -     |
| Stage 2                | -      | -     | -           | -      | -    | -    | 608    | 587   | -     | 496    | 497   | -     |
| Platoon blocked, %     |        | -     | -           |        | -    | -    |        |       |       |        |       |       |
| Mov Cap-1 Maneuver     | 1135   | -     | -           | 1026   | -    | -    | 208    | 235   | 540   | 219    | 238   | 639   |
| Mov Cap-2 Maneuver     | -      | -     | -           | -      | -    | -    | 208    | 235   | -     | 219    | 238   | -     |
| Stage 1                | -      | -     | -           | -      | -    | -    | 487    | 488   | -     | 604    | 594   | -     |
| Stage 2                | -      | -     | -           | -      | -    | -    | 587    | 587   | -     | 486    | 488   | -     |
|                        |        |       |             |        |      |      |        |       |       |        |       |       |
| Approach               | EB     |       |             | WB     |      |      | NB     |       |       | SB     |       |       |
| HCM Control Delay, s   | 0.3    |       |             | 0      |      |      | 0      |       |       | 21.7   |       |       |
| HCM LOS                |        |       |             |        |      |      | A      |       |       | С      |       |       |
|                        |        |       |             |        |      |      |        |       |       |        |       |       |
| Minor Lane/Major Mvm   | nt N   | NBLn1 | EBL         | EBT    | EBR  | WBL  | WBT    | WBR   | SBLn1 |        |       |       |
| Capacity (veh/h)       |        | -     | 1135        | _      | -    | 1026 | _      | _     | 280   |        |       |       |
| HCM Lane V/C Ratio     |        | _     | 0.019       | _      | _    | -    | _      | _     | 0.233 |        |       |       |
| HCM Control Delay (s)  |        | 0     | 8.2         | _      | -    | 0    | _      | _     | 21.7  |        |       |       |
| HCM Lane LOS           |        | A     | A           | _      | _    | A    | _      | _     | C     |        |       |       |
| HCM 95th %tile Q(veh)  | )      | -     | 0.1         | _      | _    | 0    | _      | _     | 0.9   |        |       |       |
|                        |        |       | <b>J</b> ., |        |      |      |        |       | 5.5   |        |       |       |

|                                         | ۶    | <b>→</b> | •    | •     | <b>←</b>  | •    | •           | <b>†</b>   | /    | <b>&gt;</b> | ļ            | 4        |
|-----------------------------------------|------|----------|------|-------|-----------|------|-------------|------------|------|-------------|--------------|----------|
| Movement                                | EBL  | EBT      | EBR  | WBL   | WBT       | WBR  | NBL         | NBT        | NBR  | SBL         | SBT          | SBR      |
| Lane Configurations                     | ř    | ĵ»       |      | ň     | f)        |      | Ť           | <b>↑</b> } |      | ¥           | <b>∱</b> ∱   |          |
| Traffic Volume (veh/h)                  | 300  | 350      | 80   | 70    | 250       | 270  | 70          | 350        | 120  | 200         | 230          | 80       |
| Future Volume (veh/h)                   | 300  | 350      | 80   | 70    | 250       | 270  | 70          | 350        | 120  | 200         | 230          | 80       |
| Initial Q (Qb), veh                     | 0    | 0        | 0    | 0     | 0         | 0    | 0           | 0          | 0    | 0           | 0            | 0        |
| Ped-Bike Adj(A_pbT)                     | 1.00 |          | 1.00 | 1.00  |           | 1.00 | 1.00        |            | 0.99 | 1.00        |              | 0.99     |
| Parking Bus, Adj                        | 1.00 | 1.00     | 1.00 | 1.00  | 1.00      | 1.00 | 1.00        | 1.00       | 1.00 | 1.00        | 1.00         | 1.00     |
| Work Zone On Approach                   |      | No       |      |       | No        |      |             | No         |      |             | No           |          |
| Adj Sat Flow, veh/h/ln                  | 1870 | 1870     | 1870 | 1870  | 1870      | 1870 | 1870        | 1870       | 1870 | 1870        | 1870         | 1870     |
| Adj Flow Rate, veh/h                    | 326  | 380      | 80   | 76    | 272       | 261  | 76          | 380        | 98   | 217         | 250          | 57       |
| Peak Hour Factor                        | 0.92 | 0.92     | 0.92 | 0.92  | 0.92      | 0.92 | 0.92        | 0.92       | 0.92 | 0.92        | 0.92         | 0.92     |
| Percent Heavy Veh, %                    | 2    | 2        | 2    | 2     | 2         | 2    | 2           | 2          | 2    | 2           | 2            | 2        |
| Cap, veh/h                              | 362  | 622      | 131  | 172   | 270       | 259  | 172         | 493        | 126  | 250         | 634          | 142      |
| Arrive On Green                         | 0.20 | 0.42     | 0.42 | 0.10  | 0.31      | 0.31 | 0.10        | 0.18       | 0.18 | 0.14        | 0.22         | 0.22     |
| Sat Flow, veh/h                         | 1781 | 1497     | 315  | 1781  | 875       | 840  | 1781        | 2795       | 712  | 1781        | 2879         | 644      |
| Grp Volume(v), veh/h                    | 326  | 0        | 460  | 76    | 0         | 533  | 76          | 240        | 238  | 217         | 152          | 155      |
| Grp Sat Flow(s), veh/h/ln               | 1781 | 0        | 1812 | 1781  | 0         | 1714 | 1781        | 1777       | 1730 | 1781        | 1777         | 1746     |
| Q Serve(g_s), s                         | 17.9 | 0.0      | 20.0 | 4.0   | 0.0       | 31.0 | 4.0         | 12.9       | 13.2 | 12.0        | 7.3          | 7.6      |
| Cycle Q Clear(g_c), s                   | 17.9 | 0.0      | 20.0 | 4.0   | 0.0       | 31.0 | 4.0         | 12.9       | 13.2 | 12.0        | 7.3          | 7.6      |
| Prop In Lane                            | 1.00 | 0.0      | 0.17 | 1.00  | 0.0       | 0.49 | 1.00        | 12.3       | 0.41 | 1.00        | 1.5          | 0.37     |
| Lane Grp Cap(c), veh/h                  | 362  | 0        | 754  | 172   | 0         | 529  | 172         | 313        | 305  | 250         | 391          | 384      |
| V/C Ratio(X)                            | 0.90 | 0.00     | 0.61 | 0.44  | 0.00      | 1.01 | 0.44        | 0.77       | 0.78 | 0.87        | 0.39         | 0.40     |
|                                         | 461  | 0.00     | 754  | 461   | 0.00      | 529  | 195         | 478        | 465  | 284         | 478          | 470      |
| Avail Cap(c_a), veh/h HCM Platoon Ratio | 1.00 | 1.00     | 1.00 | 1.00  | 1.00      | 1.00 | 1.00        | 1.00       | 1.00 | 1.00        | 1.00         | 1.00     |
|                                         | 1.00 | 0.00     | 1.00 | 1.00  | 0.00      | 1.00 |             | 1.00       |      | 1.00        |              |          |
| Upstream Filter(I)                      | 39.0 |          | 23.0 | 42.8  | 0.00      | 34.7 | 1.00        | 39.4       | 1.00 | 42.3        | 1.00<br>33.4 | 1.00     |
| Uniform Delay (d), s/veh                |      | 0.0      |      |       |           |      | 42.8        |            | 39.5 |             |              | 33.5     |
| Incr Delay (d2), s/veh                  | 17.4 | 0.0      | 1.4  | 1.8   | 0.0       | 40.8 | 1.8         | 4.0        | 4.7  | 22.0        | 0.6          | 0.7      |
| Initial Q Delay(d3),s/veh               | 0.0  | 0.0      | 0.0  | 0.0   | 0.0       | 0.0  | 0.0         | 0.0        | 0.0  | 0.0         | 0.0          | 0.0      |
| %ile BackOfQ(50%),veh/ln                | 9.2  | 0.0      | 8.2  | 1.8   | 0.0       | 18.2 | 1.8         | 5.7        | 5.8  | 6.7         | 3.2          | 3.2      |
| Unsig. Movement Delay, s/veh            |      | 0.0      | 04.4 | 44.0  | 0.0       | 75.5 | 44.0        | 40.0       | 44.0 | 040         | 04.0         | 040      |
| LnGrp Delay(d),s/veh                    | 56.4 | 0.0      | 24.4 | 44.6  | 0.0       | 75.5 | 44.6        | 43.3       | 44.2 | 64.3        | 34.0         | 34.2     |
| LnGrp LOS                               | E    | Α        | С    | D     | Α         | F    | D           | D          | D    | E           | С            | <u>C</u> |
| Approach Vol, veh/h                     |      | 786      |      |       | 609       |      |             | 554        |      |             | 524          |          |
| Approach Delay, s/veh                   |      | 37.7     |      |       | 71.7      |      |             | 43.9       |      |             | 46.6         |          |
| Approach LOS                            |      | D        |      |       | Е         |      |             | D          |      |             | D            |          |
| Timer - Assigned Phs                    | 1    | 2        | 3    | 4     | 5         | 6    | 7           | 8          |      |             |              |          |
| Phs Duration (G+Y+Rc), s                | 13.7 | 27.1     | 24.4 | 35.2  | 18.1      | 22.7 | 13.7        | 45.9       |      |             |              |          |
| Change Period (Y+Rc), s                 | 4.0  | 5.0      | 4.0  | * 4.2 | 4.0       | 5.0  | 4.0         | * 4.2      |      |             |              |          |
| Max Green Setting (Gmax), s             | 11.0 | 27.0     | 26.0 | * 31  | 16.0      | 27.0 | 26.0        | * 31       |      |             |              |          |
| Max Q Clear Time (g_c+l1), s            | 6.0  | 9.6      | 19.9 | 33.0  | 14.0      | 15.2 | 6.0         | 22.0       |      |             |              |          |
| Green Ext Time (p_c), s                 | 0.1  | 1.5      | 0.5  | 0.0   | 0.1       | 2.0  | 0.1         | 1.8        |      |             |              |          |
| Intersection Summary                    | J.,  | 1.0      | 0.0  | 0.0   | <b>V.</b> |      | <b>J</b> ., | ,,,        |      |             |              |          |
|                                         |      |          | 40.2 |       |           |      |             |            |      |             |              |          |
| HCM 6th L OS                            |      |          | 49.3 |       |           |      |             |            |      |             |              |          |
| HCM 6th LOS                             |      |          | D    |       |           |      |             |            |      |             |              |          |
| Notes                                   |      |          |      |       |           |      |             |            |      |             |              |          |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| ntersection              |     |
|--------------------------|-----|
| ntersection Delay, s/veh | 8.5 |
| ntersection LOS          | А   |

| Movement                                                                                                                                                        | EBL                                             | EBT  | EBR  | WBL                                             | WBT  | WBR  | NBL                                             | NBT  | NBR  | SBL                                      | SBT  | SBR  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------|------|-------------------------------------------------|------|------|-------------------------------------------------|------|------|------------------------------------------|------|------|
| Lane Configurations                                                                                                                                             |                                                 | 4    |      |                                                 | 4    |      |                                                 | 4    |      |                                          | 4    |      |
| Traffic Vol, veh/h                                                                                                                                              | 40                                              | 10   | 90   | 10                                              | 10   | 10   | 130                                             | 40   | 10   | 10                                       | 40   | 20   |
| Future Vol, veh/h                                                                                                                                               | 40                                              | 10   | 90   | 10                                              | 10   | 10   | 130                                             | 40   | 10   | 10                                       | 40   | 20   |
| Peak Hour Factor                                                                                                                                                | 0.92                                            | 0.92 | 0.92 | 0.92                                            | 0.92 | 0.92 | 0.92                                            | 0.92 | 0.92 | 0.92                                     | 0.92 | 0.92 |
| Heavy Vehicles, %                                                                                                                                               | 2                                               | 2    | 2    | 2                                               | 2    | 2    | 2                                               | 2    | 2    | 2                                        | 2    | 2    |
| Mvmt Flow                                                                                                                                                       | 43                                              | 11   | 98   | 11                                              | 11   | 11   | 141                                             | 43   | 11   | 11                                       | 43   | 22   |
| Number of Lanes                                                                                                                                                 | 0                                               | 1    | 0    | 0                                               | 1    | 0    | 0                                               | 1    | 0    | 0                                        | 1    | 0    |
| Approach                                                                                                                                                        | EB                                              |      |      | WB                                              |      |      | NB                                              |      |      | SB                                       |      |      |
| Opposing Approach                                                                                                                                               | WB                                              |      |      | EB                                              |      |      | SB                                              |      |      | NB                                       |      |      |
| Opposing Lanes                                                                                                                                                  | 1                                               |      |      | 1                                               |      |      | 1                                               |      |      | 1                                        |      |      |
| Conflicting Approach Left                                                                                                                                       | SB                                              |      |      | NB                                              |      |      | EB                                              |      |      | WB                                       |      |      |
| Conflicting Lanes Left                                                                                                                                          | 1                                               |      |      | 1                                               |      |      | 1                                               |      |      | 1                                        |      |      |
| Conflicting Approach Right                                                                                                                                      | NB                                              |      |      | SB                                              |      |      | WB                                              |      |      | EB                                       |      |      |
| Conflicting Lanes Right                                                                                                                                         | 1                                               |      |      | 1                                               |      |      | 1                                               |      |      | 1                                        |      |      |
| HCM Control Delay                                                                                                                                               | 8.2                                             |      |      | 7.8                                             |      |      | 9.1                                             |      |      | 7.9                                      |      |      |
| HCM LOS                                                                                                                                                         | Α                                               |      |      | А                                               |      |      | Α                                               |      |      | А                                        |      |      |
| Approach Opposing Approach Opposing Lanes Conflicting Approach Left Conflicting Lanes Left Conflicting Approach Right Conflicting Lanes Right HCM Control Delay | 0<br>EB<br>WB<br>1<br>SB<br>1<br>NB<br>1<br>8.2 | 1    |      | 0<br>WB<br>EB<br>1<br>NB<br>1<br>SB<br>1<br>7.8 | 1    |      | 0<br>NB<br>SB<br>1<br>EB<br>1<br>WB<br>1<br>9.1 | 1    |      | 0<br>SB<br>NB<br>1<br>WB<br>1<br>EB<br>1 | 1    |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 72%   | 29%   | 33%   | 14%   |  |
| Vol Thru, %            | 22%   | 7%    | 33%   | 57%   |  |
| Vol Right, %           | 6%    | 64%   | 33%   | 29%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 180   | 140   | 30    | 70    |  |
| LT Vol                 | 130   | 40    | 10    | 10    |  |
| Through Vol            | 40    | 10    | 10    | 40    |  |
| RT Vol                 | 10    | 90    | 10    | 20    |  |
| Lane Flow Rate         | 196   | 152   | 33    | 76    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.247 | 0.181 | 0.042 | 0.094 |  |
| Departure Headway (Hd) | 4.542 | 4.277 | 4.606 | 4.428 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 790   | 840   | 777   | 810   |  |
| Service Time           | 2.566 | 2.298 | 2.634 | 2.454 |  |
| HCM Lane V/C Ratio     | 0.248 | 0.181 | 0.042 | 0.094 |  |
| HCM Control Delay      | 9.1   | 8.2   | 7.8   | 7.9   |  |
| HCM Lane LOS           | А     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 1     | 0.7   | 0.1   | 0.3   |  |

| ,                           | ۶     | <b>→</b> | •    | •     | <b>←</b> | •     | •    | †         | <u> </u> | <b>&gt;</b> | ţ        | 4    |  |
|-----------------------------|-------|----------|------|-------|----------|-------|------|-----------|----------|-------------|----------|------|--|
| Movement E                  | BL    | EBT      | EBR  | WBL   | WBT      | WBR   | NBL  | NBT       | NBR      | SBL         | SBT      | SBR  |  |
| Lane Configurations         |       | <b>↑</b> |      |       | <b>†</b> | 7     | ች    | <b>\$</b> |          | *           | <b>1</b> |      |  |
| Traffic Volume (veh/h)      | 50    | 360      | 0    | 0     | 430      | 170   | 10   | 30        | 20       | 80          | 0        | 60   |  |
| Future Volume (veh/h)       | 50    | 360      | 0    | 0     | 430      | 170   | 10   | 30        | 20       | 80          | 0        | 60   |  |
| Initial Q (Qb), veh         | 0     | 0        | 0    | 0     | 0        | 0     | 0    | 0         | 0        | 0           | 0        | 0    |  |
| , ,                         | .00   |          | 1.00 | 1.00  |          | 0.99  | 0.99 |           | 0.99     | 0.99        |          | 0.99 |  |
|                             | .00   | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00      | 1.00     | 1.00        | 1.00     | 1.00 |  |
| Work Zone On Approach       |       | No       |      |       | No       |       |      | No        |          |             | No       |      |  |
| Adj Sat Flow, veh/h/ln 18   | 370   | 1870     | 0    | 0     | 1870     | 1870  | 1870 | 1870      | 1870     | 1870        | 1870     | 1870 |  |
| Adj Flow Rate, veh/h        | 54    | 391      | 0    | 0     | 467      | 92    | 11   | 33        | 4        | 87          | 0        | 11   |  |
| Peak Hour Factor 0          | .92   | 0.92     | 0.92 | 0.92  | 0.92     | 0.92  | 0.92 | 0.92      | 0.92     | 0.92        | 0.92     | 0.92 |  |
| Percent Heavy Veh, %        | 2     | 2        | 0    | 0     | 2        | 2     | 2    | 2         | 2        | 2           | 2        | 2    |  |
| Cap, veh/h 5                | 519   | 1103     | 0    | 0     | 723      | 609   | 458  | 327       | 40       | 438         | 0        | 313  |  |
| Arrive On Green 0           | .10   | 0.59     | 0.00 | 0.00  | 0.39     | 0.39  | 0.20 | 0.20      | 0.18     | 0.20        | 0.00     | 0.18 |  |
| Sat Flow, veh/h 17          | 781   | 1870     | 0    | 0     | 1870     | 1575  | 1386 | 1634      | 198      | 1355        | 0        | 1566 |  |
| Grp Volume(v), veh/h        | 54    | 391      | 0    | 0     | 467      | 92    | 11   | 0         | 37       | 87          | 0        | 11   |  |
| Grp Sat Flow(s), veh/h/ln17 | 781   | 1870     | 0    | 0     | 1870     | 1575  | 1386 | 0         | 1832     | 1355        | 0        | 1566 |  |
| Q Serve(g_s), s             | 0.6   | 4.1      | 0.0  | 0.0   | 7.8      | 1.4   | 0.2  | 0.0       | 0.6      | 2.1         | 0.0      | 0.2  |  |
| Cycle Q Clear(g_c), s       | 0.6   | 4.1      | 0.0  | 0.0   | 7.8      | 1.4   | 0.5  | 0.0       | 0.6      | 2.8         | 0.0      | 0.2  |  |
| Prop In Lane 1              | .00   |          | 0.00 | 0.00  |          | 1.00  | 1.00 |           | 0.11     | 1.00        |          | 1.00 |  |
| Lane Grp Cap(c), veh/h 5    | 519   | 1103     | 0    | 0     | 723      | 609   | 458  | 0         | 366      | 438         | 0        | 313  |  |
| V/C Ratio(X) 0              | .10   | 0.35     | 0.00 | 0.00  | 0.65     | 0.15  | 0.02 | 0.00      | 0.10     | 0.20        | 0.00     | 0.04 |  |
| Avail Cap(c_a), veh/h 7     | 704   | 1607     | 0    | 0     | 3573     | 3008  | 862  | 0         | 900      | 833         | 0        | 770  |  |
| HCM Platoon Ratio 1         | .00   | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00      | 1.00     | 1.00        | 1.00     | 1.00 |  |
| Upstream Filter(I) 1        | .00   | 1.00     | 0.00 | 0.00  | 1.00     | 1.00  | 1.00 | 0.00      | 1.00     | 1.00        | 0.00     | 1.00 |  |
| Uniform Delay (d), s/veh    | 5.5   | 4.0      | 0.0  | 0.0   | 9.5      | 7.6   | 12.5 | 0.0       | 12.5     | 13.6        | 0.0      | 12.6 |  |
| Incr Delay (d2), s/veh      | 0.1   | 0.2      | 0.0  | 0.0   | 1.0      | 0.1   | 0.0  | 0.0       | 0.1      | 0.2         | 0.0      | 0.0  |  |
| Initial Q Delay(d3),s/veh   | 0.0   | 0.0      | 0.0  | 0.0   | 0.0      | 0.0   | 0.0  | 0.0       | 0.0      | 0.0         | 0.0      | 0.0  |  |
| %ile BackOfQ(50%), veh/lr   | 10.1  | 0.9      | 0.0  | 0.0   | 2.6      | 0.4   | 0.1  | 0.0       | 0.2      | 0.6         | 0.0      | 0.1  |  |
| Unsig. Movement Delay, s    | s/veh |          |      |       |          |       |      |           |          |             |          |      |  |
| LnGrp Delay(d),s/veh        | 5.6   | 4.2      | 0.0  | 0.0   | 10.5     | 7.7   | 12.5 | 0.0       | 12.6     | 13.8        | 0.0      | 12.6 |  |
| LnGrp LOS                   | Α     | Α        | Α    | Α     | В        | Α     | В    | Α         | В        | В           | Α        | В    |  |
| Approach Vol, veh/h         |       | 445      |      |       | 559      |       |      | 48        |          |             | 98       |      |  |
| Approach Delay, s/veh       |       | 4.4      |      |       | 10.1     |       |      | 12.6      |          |             | 13.6     |      |  |
| Approach LOS                |       | Α        |      |       | В        |       |      | В         |          |             | В        |      |  |
| Timer - Assigned Phs        |       | 2        |      | 4     | 5        | 6     |      | 8         |          |             |          |      |  |
| Phs Duration (G+Y+Rc), s    |       | 26.5     |      | 11.6  | 7.7      | 18.7  |      | 11.6      |          |             |          |      |  |
| Change Period (Y+Rc), s     | )     | * 4.7    |      | * 4.7 | * 4.7    | * 4.7 |      | * 4.7     |          |             |          |      |  |
| Max Green Setting (Gmax     | /\ c  | * 32     |      | * 18  | * 7      | * 72  |      | * 18      |          |             |          |      |  |
| Max Q Clear Time (g_c+l1    |       | 6.1      |      | 4.8   | 2.6      | 9.8   |      | 2.6       |          |             |          |      |  |
| Green Ext Time (p_c), s     | 1), 3 | 2.6      |      | 0.2   | 0.0      | 3.9   |      | 0.1       |          |             |          |      |  |
| 4 - 7                       |       | 2.0      |      | 0.2   | 0.0      | 3.7   |      | 0.1       |          |             |          |      |  |
| Intersection Summary        |       |          |      |       |          |       |      |           |          |             |          |      |  |
| HCM 6th Ctrl Delay          |       |          | 8.3  |       |          |       |      |           |          |             |          |      |  |
| HCM 6th LOS                 |       |          | Α    |       |          |       |      |           |          |             |          |      |  |
| Motoc                       |       |          |      |       |          |       |      |           |          |             |          |      |  |

| •                              | -        | •    | •     | <b>←</b> | •     | 4    | †     | <b>/</b> | <b>/</b> | ļ    | 4    |  |
|--------------------------------|----------|------|-------|----------|-------|------|-------|----------|----------|------|------|--|
| Movement EBL                   | EBT      | EBR  | WBL   | WBT      | WBR   | NBL  | NBT   | NBR      | SBL      | SBT  | SBR  |  |
| Lane Configurations            | <b>†</b> | 7    | ሻ     | f)       |       | ሻ    | f)    |          |          | 4    |      |  |
| Traffic Volume (veh/h) 0       | 340      | 120  | 60    | 430      | 20    | 140  | 10    | 30       | 20       | 20   | 30   |  |
| Future Volume (veh/h) 0        | 340      | 120  | 60    | 430      | 20    | 140  | 10    | 30       | 20       | 20   | 30   |  |
| Initial Q (Qb), veh 0          | 0        | 0    | 0     | 0        | 0     | 0    | 0     | 0        | 0        | 0    | 0    |  |
| Ped-Bike Adj(A_pbT) 1.00       |          | 0.99 | 1.00  |          | 1.00  | 0.99 |       | 1.00     | 1.00     |      | 0.99 |  |
| Parking Bus, Adj 1.00          | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00  | 1.00     | 1.00     | 1.00 | 1.00 |  |
| Work Zone On Approach          | No       |      |       | No       |       |      | No    |          |          | No   |      |  |
| Adj Sat Flow, veh/h/ln 0       | 1870     | 1870 | 1870  | 1870     | 1870  | 1870 | 1870  | 1870     | 1870     | 1870 | 1870 |  |
| Adj Flow Rate, veh/h 0         | 370      | 78   | 65    | 467      | 20    | 152  | 11    | 7        | 22       | 22   | 7    |  |
| Peak Hour Factor 0.92          | 0.92     | 0.92 | 0.92  | 0.92     | 0.92  | 0.92 | 0.92  | 0.92     | 0.92     | 0.92 | 0.92 |  |
| Percent Heavy Veh, % 0         | 2        | 2    | 2     | 2        | 2     | 2    | 2     | 2        | 2        | 2    | 2    |  |
| Cap, veh/h 0                   | 586      | 493  | 568   | 988      | 42    | 519  | 250   | 159      | 253      | 217  | 53   |  |
| Arrive On Green 0.00           | 0.31     | 0.31 | 0.14  | 0.56     | 0.54  | 0.23 | 0.23  | 0.22     | 0.23     | 0.23 | 0.22 |  |
| Sat Flow, veh/h 0              | 1870     | 1572 | 1781  | 1780     | 76    | 1367 | 1068  | 680      | 500      | 929  | 227  |  |
| Grp Volume(v), veh/h 0         | 370      | 78   | 65    | 0        | 487   | 152  | 0     | 18       | 51       | 0    | 0    |  |
| Grp Sat Flow(s), veh/h/ln 0    |          | 1572 | 1781  | 0        | 1856  | 1367 | 0     | 1748     | 1656     | 0    | 0    |  |
| Q Serve( $g_s$ ), s 0.0        | 6.4      | 1.4  | 0.7   | 0.0      | 6.0   | 2.5  | 0.0   | 0.3      | 0.0      | 0.0  | 0.0  |  |
| Cycle Q Clear( $g_c$ ), s 0.0  | 6.4      | 1.4  | 0.7   | 0.0      | 6.0   | 3.4  | 0.0   | 0.3      | 0.8      | 0.0  | 0.0  |  |
| Prop In Lane 0.00              | 0.1      | 1.00 | 1.00  | 0.0      | 0.04  | 1.00 | 0.0   | 0.39     | 0.43     | 0.0  | 0.14 |  |
| Lane Grp Cap(c), veh/h 0       | 586      | 493  | 568   | 0        | 1030  | 519  | 0     | 409      | 523      | 0    | 0.11 |  |
| V/C Ratio(X) 0.00              | 0.63     | 0.16 | 0.11  | 0.00     | 0.47  | 0.29 | 0.00  | 0.04     | 0.10     | 0.00 | 0.00 |  |
| Avail Cap(c_a), veh/h 0        |          | 1024 | 781   | 0        | 1209  | 1305 | 0.00  | 1415     | 600      | 0.00 | 0    |  |
| HCM Platoon Ratio 1.00         | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00  | 1.00     | 1.00     | 1.00 | 1.00 |  |
| Upstream Filter(I) 0.00        | 1.00     | 1.00 | 1.00  | 0.00     | 1.00  | 1.00 | 0.00  | 1.00     | 1.00     | 0.00 | 0.00 |  |
| Uniform Delay (d), s/veh 0.0   | 11.1     | 9.4  | 5.9   | 0.0      | 5.1   | 12.3 | 0.0   | 11.4     | 11.5     | 0.0  | 0.0  |  |
| Incr Delay (d2), s/veh 0.0     | 1.1      | 0.1  | 0.1   | 0.0      | 0.3   | 0.3  | 0.0   | 0.0      | 0.1      | 0.0  | 0.0  |  |
| Initial Q Delay(d3),s/veh 0.0  | 0.0      | 0.0  | 0.0   | 0.0      | 0.0   | 0.0  | 0.0   | 0.0      | 0.0      | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),veh/lr0.0    | 2.3      | 0.4  | 0.2   | 0.0      | 1.4   | 1.0  | 0.0   | 0.1      | 0.3      | 0.0  | 0.0  |  |
| Unsig. Movement Delay, s/ve    |          | 3.1  | 3.2   | 3.0      | - ''' | 1.0  | 3.0   | 3.1      | 3.0      | 3.0  | 3.0  |  |
| LnGrp Delay(d),s/veh 0.0       | 12.3     | 9.6  | 6.0   | 0.0      | 5.4   | 12.7 | 0.0   | 11.4     | 11.6     | 0.0  | 0.0  |  |
| LnGrp LOS A                    | В        | Α    | A     | A        | A     | В    | A     | В        | В        | A    | Α    |  |
| Approach Vol, veh/h            | 448      |      |       | 552      |       |      | 170   |          |          | 51   |      |  |
| Approach Delay, s/veh          | 11.8     |      |       | 5.5      |       |      | 12.5  |          |          | 11.6 |      |  |
| Approach LOS                   | В        |      |       | Α.       |       |      | В     |          |          | В    |      |  |
|                                |          |      | 1     | ,,       | 4     |      | 8     |          |          |      |      |  |
| Timer - Assigned Phs 1         | 2        |      | 4     |          | 6     |      |       |          |          |      |      |  |
| Phs Duration (G+Y+Rc), s9.2    | 15.9     |      | 12.9  |          | 25.1  |      | 12.9  |          |          |      |      |  |
| Change Period (Y+Rc), \$ 4.7   | * 4.7    |      | * 4.7 |          | * 4.7 |      | * 4.7 |          |          |      |      |  |
| Max Green Setting (Gmax), &    |          |      | * 10  |          | * 24  |      | * 30  |          |          |      |      |  |
| Max Q Clear Time (g_c+l12), 78 |          |      | 2.8   |          | 8.0   |      | 5.4   |          |          |      |      |  |
| Green Ext Time (p_c), s 0.1    | 2.3      |      | 0.1   |          | 3.0   |      | 0.5   |          |          |      |      |  |
| Intersection Summary           |          |      |       |          |       |      |       |          |          |      |      |  |
| HCM 6th Ctrl Delay             |          | 9.0  |       |          |       |      |       |          |          |      |      |  |
| HCM 6th LOS                    |          | Α    |       |          |       |      |       |          |          |      |      |  |
| Notes                          |          |      |       |          |       |      |       |          |          |      |      |  |

| Intersection                         |                 |            |          |                 |                 |          |                      |                                |
|--------------------------------------|-----------------|------------|----------|-----------------|-----------------|----------|----------------------|--------------------------------|
| nt Delay, s/veh                      | 45.9            |            |          |                 |                 |          |                      |                                |
| Movement                             | EBL             | EBR        | NBL      | NBT             | SBT             | SBR      |                      |                                |
|                                      | EDL             | EDR        |          |                 |                 | JDK<br>7 |                      |                                |
| ane Configurations raffic Vol, veh/h | <b>7</b><br>270 | <b>5</b> 0 | <b>أ</b> | <b>↑</b><br>550 | <b>↑</b><br>440 | 220      |                      |                                |
| ture Vol, veh/h                      | 270             | 50         | 40       | 550             | 440             | 220      |                      |                                |
| nflicting Peds, #/hr                 |                 | 0          | 0        | 0               | 0               | 0        |                      |                                |
| gn Control                           | Stop            | Stop       | Free     | Free            | Free            | Free     |                      |                                |
| T Channelized                        | 310p            | Stop       |          | None            | -               | None     |                      |                                |
| orage Length                         | 0               | 90         | 70       | -               | _               | 100      |                      |                                |
| eh in Median Storag                  |                 | -          | -        | 0               | 0               | -        |                      |                                |
| rade, %                              | 0               | _          | _        | 0               | 0               | _        |                      |                                |
| eak Hour Factor                      | 92              | 92         | 92       | 92              | 92              | 92       |                      |                                |
| eavy Vehicles, %                     | 2               | 2          | 2        | 2               | 2               | 2        |                      |                                |
| vmt Flow                             | 293             | 54         | 43       | 598             | 478             | 239      |                      |                                |
|                                      |                 |            |          |                 |                 |          |                      |                                |
| ajor/Minor                           | Minor2          |            | Major1   | N               | Major2          |          |                      |                                |
| Inflicting Flow All                  | 1162            | 478        | 717      | 0               | -               | 0        |                      |                                |
| Stage 1                              | 478             | 470        |          | -               | _               | -        |                      |                                |
| Stage 2                              | 684             | _          | _        | _               | _               | _        |                      |                                |
| itical Hdwy                          | 6.42            | 6.22       | 4.12     | _               | _               | _        |                      |                                |
| tical Hdwy Stg 1                     | 5.42            | -          |          | _               | _               | _        |                      |                                |
| tical Hdwy Stg 2                     | 5.42            | _          | -        | _               | -               | -        |                      |                                |
| llow-up Hdwy                         |                 | 3.318      | 2.218    | _               | _               | -        |                      |                                |
| ot Cap-1 Maneuver                    | ~ 216           | 587        | 884      | -               | -               | -        |                      |                                |
| Stage 1                              | 624             | -          | -        | -               | -               | -        |                      |                                |
| Stage 2                              | 501             | -          | -        | -               | -               | -        |                      |                                |
| atoon blocked, %                     |                 |            |          | -               | -               | -        |                      |                                |
| ov Cap-1 Maneuve                     | r ~ 205         | 587        | 884      | -               | -               | -        |                      |                                |
| ov Cap-2 Maneuve                     |                 | -          | -        | -               | -               | -        |                      |                                |
| Stage 1                              | 593             | -          | -        | -               | -               | -        |                      |                                |
| Stage 2                              | 501             | -          | -        | -               | -               | -        |                      |                                |
|                                      |                 |            |          |                 |                 |          |                      |                                |
| proach                               | EB              |            | NB       |                 | SB              |          |                      |                                |
| CM Control Delay, s                  | 5 224.3         |            | 0.6      |                 | 0               |          |                      |                                |
| CM LOS                               | F               |            |          |                 |                 |          |                      |                                |
|                                      |                 |            |          |                 |                 |          |                      |                                |
| nor Lane/Major Mv                    | mt              | NBL        | NBT I    | EBLn1 E         | EBLn2           | SBT      | SBR                  |                                |
| pacity (veh/h)                       |                 | 884        | -        |                 | 587             | -        | -                    |                                |
| CM Lane V/C Ratio                    |                 | 0.049      | -        | 1.432           |                 | -        | -                    |                                |
| CM Control Delay (s                  | s)              | 9.3        |          | 263.7           | 11.8            | -        | -                    |                                |
| CM Lane LOS                          |                 | Α          | -        | F               | В               | -        | -                    |                                |
| CM 95th %tile Q(ve                   | h)              | 0.2        | -        |                 | 0.3             | -        | -                    |                                |
| otes                                 |                 |            |          |                 |                 |          |                      |                                |
| olume exceeds c                      | anacity         | \$· Da     | elay exc | eeds 31         | nns             | +· Comi  | outation Not Defined | *: All major volume in platoon |
| Dialitic CACCCUS C                   | apacity         | ψ. Dt      | siay the | iccus si        | 503             | r. Cuill | Jalation Not Delineu | . All major volume in piatoon  |

|                              | ၨ    | <b>→</b> | •    | •    | <b>←</b> | •    | 4    | <b>†</b> | <b>/</b> | <b>/</b> | Ţ     | 4    |
|------------------------------|------|----------|------|------|----------|------|------|----------|----------|----------|-------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR      | SBL      | SBT   | SBR  |
| Lane Configurations          | ¥    | <b>†</b> | 7    | , N  | f)       |      | J.   | <b>†</b> | 7        |          | 4     |      |
| Traffic Volume (veh/h)       | 150  | 620      | 490  | 120  | 310      | 30   | 430  | 270      | 150      | 40       | 220   | 100  |
| Future Volume (veh/h)        | 150  | 620      | 490  | 120  | 310      | 30   | 430  | 270      | 150      | 40       | 220   | 100  |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0        | 0        | 0     | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.99 | 1.00 |          | 0.99 | 1.00 |          | 0.99     | 1.00     |       | 0.99 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00     | 1.00     | 1.00  | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No       |          |          | No    |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870     | 1870     | 1870  | 1870 |
| Adj Flow Rate, veh/h         | 163  | 674      | 284  | 130  | 337      | 30   | 467  | 293      | 41       | 43       | 239   | 98   |
| Peak Hour Factor             | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92     | 0.92     | 0.92  | 0.92 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2        | 2        | 2     | 2    |
| Cap, veh/h                   | 218  | 532      | 447  | 185  | 449      | 40   | 503  | 528      | 444      | 38       | 209   | 86   |
| Arrive On Green              | 0.12 | 0.28     | 0.28 | 0.10 | 0.27     | 0.25 | 0.28 | 0.28     | 0.28     | 0.19     | 0.19  | 0.18 |
| Sat Flow, veh/h              | 1781 | 1870     | 1571 | 1781 | 1691     | 151  | 1781 | 1870     | 1571     | 201      | 1115  | 457  |
| Grp Volume(v), veh/h         | 163  | 674      | 284  | 130  | 0        | 367  | 467  | 293      | 41       | 380      | 0     | 0    |
| Grp Sat Flow(s), veh/h/ln    | 1781 | 1870     | 1571 | 1781 | 0        | 1841 | 1781 | 1870     | 1571     | 1773     | 0     | 0    |
| Q Serve(g_s), s              | 9.9  | 32.0     | 17.8 | 7.9  | 0.0      | 20.6 | 28.7 | 15.0     | 2.2      | 21.1     | 0.0   | 0.0  |
| Cycle Q Clear(g_c), s        | 9.9  | 32.0     | 17.8 | 7.9  | 0.0      | 20.6 | 28.7 | 15.0     | 2.2      | 21.1     | 0.0   | 0.0  |
| Prop In Lane                 | 1.00 |          | 1.00 | 1.00 |          | 0.08 | 1.00 |          | 1.00     | 0.11     |       | 0.26 |
| Lane Grp Cap(c), veh/h       | 218  | 532      | 447  | 185  | 0        | 489  | 503  | 528      | 444      | 332      | 0     | 0    |
| V/C Ratio(X)                 | 0.75 | 1.27     | 0.64 | 0.70 | 0.00     | 0.75 | 0.93 | 0.55     | 0.09     | 1.14     | 0.00  | 0.00 |
| Avail Cap(c_a), veh/h        | 345  | 532      | 447  | 339  | 0        | 605  | 503  | 528      | 444      | 332      | 0     | 0    |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00     | 1.00     | 1.00  | 1.00 |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00 | 1.00 | 0.00     | 1.00 | 1.00 | 1.00     | 1.00     | 1.00     | 0.00  | 0.00 |
| Uniform Delay (d), s/veh     | 47.7 | 40.3     | 35.2 | 48.8 | 0.0      | 38.0 | 39.3 | 34.4     | 29.8     | 45.9     | 0.0   | 0.0  |
| Incr Delay (d2), s/veh       | 1.9  | 134.8    | 2.3  | 1.8  | 0.0      | 3.0  | 23.3 | 0.8      | 0.0      | 94.1     | 0.0   | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0      | 0.0      | 0.0   | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 4.4  | 33.9     | 6.8  | 3.6  | 0.0      | 9.4  | 15.2 | 6.7      | 0.8      | 17.8     | 0.0   | 0.0  |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |          |          |          |       |      |
| LnGrp Delay(d),s/veh         | 49.6 | 175.1    | 37.5 | 50.6 | 0.0      | 41.0 | 62.6 | 35.1     | 29.8     | 139.9    | 0.0   | 0.0  |
| LnGrp LOS                    | D    | F        | D    | D    | А        | D    | E    | D        | С        | F        | Α     | А    |
| Approach Vol, veh/h          |      | 1121     |      |      | 497      |      |      | 801      |          |          | 380   |      |
| Approach Delay, s/veh        |      | 122.0    |      |      | 43.5     |      |      | 50.8     |          |          | 139.9 |      |
| Approach LOS                 |      | F        |      |      | D        |      |      | D        |          |          | F     |      |
|                              |      |          |      |      |          | ,    |      |          |          |          |       |      |
| Timer - Assigned Phs         | 1    | 2        |      | 4    | 5        | 6    |      | 8        |          |          |       |      |
| Phs Duration (G+Y+Rc), s     | 15.7 | 36.0     |      | 25.1 | 17.8     | 33.9 |      | 35.8     |          |          |       |      |
| Change Period (Y+Rc), s      | 5.8  | 6.0      |      | 5.1  | 5.8      | 6.0  |      | 5.8      |          |          |       |      |
| Max Green Setting (Gmax), s  | 19.6 | 30.0     |      | 20.0 | 20.0     | 35.0 |      | 30.0     |          |          |       |      |
| Max Q Clear Time (g_c+l1), s | 9.9  | 34.0     |      | 23.1 | 11.9     | 22.6 |      | 30.7     |          |          |       |      |
| Green Ext Time (p_c), s      | 0.1  | 0.0      |      | 0.0  | 0.1      | 1.0  |      | 0.0      |          |          |       |      |
| Intersection Summary         |      |          |      |      |          |      |      |          |          |          |       |      |
| HCM 6th Ctrl Delay           |      |          | 90.1 |      |          |      |      |          |          |          |       |      |
| HCM 6th LOS                  |      |          | F    |      |          |      |      |          |          |          |       |      |
| Notes                        |      |          |      |      |          |      |      |          |          |          |       |      |

| ٠                             | -    | •         | •    | <b>←</b> | •     | 4    | <b>†</b> | <i>&gt;</i> | <b>&gt;</b> | ļ        | ✓    |  |
|-------------------------------|------|-----------|------|----------|-------|------|----------|-------------|-------------|----------|------|--|
| Movement EBL                  | EBT  | EBR       | WBL  | WBT      | WBR   | NBL  | NBT      | NBR         | SBL         | SBT      | SBR  |  |
| Lane Configurations           |      | 7         | ች    | ĵ.       |       | *    | <b>†</b> | 1           | *           | <b>†</b> | 7    |  |
| Traffic Volume (veh/h) 70     |      | 400       | 20   | 90       | 30    | 240  | 540      | 20          | 50          | 400      | 50   |  |
| Future Volume (veh/h) 70      |      | 400       | 20   | 90       | 30    | 240  | 540      | 20          | 50          | 400      | 50   |  |
| Initial Q (Qb), veh           |      | 0         | 0    | 0        | 0     | 0    | 0        | 0           | 0           | 0        | 0    |  |
| Ped-Bike Adj(A_pbT) 1.00      |      | 1.00      | 1.00 |          | 1.00  | 1.00 |          | 1.00        | 1.00        |          | 1.00 |  |
| Parking Bus, Adj 1.00         |      | 1.00      | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00        | 1.00        | 1.00     | 1.00 |  |
| Work Zone On Approach         | No   |           |      | No       |       |      | No       |             |             | No       |      |  |
| Adj Sat Flow, veh/h/ln 1870   | 1870 | 1870      | 1870 | 1870     | 1870  | 1870 | 1870     | 1870        | 1870        | 1870     | 1870 |  |
| Adj Flow Rate, veh/h 76       | 174  | 90        | 22   | 98       | 20    | 261  | 587      | 10          | 54          | 435      | 18   |  |
| Peak Hour Factor 0.92         | 0.92 | 0.92      | 0.92 | 0.92     | 0.92  | 0.92 | 0.92     | 0.92        | 0.92        | 0.92     | 0.92 |  |
| Percent Heavy Veh, % 2        | 2    | 2         | 2    | 2        | 2     | 2    | 2        | 2           | 2           | 2        | 2    |  |
| Cap, veh/h 144                | 303  | 257       | 59   | 148      | 30    | 350  | 794      | 673         | 114         | 546      | 463  |  |
| Arrive On Green 0.08          | 0.16 | 0.16      | 0.03 | 0.10     | 0.09  | 0.20 | 0.42     | 0.42        | 0.06        | 0.29     | 0.29 |  |
| Sat Flow, veh/h 1781          | 1870 | 1585      | 1781 | 1507     | 308   | 1781 | 1870     | 1585        | 1781        | 1870     | 1585 |  |
| Grp Volume(v), veh/h 76       | 174  | 90        | 22   | 0        | 118   | 261  | 587      | 10          | 54          | 435      | 18   |  |
| Grp Sat Flow(s), veh/h/ln1781 | 1870 | 1585      | 1781 | 0        | 1815  | 1781 | 1870     | 1585        | 1781        | 1870     | 1585 |  |
| Q Serve( $g_s$ ), s 2.1       | 4.3  | 2.5       | 0.6  | 0.0      | 3.2   | 7.0  | 13.3     | 0.2         | 1.5         | 10.8     | 0.4  |  |
| Cycle Q Clear(q_c), s 2.1     | 4.3  | 2.5       | 0.6  | 0.0      | 3.2   | 7.0  | 13.3     | 0.2         | 1.5         | 10.8     | 0.4  |  |
| Prop In Lane 1.00             |      | 1.00      | 1.00 |          | 0.17  | 1.00 |          | 1.00        | 1.00        |          | 1.00 |  |
| Lane Grp Cap(c), veh/h 144    | 303  | 257       | 59   | 0        | 178   | 350  | 794      | 673         | 114         | 546      | 463  |  |
| V/C Ratio(X) 0.53             | 0.57 | 0.35      | 0.38 | 0.00     | 0.66  | 0.75 | 0.74     | 0.01        | 0.47        | 0.80     | 0.04 |  |
| Avail Cap(c_a), veh/h 473     | 1533 | 1299      | 444  | 0        | 956   | 744  | 1151     | 976         | 391         | 1151     | 976  |  |
| HCM Platoon Ratio 1.00        | 1.00 | 1.00      | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00        | 1.00        | 1.00     | 1.00 |  |
| Upstream Filter(I) 1.00       | 1.00 | 1.00      | 1.00 | 0.00     | 1.00  | 1.00 | 1.00     | 1.00        | 1.00        | 1.00     | 1.00 |  |
| Uniform Delay (d), s/veh 22.3 | 19.6 | 18.8      | 23.9 | 0.0      | 22.0  | 19.1 | 12.2     | 8.4         | 22.8        | 16.5     | 12.8 |  |
| Incr Delay (d2), s/veh 1.1    | 0.6  | 0.3       | 1.5  | 0.0      | 1.6   | 1.2  | 0.6      | 0.0         | 1.1         | 1.0      | 0.0  |  |
| Initial Q Delay(d3),s/veh 0.0 | 0.0  | 0.0       | 0.0  | 0.0      | 0.0   | 0.0  | 0.0      | 0.0         | 0.0         | 0.0      | 0.0  |  |
| %ile BackOfQ(50%),veh/ln0.8   | 1.7  | 0.8       | 0.3  | 0.0      | 1.3   | 2.6  | 4.4      | 0.1         | 0.6         | 4.0      | 0.1  |  |
| Unsig. Movement Delay, s/ve   | h    |           |      |          |       |      |          |             |             |          |      |  |
| LnGrp Delay(d),s/veh 23.4     | 20.2 | 19.1      | 25.4 | 0.0      | 23.6  | 20.3 | 12.8     | 8.4         | 24.0        | 17.5     | 12.8 |  |
| LnGrp LOS C                   | С    | В         | С    | Α        | С     | С    | В        | Α           | С           | В        | В    |  |
| Approach Vol, veh/h           | 340  |           |      | 140      |       |      | 858      |             |             | 507      |      |  |
| Approach Delay, s/veh         | 20.6 |           |      | 23.9     |       |      | 15.0     |             |             | 18.0     |      |  |
| Approach LOS                  | С    |           |      | С        |       |      | В        |             |             | В        |      |  |
| Timer - Assigned Phs 1        | 2    | 3         | 4    | 5        | 6     | 7    | 8        |             |             |          |      |  |
| Phs Duration (G+Y+Rc), s5.7   |      | 13.9      | 18.8 | 8.1      | 9.8   | 7.2  | 25.5     |             |             |          |      |  |
| Change Period (Y+Rc), s 4.6   |      | 5.1       | 5.1  | 5.4      | * 5.4 | 5.1  | 5.1      |             |             |          |      |  |
| Max Green Setting (Gmak), 6   |      | 20.0      | 30.0 | 12.0     | * 26  | 10.0 | 30.0     |             |             |          |      |  |
| Max Q Clear Time (q_c+l12),6  |      | 9.0       | 12.8 | 4.1      | 5.2   | 3.5  | 15.3     |             |             |          |      |  |
| Green Ext Time (p_c), s 0.0   |      | 0.1       | 0.8  | 0.0      | 0.2   | 0.0  | 1.1      |             |             |          |      |  |
| Intersection Summary          |      |           |      |          |       |      |          |             |             |          |      |  |
| HCM 6th Ctrl Delay            |      | 17.6      |      |          |       |      |          |             |             |          |      |  |
| HCM 6th LOS                   |      | 17.0<br>B |      |          |       |      |          |             |             |          |      |  |
| HOW OUT LOS                   |      | D         |      |          |       |      |          |             |             |          |      |  |

| Intersection               |           |        |          |             |        |        |          |            |           |           |         |         |            |
|----------------------------|-----------|--------|----------|-------------|--------|--------|----------|------------|-----------|-----------|---------|---------|------------|
| Int Delay, s/veh           | 22.2      |        |          |             |        |        |          |            |           |           |         |         |            |
| Movement                   | EBL       | EBT    | EBR      | WBL         | WBT    | WBR    | NBL      | NBT        | NBR       | SBL       | SBT     | SBR     |            |
| Lane Configurations        | LDL       | 4      | LDI      | VVDL        | 4      | WDR    | NDL      | <u>ND1</u> | NDIX<br>7 | JDL       | 4       | JUIN    |            |
| Traffic Vol, veh/h         | 10        | 10     | 20       | 70          | 10     | 20     | 20       | 700        | 120       | 30        | 700     | 30      |            |
| Future Vol, veh/h          | 10        | 10     | 20       | 70          | 10     | 20     | 20       | 700        | 120       | 30        | 700     | 30      |            |
| Conflicting Peds, #/hr     | 0         | 0      | 0        | 0           | 0      | 0      | 0        | 0          | 0         | 0         | 0       | 0       |            |
| Sign Control               | Stop      | Stop   | Stop     | Stop        | Stop   | Stop   | Free     | Free       | Free      | Free      | Free    | Free    |            |
| RT Channelized             | -         | -      | None     | -           | -      | None   | -        | -          | None      | -         | -       | None    |            |
| Storage Length             | -         | -      | -        | -           | -      | -      | 50       | -          | 270       | -         | -       | -       |            |
| Veh in Median Storage      | e,# -     | 0      | -        | -           | 0      | -      | -        | 0          | -         | -         | 0       | -       |            |
| Grade, %                   | -         | 0      | -        | -           | 0      | -      | -        | 0          | -         | -         | 0       | -       |            |
| Peak Hour Factor           | 92        | 92     | 92       | 92          | 92     | 92     | 92       | 92         | 92        | 92        | 92      | 92      |            |
| Heavy Vehicles, %          | 2         | 2      | 2        | 2           | 2      | 2      | 2        | 2          | 2         | 2         | 2       | 2       |            |
| Mvmt Flow                  | 11        | 11     | 22       | 76          | 11     | 22     | 22       | 761        | 130       | 33        | 761     | 33      |            |
|                            |           |        |          |             |        |        |          |            |           |           |         |         |            |
| Major/Minor                | Minor2    |        |          | Minor1      |        |        | Major1   |            |           | Major2    |         |         |            |
| Conflicting Flow All       | 1731      | 1779   | 778      | 1665        | 1665   | 761    | 794      | 0          | 0         | 891       | 0       | 0       |            |
| Stage 1                    | 844       | 844    | -        | 805         | 805    | -      | -        | -          | -         | -         | -       | -       |            |
| Stage 2                    | 887       | 935    | -        | 860         | 860    | -      | -        | -          | -         | -         | -       | -       |            |
| Critical Hdwy              | 7.12      | 6.52   | 6.22     | 7.12        | 6.52   | 6.22   | 4.12     | -          | -         | 4.12      | -       | -       |            |
| Critical Hdwy Stg 1        | 6.12      | 5.52   | -        | 6.12        | 5.52   | -      | -        | -          | -         | -         | -       | -       |            |
| Critical Hdwy Stg 2        | 6.12      | 5.52   | -        | 6.12        | 5.52   | -      | -        | -          | -         | -         | -       | -       |            |
| Follow-up Hdwy             | 3.518     | 4.018  | 3.318    | 3.518       | 4.018  | 3.318  | 2.218    | -          | -         | 2.218     | -       | -       |            |
| Pot Cap-1 Maneuver         | 69        | 82     | 396      | 77          | 97     | 405    | 827      | -          | -         | 761       | -       | -       |            |
| Stage 1                    | 358       | 379    | -        | 376         | 395    | -      | -        | -          | -         | -         | -       | -       |            |
| Stage 2 Platoon blocked, % | 339       | 344    | -        | 351         | 373    | -      | -        | -          | -         | -         | -       | -       |            |
| Mov Cap-1 Maneuver         | 55        | 74     | 396      | ~ 60        | 87     | 405    | 827      | -          | -         | 761       | -       | -       |            |
| Mov Cap-1 Maneuver         | 55        | 74     | 390      | ~ 60        | 87     | 403    | 021      |            |           | 701       | -       | -       |            |
| Stage 1                    | 348       | 349    |          | 366         | 384    |        | _        | _          |           | -         | _       | -       |            |
| Stage 2                    | 303       | 335    | _        | 296         | 344    | _      | _        | _          | _         | -         | -       | -       |            |
| Jugo L                     | 550       | 550    |          | _,0         | 011    |        |          |            |           |           |         |         |            |
| Annroach                   | ГР        |        |          | MD          |        |        | ND       |            |           | CD        |         |         |            |
| Approach                   | EB        |        | φ.       | WB<br>357.9 |        |        | 0.2      |            |           | SB<br>0.4 |         |         |            |
| HCM Control Delay, s       | 58.4<br>F |        | \$       | 357.9<br>F  |        |        | 0.2      |            |           | 0.4       |         |         |            |
| HCM LOS                    | Г         |        |          | Г           |        |        |          |            |           |           |         |         |            |
|                            |           |        |          |             |        |        |          |            |           |           |         |         |            |
| Minor Lane/Major Mvn       | nt        | NBL    | NBT      | NBR         | EBLn1V |        | SBL      | SBT        | SBR       |           |         |         |            |
| Capacity (veh/h)           |           | 827    | -        | -           | 109    | 75     | 761      | -          | -         |           |         |         |            |
| HCM Lane V/C Ratio         |           | 0.026  | -        | -           | 0.399  |        | 0.043    | -          | -         |           |         |         |            |
| HCM Control Delay (s)      |           | 9.5    | -        | -           |        | 357.9  | 9.9      | 0          | -         |           |         |         |            |
| HCM OF the Office Of the h | ١ -       | A      | -        | -           | F      | F      | Α        | Α          | -         |           |         |         |            |
| HCM 95th %tile Q(veh       |           | 0.1    | -        | -           | 1.7    | 8.8    | 0.1      | -          | -         |           |         |         |            |
| Notes                      |           |        |          |             |        |        |          |            |           |           |         |         |            |
| ~: Volume exceeds ca       | pacity    | \$: De | elay exc | eeds 3      | 00s    | +: Com | putatior | Not De     | efined    | *: All    | major v | olume i | in platoon |

|                              | ۶    | <b>→</b> | $\rightarrow$ | •    | <b>←</b> | •    | •    | <b>†</b> | /    | <b>&gt;</b> | ļ        | 4    |
|------------------------------|------|----------|---------------|------|----------|------|------|----------|------|-------------|----------|------|
| Movement                     | EBL  | EBT      | EBR           | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations          |      | 4        |               |      | 4        | 7    | ሻ    | <b>1</b> | 7    | ሻ           | <b>†</b> | 7    |
| Traffic Volume (veh/h)       | 10   | 10       | 10            | 150  | 10       | 120  | 30   | 690      | 150  | 80          | 650      | 10   |
| Future Volume (veh/h)        | 10   | 10       | 10            | 150  | 10       | 120  | 30   | 690      | 150  | 80          | 650      | 10   |
| Initial Q (Qb), veh          | 0    | 0        | 0             | 0    | 0        | 0    | 0    | 0        | 0    | 0           | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 0.99 |          | 0.98          | 0.99 |          | 0.99 | 1.00 |          | 0.99 | 1.00        |          | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00          | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |
| Work Zone On Approach        |      | No       |               |      | No       |      |      | No       |      |             | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870          | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870        | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 11   | 11       | 2             | 163  | 11       | 32   | 33   | 750      | 101  | 87          | 707      | 6    |
| Peak Hour Factor             | 0.92 | 0.92     | 0.92          | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92        | 0.92     | 0.92 |
| Percent Heavy Veh, %         | 2    | 2        | 2             | 2    | 2        | 2    | 2    | 2        | 2    | 2           | 2        | 2    |
| Cap, veh/h                   | 166  | 131      | 17            | 398  | 17       | 278  | 96   | 888      | 749  | 152         | 946      | 798  |
| Arrive On Green              | 0.18 | 0.18     | 0.17          | 0.18 | 0.18     | 0.18 | 0.05 | 0.47     | 0.47 | 0.09        | 0.51     | 0.51 |
| Sat Flow, veh/h              | 288  | 737      | 93            | 1380 | 93       | 1563 | 1781 | 1870     | 1577 | 1781        | 1870     | 1577 |
| Grp Volume(v), veh/h         | 24   | 0        | 0             | 174  | 0        | 32   | 33   | 750      | 101  | 87          | 707      | 6    |
| Grp Sat Flow(s), veh/h/ln    | 1118 | 0        | 0             | 1473 | 0        | 1563 | 1781 | 1870     | 1577 | 1781        | 1870     | 1577 |
| Q Serve(g_s), s              | 0.0  | 0.0      | 0.0           | 0.0  | 0.0      | 8.0  | 0.8  | 16.1     | 1.6  | 2.2         | 13.8     | 0.1  |
| Cycle Q Clear(g_c), s        | 4.9  | 0.0      | 0.0           | 4.9  | 0.0      | 0.8  | 0.8  | 16.1     | 1.6  | 2.2         | 13.8     | 0.1  |
| Prop In Lane                 | 0.46 |          | 0.08          | 0.94 |          | 1.00 | 1.00 |          | 1.00 | 1.00        |          | 1.00 |
| Lane Grp Cap(c), veh/h       | 314  | 0        | 0             | 415  | 0        | 278  | 96   | 888      | 749  | 152         | 946      | 798  |
| V/C Ratio(X)                 | 0.08 | 0.00     | 0.00          | 0.42 | 0.00     | 0.11 | 0.34 | 0.84     | 0.13 | 0.57        | 0.75     | 0.01 |
| Avail Cap(c_a), veh/h        | 466  | 0        | 0             | 952  | 0        | 873  | 509  | 1270     | 1070 | 509         | 1270     | 1071 |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00          | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00          | 1.00 | 0.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |
| Uniform Delay (d), s/veh     | 15.8 | 0.0      | 0.0           | 17.5 | 0.0      | 15.8 | 20.9 | 10.5     | 6.8  | 20.2        | 9.0      | 5.6  |
| Incr Delay (d2), s/veh       | 0.0  | 0.0      | 0.0           | 0.3  | 0.0      | 0.1  | 0.8  | 2.6      | 0.0  | 1.3         | 1.0      | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0           | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0         | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.2  | 0.0      | 0.0           | 1.6  | 0.0      | 0.2  | 0.3  | 5.1      | 0.4  | 8.0         | 3.9      | 0.0  |
| Unsig. Movement Delay, s/vel | ı    |          |               |      |          |      |      |          |      |             |          |      |
| LnGrp Delay(d),s/veh         | 15.8 | 0.0      | 0.0           | 17.7 | 0.0      | 15.9 | 21.7 | 13.2     | 6.8  | 21.4        | 10.0     | 5.6  |
| LnGrp LOS                    | В    | Α        | Α             | В    | Α        | В    | С    | В        | Α    | С           | В        | Α    |
| Approach Vol, veh/h          |      | 24       |               |      | 206      |      |      | 884      |      |             | 800      |      |
| Approach Delay, s/veh        |      | 15.8     |               |      | 17.4     |      |      | 12.8     |      |             | 11.2     |      |
| Approach LOS                 |      | В        |               |      | В        |      |      | В        |      |             | В        |      |
| Timer - Assigned Phs         |      | 2        | 3             | 4    |          | 6    | 7    | 8        |      |             |          |      |
| Phs Duration (G+Y+Rc), s     |      | 12.2     | 6.5           | 27.2 |          | 12.2 | 7.9  | 25.8     |      |             |          |      |
| Change Period (Y+Rc), s      |      | 4.6      | 5.1           | 5.1  |          | 4.6  | 5.1  | 5.1      |      |             |          |      |
| Max Green Setting (Gmax), s  |      | 12.0     | 12.0          | 30.0 |          | 25.0 | 12.0 | 30.0     |      |             |          |      |
| Max Q Clear Time (g_c+l1), s |      | 6.9      | 2.8           | 15.8 |          | 6.9  | 4.2  | 18.1     |      |             |          |      |
| Green Ext Time (p_c), s      |      | 0.0      | 0.0           | 2.1  |          | 0.6  | 0.0  | 2.2      |      |             |          |      |
| Intersection Summary         |      | 0.0      | 0.0           | 2.,, |          | 0.0  | 0.0  | 2.2      |      |             |          |      |
| HCM 6th Ctrl Delay           |      |          | 12.7          |      |          |      |      |          |      |             |          |      |
| HCM 6th LOS                  |      |          | 12.7<br>B     |      |          |      |      |          |      |             |          |      |
| Notes                        |      |          | <i>D</i>      |      |          |      |      |          |      |             |          |      |

| Intersection                  |        |       |         |       |           |         |       |
|-------------------------------|--------|-------|---------|-------|-----------|---------|-------|
| Intersection Int Delay, s/veh | 4.5    |       |         |       |           |         |       |
|                               |        |       |         |       |           |         |       |
| Movement                      | EBL    | EBT   | WBT     | WBR   | SBL       | SBR     |       |
| Lane Configurations           |        | 4     |         | 7     | - ሻ       | - 7     |       |
| Traffic Vol, veh/h            | 30     | 170   | 170     | 380   | 240       | 50      |       |
| Future Vol, veh/h             | 30     | 170   | 170     | 380   | 240       | 50      |       |
| Conflicting Peds, #/hr        | 0      | 0     | 0       | 0     | 0         | 0       |       |
| Sign Control                  | Free   | Free  | Free    | Free  | Stop      | Stop    |       |
| RT Channelized                | -      | None  | -       | Yield | -         | None    |       |
| Storage Length                | - #    | -     | -       | 150   | 90        | 0       |       |
| Veh in Median Storage         |        | 0     | 0       | -     | 0         | -       |       |
| Grade, %                      | - 02   | 0     | 0       | - 02  | 0         | -<br>02 |       |
| Peak Hour Factor              | 92     | 92    | 92      | 92    | 92        | 92      |       |
| Heavy Vehicles, %             | 2      | 105   | 105     | 412   | 2         | 2<br>54 |       |
| Mvmt Flow                     | 33     | 185   | 185     | 413   | 261       | 54      |       |
|                               |        |       |         |       |           |         |       |
| Major/Minor                   | Major1 | Λ     | /lajor2 | 1     | Minor2    |         |       |
| Conflicting Flow All          | 185    | 0     | -       | 0     | 436       | 185     |       |
| Stage 1                       | -      | -     | -       | -     | 185       | -       |       |
| Stage 2                       | -      | -     | -       | -     | 251       | -       |       |
| Critical Hdwy                 | 4.12   | -     | -       | -     | 6.42      | 6.22    |       |
| Critical Hdwy Stg 1           | -      | -     | -       | -     | 5.42      | -       |       |
| Critical Hdwy Stg 2           | -      | -     | -       | -     | 5.42      | -       |       |
| Follow-up Hdwy                | 2.218  | -     | -       | -     | 3.518     | 3.318   |       |
| Pot Cap-1 Maneuver            | 1390   | -     | -       | -     | 578       | 857     |       |
| Stage 1                       | -      | -     | -       | -     | 847       | -       |       |
| Stage 2                       | -      | -     | -       | -     | 791       | -       |       |
| Platoon blocked, %            |        | -     | -       | -     |           |         |       |
| Mov Cap-1 Maneuver            | 1390   |       | -       | -     | 563       | 857     |       |
| Mov Cap-2 Maneuver            | -      | -     | -       | -     | 563       | -       |       |
| Stage 1                       | -      | -     | -       | -     | 825       | -       |       |
| Stage 2                       | -      | -     | -       | -     | 791       | -       |       |
|                               |        |       |         |       |           |         |       |
| Approach                      | EB     |       | WB      |       | SB        |         |       |
| HCM Control Delay, s          | 1.1    |       | 0       |       | 15.5      |         |       |
| HCM LOS                       | 1.1    |       | U       |       | 15.5<br>C |         |       |
| TIOWI LOS                     |        |       |         |       | C         |         |       |
|                               |        |       |         |       |           |         |       |
| Minor Lane/Major Mvn          | nt     | EBL   | EBT     | WBT   | WBR:      | SBLn1 S | SBLn2 |
| Capacity (veh/h)              |        | 1390  | -       | -     | -         | 563     | 857   |
| HCM Lane V/C Ratio            |        | 0.023 | -       | -     | -         | 0.463   |       |
| HCM Control Delay (s          | )      | 7.7   | 0       | -     | -         | 16.8    | 9.5   |
| HCM Lane LOS                  |        | Α     | Α       | -     | -         | С       | Α     |
| HCM 95th %tile Q(veh          | 1)     | 0.1   | -       | -     | -         | 2.4     | 0.2   |

|                                         | ۶            | <b>→</b> | •            | •           | •     | •                                     | 1           | <b>†</b> | <b>/</b>     | <b>/</b>     | ļ    | 4           |
|-----------------------------------------|--------------|----------|--------------|-------------|-------|---------------------------------------|-------------|----------|--------------|--------------|------|-------------|
| Movement                                | EBL          | EBT      | EBR          | WBL         | WBT   | WBR                                   | NBL         | NBT      | NBR          | SBL          | SBT  | SBR         |
| Lane Configurations                     |              | र्स      | 7            |             | 4     |                                       | ሻ           | ₽        |              | ሻ            | ₽    |             |
| Traffic Volume (veh/h)                  | 20           | 20       | 80           | 150         | 40    | 10                                    | 100         | 400      | 70           | 10           | 360  | 30          |
| Future Volume (veh/h)                   | 20           | 20       | 80           | 150         | 40    | 10                                    | 100         | 400      | 70           | 10           | 360  | 30          |
| Initial Q (Qb), veh                     | 0            | 0        | 0            | 0           | 0     | 0                                     | 0           | 0        | 0            | 0            | 0    | 0           |
| Ped-Bike Adj(A_pbT)                     | 0.99         |          | 0.99         | 0.99        |       | 0.99                                  | 1.00        |          | 0.99         | 1.00         |      | 0.99        |
| Parking Bus, Adj                        | 1.00         | 1.00     | 1.00         | 1.00        | 1.00  | 1.00                                  | 1.00        | 1.00     | 1.00         | 1.00         | 1.00 | 1.00        |
| Work Zone On Approach                   |              | No       |              |             | No    |                                       |             | No       |              |              | No   |             |
| Adj Sat Flow, veh/h/ln                  | 1870         | 1870     | 1870         | 1870        | 1870  | 1870                                  | 1870        | 1870     | 1870         | 1870         | 1870 | 1870        |
| Adj Flow Rate, veh/h                    | 22           | 22       | 21           | 163         | 43    | 9                                     | 109         | 435      | 74           | 11           | 391  | 30          |
| Peak Hour Factor                        | 0.92         | 0.92     | 0.92         | 0.92        | 0.92  | 0.92                                  | 0.92        | 0.92     | 0.92         | 0.92         | 0.92 | 0.92        |
| Percent Heavy Veh, %                    | 2            | 2        | 2            | 2           | 2     | 2                                     | 2           | 2        | 2            | 2            | 2    | 2           |
| Cap, veh/h                              | 275          | 241      | 383          | 370         | 85    | 14                                    | 352         | 739      | 126          | 85           | 557  | 43          |
| Arrive On Green                         | 0.24         | 0.24     | 0.24         | 0.24        | 0.24  | 0.22                                  | 0.20        | 0.48     | 0.44         | 0.05         | 0.32 | 0.29        |
| Sat Flow, veh/h                         | 695          | 989      | 1569         | 1010        | 349   | 59                                    | 1781        | 1556     | 265          | 1781         | 1714 | 131         |
| Grp Volume(v), veh/h                    | 44           | 0        | 21           | 215         | 0     | 0                                     | 109         | 0        | 509          | 11           | 0    | 421         |
| Grp Sat Flow(s), veh/h/ln               | 1683         | 0        | 1569         | 1418        | 0     | 0                                     | 1781        | 0        | 1821         | 1781         | 0    | 1845        |
| Q Serve(g_s), s                         | 0.0          | 0.0      | 0.5          | 6.1         | 0.0   | 0.0                                   | 2.7         | 0.0      | 10.5         | 0.3          | 0.0  | 10.3        |
| Cycle Q Clear(g_c), s                   | 0.9          | 0.0      | 0.5          | 7.1         | 0.0   | 0.0                                   | 2.7         | 0.0      | 10.5         | 0.3          | 0.0  | 10.3        |
| Prop In Lane                            | 0.50         | 0        | 1.00         | 0.76        | 0     | 0.04                                  | 1.00        | 0        | 0.15         | 1.00         | 0    | 0.07        |
| Lane Grp Cap(c), veh/h                  | 516          | 0        | 383          | 469         | 0     | 0                                     | 352         | 0        | 865          | 85           | 0    | 600         |
| V/C Ratio(X)                            | 0.09<br>1696 | 0.00     | 0.05<br>1567 | 0.46<br>604 | 0.00  | 0.00                                  | 0.31<br>578 | 0.00     | 0.59<br>1833 | 0.13<br>1755 | 0.00 | 0.70<br>961 |
| Avail Cap(c_a), veh/h HCM Platoon Ratio | 1.00         | 1.00     | 1.00         | 1.00        | 1.00  | 1.00                                  | 1.00        | 1.00     | 1.00         | 1.00         | 1.00 | 1.00        |
| Upstream Filter(I)                      | 1.00         | 0.00     | 1.00         | 1.00        | 0.00  | 0.00                                  | 1.00        | 0.00     | 1.00         | 1.00         | 0.00 | 1.00        |
| Uniform Delay (d), s/veh                | 15.1         | 0.00     | 14.9         | 17.4        | 0.00  | 0.00                                  | 17.6        | 0.00     | 10.0         | 23.5         | 0.00 | 15.3        |
| Incr Delay (d2), s/veh                  | 0.1          | 0.0      | 0.1          | 0.7         | 0.0   | 0.0                                   | 0.5         | 0.0      | 0.6          | 0.7          | 0.0  | 1.5         |
| Initial Q Delay(d3),s/veh               | 0.0          | 0.0      | 0.0          | 0.0         | 0.0   | 0.0                                   | 0.0         | 0.0      | 0.0          | 0.0          | 0.0  | 0.0         |
| %ile BackOfQ(50%),veh/ln                | 0.4          | 0.0      | 0.0          | 2.0         | 0.0   | 0.0                                   | 1.0         | 0.0      | 3.0          | 0.0          | 0.0  | 3.6         |
| Unsig. Movement Delay, s/veh            |              | 0.0      | 0.2          | 2.0         | 0.0   | 0.0                                   | 1.0         | 0.0      | 3.0          | 0.1          | 0.0  | 3.0         |
| LnGrp Delay(d),s/veh                    | 15.1         | 0.0      | 15.0         | 18.1        | 0.0   | 0.0                                   | 18.1        | 0.0      | 10.6         | 24.2         | 0.0  | 16.8        |
| LnGrp LOS                               | В            | A        | В            | В           | Α     | Α                                     | В           | Α        | В            | C            | Α    | В           |
| Approach Vol, veh/h                     |              | 65       |              |             | 215   | , , , , , , , , , , , , , , , , , , , |             | 618      |              |              | 432  |             |
| Approach Delay, s/veh                   |              | 15.1     |              |             | 18.1  |                                       |             | 11.9     |              |              | 17.0 |             |
| Approach LOS                            |              | В        |              |             | В     |                                       |             | В        |              |              | В    |             |
|                                         |              |          |              |             |       |                                       |             |          |              |              |      |             |
| Timer - Assigned Phs                    | 1            | 2        |              | 4           | 5     | 6                                     |             | 8        |              |              |      |             |
| Phs Duration (G+Y+Rc), s                | 14.2         | 20.7     |              | 16.6        | 6.4   | 28.4                                  |             | 16.6     |              |              |      |             |
| Change Period (Y+Rc), s                 | * 4.7        | 5.8      |              | 5.4         | * 4.7 | 5.8                                   |             | 5.4      |              |              |      |             |
| Max Green Setting (Gmax), s             | * 16         | 25.0     |              | 16.0        | * 50  | 50.0                                  |             | 50.0     |              |              |      |             |
| Max Q Clear Time (g_c+l1), s            | 4.7          | 12.3     |              | 9.1         | 2.3   | 12.5                                  |             | 2.9      |              |              |      |             |
| Green Ext Time (p_c), s                 | 0.2          | 1.9      |              | 0.6         | 0.0   | 3.3                                   |             | 0.3      |              |              |      |             |
| Intersection Summary                    |              |          |              |             |       |                                       |             |          |              |              |      |             |
| HCM 6th Ctrl Delay                      |              |          | 14.7         |             |       |                                       |             |          |              |              |      |             |
| HCM 6th LOS                             |              |          | В            |             |       |                                       |             |          |              |              |      |             |

| Interception                            |          |           |              |           |          |              |          |          |              |           |         |              |            |
|-----------------------------------------|----------|-----------|--------------|-----------|----------|--------------|----------|----------|--------------|-----------|---------|--------------|------------|
| Intersection<br>Int Delay, s/veh        | 349      |           |              |           |          |              |          |          |              |           |         |              |            |
|                                         |          | EDT       | EDD          | WDI       | WDT      | WDD          | NDI      | NDT      | NDD          | CDI       | CDT     | CDD          |            |
| Movement                                | EBL      | EBT       | EBR          | WBL       | WBT      | WBR          | NBL      | NBT      | NBR          | SBL       | SBT     | SBR          |            |
| Lane Configurations                     | <b>ሻ</b> | <b>}</b>  | 10           | <b>ነ</b>  | <b>}</b> | 240          | 10       | 4        | 20           | 240       | 4       | <b>7</b>     |            |
| Traffic Vol, veh/h                      | 50       | 520       | 10           | 20        | 420      | 340          | 10       | 20       | 20           | 360       | 20      | 30           |            |
| Future Vol, veh/h                       | 50       | 520       | 10           | 20        | 420      | 340          | 10       | 20       | 20           | 360       | 20      | 30           |            |
| Conflicting Peds, #/hr                  | 0        | 0         | 0            | 0<br>Free | 0        | 0            | O Cton   | O Cton   | 0            | 0         | 0       | O Cton       |            |
| Sign Control<br>RT Channelized          | Free     | Free      | Free<br>None |           | Free     | Free<br>None | Stop     | Stop     | Stop<br>None | Stop      | Stop    | Stop<br>None |            |
|                                         | 100      | -         | None -       | -<br>70   | -        | None -       | -        | -        | None -       | -         | -       | 60           |            |
| Storage Length<br>/eh in Median Storage |          | 0         | -            | -         | 0        | -            | -        | 0        | -            | -         | 0       | -            |            |
| Grade, %                                | -        | 0         | -            | -         | 0        | -            | -        | 0        | -            | -         | 0       | -            |            |
| Peak Hour Factor                        | 92       | 92        | 92           | 92        | 92       | 92           | 92       | 92       | 92           | 92        | 92      | 92           |            |
| leavy Vehicles, %                       | 2        | 2         | 2            | 2         | 2        | 2            | 2        | 2        | 2            | 2         | 2       | 2            |            |
| Nymt Flow                               | 54       | 565       | 11           | 22        | 457      | 370          | 11       | 22       | 22           | 391       | 22      | 33           |            |
| VIVIIIL I IOW                           | 34       | 505       | - 11         | ZZ        | 437      | 370          | - 11     | 22       | ZZ           | 371       | ZZ      | 33           |            |
|                                         |          |           |              |           |          |              |          |          |              |           |         |              |            |
| Major/Minor N                           | Major1   |           | N            | Major2    |          | 1            | Minor1   |          |              | Minor2    |         |              |            |
| Conflicting Flow All                    | 827      | 0         | 0            | 576       | 0        | 0            | 1393     | 1550     | 571          | 1387      | 1370    | 642          |            |
| Stage 1                                 | -        | -         | -            | -         | -        | -            | 679      | 679      | -            | 686       | 686     | -            |            |
| Stage 2                                 | -        | -         | -            | -         | -        | -            | 714      | 871      | -            | 701       | 684     | -            |            |
| Critical Hdwy                           | 4.12     | -         | -            | 4.12      | -        | -            | 7.12     | 6.52     | 6.22         | 7.12      | 6.52    | 6.22         |            |
| Critical Hdwy Stg 1                     | -        | -         | -            | -         | -        | -            | 6.12     | 5.52     | -            | 6.12      | 5.52    | -            |            |
| Critical Hdwy Stg 2                     | -        | -         | -            | -         | -        | -            | 6.12     | 5.52     | -            | 6.12      | 5.52    | -            |            |
| ollow-up Hdwy                           | 2.218    | -         | -            | 2.218     | -        | -            | 3.518    |          | 3.318        | 3.518     | 4.018   | 3.318        |            |
| Pot Cap-1 Maneuver                      | 804      | -         | -            | 997       | -        | -            | 119      | 114      | 520          | ~ 120     | 146     | 474          |            |
| Stage 1                                 | -        | -         | -            | -         | -        | -            | 441      | 451      | -            | 438       | 448     | -            |            |
| Stage 2                                 | -        | -         | -            | -         | -        | -            | 422      | 368      | -            | 429       | 449     | -            |            |
| Platoon blocked, %                      | 004      | -         | -            | 007       | -        | -            | 0.1      | 101      | 500          | 0.0       | 400     | 47.4         |            |
| Mov Cap-1 Maneuver                      | 804      | -         | -            | 997       | -        | -            | 91       | 104      | 520          | ~ 90      | 133     | 474          |            |
| Mov Cap-2 Maneuver                      | -        | -         | -            | -         | -        | -            | 91       | 104      | -            | ~ 90      | 133     | -            |            |
| Stage 1                                 | -        | -         | -            | -         | -        | -            | 411      | 421      | -            | 409       | 438     | -            |            |
| Stage 2                                 | -        | -         | -            | -         | -        | -            | 365      | 360      | -            | ~ 364     | 419     | -            |            |
|                                         |          |           |              |           |          |              |          |          |              |           |         |              |            |
| pproach                                 | EB       |           |              | WB        |          |              | NB       |          |              | SB        |         |              |            |
| HCM Control Delay, s                    | 0.8      |           |              | 0.2       |          |              | 43.2     |          | \$           | 1542.6    |         |              |            |
| HCM LOS                                 |          |           |              |           |          |              | Ε        |          |              | F         |         |              |            |
|                                         |          |           |              |           |          |              |          |          |              |           |         |              |            |
| Minor Lane/Major Mvm                    | nt N     | VBLn1     | EBL          | EBT       | EBR      | WBL          | WBT      | WRR      | SBLn1        | SRI n2    |         |              |            |
| Capacity (veh/h)                        | it 1     | 147       | 804          | LDT       | LDIX     | 997          | VVDI     | י אום יי | 92           | 474       |         |              |            |
| ICM Lane V/C Ratio                      |          |           | 0.068        | -         | -        | 0.022        | -        | -        |              | 0.069     |         |              |            |
| ICM Control Delay (s)                   |          | 43.2      | 9.8          | -         | -        | 8.7          | -        | <u> </u> | 1663.3       | 13.2      |         |              |            |
| CM Control Delay (S) ICM Lane LOS       |          | 43.2<br>E | 9.0<br>A     | -         | _        | Α.7          | -        | -<br>-   | F            | 13.2<br>B |         |              |            |
| HCM 95th %tile Q(veh)                   | )        | 1.6       | 0.2          | _         | _        | 0.1          | -        | -        | 43.7         | 0.2       |         |              |            |
|                                         |          | 1.0       | U.Z          | _         |          | 0.1          |          |          | 43.7         | 0.2       |         |              |            |
| lotes                                   |          |           |              |           |          |              |          |          |              |           |         |              |            |
| Volume exceeds cap                      | pacity   | \$: De    | elay exc     | eeds 30   | 00s      | +: Com       | putation | Not D    | efined       | *: All    | major v | volume i     | in platoon |

|                                       | ۶    | <b>→</b>    | •           | •           | <b>←</b>    | •         | 4           | <b>†</b>    | <b>/</b>   | <b>/</b>  | ļ         | 4         |
|---------------------------------------|------|-------------|-------------|-------------|-------------|-----------|-------------|-------------|------------|-----------|-----------|-----------|
| Movement                              | EBL  | EBT         | EBR         | WBL         | WBT         | WBR       | NBL         | NBT         | NBR        | SBL       | SBT       | SBR       |
| Lane Configurations                   |      | र्स         | 7           | ሻ           | <b>₽</b>    |           | Ť           | 4Î          | 7          |           | 4         |           |
| Traffic Volume (veh/h)                | 0    | 350         | 550         | 350         | 250         | 0         | 530         | 0           | 120        | 0         | 0         | 0         |
| Future Volume (veh/h)                 | 0    | 350         | 550         | 350         | 250         | 0         | 530         | 0           | 120        | 0         | 0         | 0         |
| Initial Q (Qb), veh                   | 0    | 0           | 0           | 0           | 0           | 0         | 0           | 0           | 0          | 0         | 0         | 0         |
| Ped-Bike Adj(A_pbT)                   | 1.00 | 1.00        | 1.00        | 1.00        | 1.00        | 1.00      | 1.00        | 1.00        | 1.00       | 1.00      | 4.00      | 1.00      |
| Parking Bus, Adj                      | 1.00 | 1.00        | 1.00        | 1.00        | 1.00        | 1.00      | 1.00        | 1.00        | 1.00       | 1.00      | 1.00      | 1.00      |
| Work Zone On Approach                 | 1070 | No          | 1070        | 1070        | No          | 1070      | 1070        | No          | 1070       | 1070      | No        | 1070      |
| Adj Sat Flow, veh/h/ln                | 1870 | 1870<br>380 | 1870<br>265 | 1870<br>380 | 1870<br>272 | 1870<br>0 | 1870<br>576 | 1870<br>0   | 1870<br>87 | 1870<br>0 | 1870<br>0 | 1870<br>0 |
| Adj Flow Rate, veh/h Peak Hour Factor | 0.92 | 0.92        | 0.92        | 0.92        | 0.92        | 0.92      | 0.92        | 0.92        | 0.92       | 0.92      | 0.92      | 0.92      |
| Percent Heavy Veh, %                  | 2    | 2           | 2           | 2           | 2           | 2         | 2           | 2           | 2          | 2         | 2         | 2         |
| Cap, veh/h                            | 0    | 437         | 370         | 450         | 472         | 0         | 601         | 0           | 1070       | 0         | 3         | 0         |
| Arrive On Green                       | 0.00 | 0.23        | 0.23        | 0.25        | 0.25        | 0.00      | 0.34        | 0.00        | 0.34       | 0.00      | 0.00      | 0.00      |
| Sat Flow, veh/h                       | 0.00 | 1870        | 1585        | 1781        | 1870        | 0.00      | 1781        | 0.00        | 3170       | 0.00      | 1870      | 0.00      |
| Grp Volume(v), veh/h                  | 0    | 380         | 265         | 380         | 272         | 0         | 576         | 0           | 87         | 0         | 0         | 0         |
| Grp Sat Flow(s), veh/h/ln             | 0    | 1870        | 1585        | 1781        | 1870        | 0         | 1781        | 0           | 1585       | 0         | 1870      | 0         |
| Q Serve(g_s), s                       | 0.0  | 13.3        | 10.5        | 13.8        | 8.7         | 0.0       | 21.6        | 0.0         | 1.3        | 0.0       | 0.0       | 0.0       |
| Cycle Q Clear(g_c), s                 | 0.0  | 13.3        | 10.5        | 13.8        | 8.7         | 0.0       | 21.6        | 0.0         | 1.3        | 0.0       | 0.0       | 0.0       |
| Prop In Lane                          | 0.00 |             | 1.00        | 1.00        |             | 0.00      | 1.00        |             | 1.00       | 0.00      |           | 0.00      |
| Lane Grp Cap(c), veh/h                | 0    | 437         | 370         | 450         | 472         | 0         | 601         | 0           | 1070       | 0         | 3         | 0         |
| V/C Ratio(X)                          | 0.00 | 0.87        | 0.72        | 0.84        | 0.58        | 0.00      | 0.96        | 0.00        | 0.08       | 0.00      | 0.00      | 0.00      |
| Avail Cap(c_a), veh/h                 | 0    | 527         | 447         | 759         | 797         | 0         | 628         | 0           | 1117       | 0         | 192       | 0         |
| HCM Platoon Ratio                     | 1.00 | 1.00        | 1.00        | 1.00        | 1.00        | 1.00      | 1.00        | 1.00        | 1.00       | 1.00      | 1.00      | 1.00      |
| Upstream Filter(I)                    | 0.00 | 1.00        | 1.00        | 1.00        | 1.00        | 0.00      | 1.00        | 0.00        | 1.00       | 0.00      | 0.00      | 0.00      |
| Uniform Delay (d), s/veh              | 0.0  | 25.1        | 24.0        | 24.2        | 22.3        | 0.0       | 22.1        | 0.0         | 15.4       | 0.0       | 0.0       | 0.0       |
| Incr Delay (d2), s/veh                | 0.0  | 12.7        | 4.3         | 4.5         | 1.1         | 0.0       | 25.4        | 0.0         | 0.0        | 0.0       | 0.0       | 0.0       |
| Initial Q Delay(d3),s/veh             | 0.0  | 0.0         | 0.0         | 0.0         | 0.0         | 0.0       | 0.0         | 0.0         | 0.0        | 0.0       | 0.0       | 0.0       |
| %ile BackOfQ(50%),veh/ln              | 0.0  | 7.0         | 4.1         | 5.9         | 3.7         | 0.0       | 12.5        | 0.0         | 0.4        | 0.0       | 0.0       | 0.0       |
| Unsig. Movement Delay, s/veh          | 0.0  | 27.7        | 20.2        | 20.7        | 22.4        | 0.0       | 47.4        | 0.0         | 1          | 0.0       | 0.0       | 0.0       |
| LnGrp Delay(d),s/veh                  | 0.0  | 37.7        | 28.3<br>C   | 28.6<br>C   | 23.4<br>C   | 0.0       | 47.4        | 0.0         | 15.4       | 0.0       | 0.0       | 0.0       |
| LnGrp LOS                             | A    | D / 45      | C           | C           |             | A         | D           | A (/2       | В          | A         | A         | <u>A</u>  |
| Approach Vol, veh/h                   |      | 645<br>33.9 |             |             | 652<br>26.4 |           |             | 663<br>43.2 |            |           | 0.0       |           |
| Approach Delay, s/veh Approach LOS    |      | 33.9<br>C   |             |             | 20.4<br>C   |           |             | 43.2<br>D   |            |           | 0.0       |           |
| Approach LOS                          |      |             |             |             | C           |           |             |             |            |           |           |           |
| Timer - Assigned Phs                  |      | 2           |             | 4           |             | 6         |             | 8           |            |           |           |           |
| Phs Duration (G+Y+Rc), s              |      | 0.0         |             | 19.9        |             | 27.0      |             | 21.2        |            |           |           |           |
| Change Period (Y+Rc), s               |      | 3.0         |             | 3.2         |             | 3.0       |             | 3.0         |            |           |           |           |
| Max Green Setting (Gmax), s           |      | 8.0         |             | 20.0        |             | 25.0      |             | 30.0        |            |           |           |           |
| Max Q Clear Time (g_c+I1), s          |      | 0.0         |             | 15.3        |             | 23.6      |             | 15.8        |            |           |           |           |
| Green Ext Time (p_c), s               |      | 0.0         |             | 1.4         |             | 0.4       |             | 2.4         |            |           |           |           |
| Intersection Summary                  |      |             |             |             |             |           |             |             |            |           |           |           |
| HCM 6th Ctrl Delay                    |      |             | 34.6        |             |             |           |             |             |            |           |           |           |
| HCM 6th LOS                           |      |             | С           |             |             |           |             |             |            |           |           |           |

User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for turning movement.

| -                            | •     | •      | ←    | <b>1</b> | /    |
|------------------------------|-------|--------|------|----------|------|
| Movement EB                  | EBR   | R WBL  | WBT  | NBL      | NBR  |
| Lane Configurations **       |       |        | 414  | ኝ        | 77   |
| Traffic Volume (veh/h) 19    |       |        | 360  | 250      | 700  |
| Future Volume (veh/h) 19     |       |        | 360  | 250      | 700  |
| •                            | ) 0   |        | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00  |        | U    | 1.00     | 1.00 |
| Parking Bus, Adj 1.0         |       |        | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach N      |       | 1.00   | No   | No       | 1.00 |
| Adj Sat Flow, veh/h/ln 187   |       | 0 1870 | 1870 | 1870     | 1870 |
| Adj Flow Rate, veh/h 20      |       |        | 340  | 272      | 434  |
|                              |       |        |      |          |      |
| Peak Hour Factor 0.9         |       |        | 0.92 | 0.92     | 0.92 |
| <b>,</b> .                   | 2 2   |        | 2    | 2        | 2    |
| Cap, veh/h 44                |       |        | 520  | 419      | 1432 |
| Arrive On Green 0.1          |       |        | 0.28 | 0.24     | 0.24 |
| Sat Flow, veh/h 364          | 1585  | 5 3563 | 1870 | 1781     | 2790 |
| Grp Volume(v), veh/h 20      | 55    | 5 449  | 340  | 272      | 434  |
| Grp Sat Flow(s), veh/h/ln177 | 1585  | 5 1781 | 1870 | 1781     | 1395 |
| Q Serve(g_s), s 1.           | 3 1.0 | 0 3.4  | 5.3  | 4.6      | 3.0  |
| Cycle Q Clear(q_c), s 1.     | 3 1.0 | 0 3.4  | 5.3  | 4.6      | 3.0  |
| Prop In Lane                 | 1.00  |        |      | 1.00     | 1.00 |
| Lane Grp Cap(c), veh/h 44    |       |        | 520  | 419      | 1432 |
| V/C Ratio(X) 0.4             |       |        | 0.65 | 0.65     | 0.30 |
| Avail Cap(c_a), veh/h 209    |       |        | 820  | 727      | 1914 |
| HCM Platoon Ratio 1.0        |       |        | 1.00 | 1.00     | 1.00 |
| Upstream Filter(I) 1.0       |       |        | 1.00 | 1.00     | 1.00 |
|                              |       |        |      |          |      |
| Uniform Delay (d), s/veh 13. |       |        | 10.5 | 11.4     | 4.6  |
| Incr Delay (d2), s/veh 0.    |       |        | 1.4  | 1.7      | 0.1  |
| Initial Q Delay(d3),s/veh 0. |       |        | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln0.   |       | 3 1.0  | 1.8  | 1.5      | 1.1  |
| Unsig. Movement Delay, s/v   |       |        |      |          |      |
| LnGrp Delay(d),s/veh 14.     |       |        | 11.9 | 13.1     | 4.8  |
| LnGrp LOS                    | 8 B   | B B    | В    | В        | Α    |
| Approach Vol, veh/h 26       | 2     |        | 789  | 706      |      |
| Approach Delay, s/veh 14.    |       |        | 10.9 | 8.0      |      |
| Approach LOS                 |       |        | В    | A        |      |
| 11                           |       |        |      |          |      |
| Timer - Assigned Phs         |       | 2      |      |          | 6    |
| Phs Duration (G+Y+Rc), s     | 8.1   |        |      |          | 13.2 |
| Change Period (Y+Rc), s      | 3.5   | 5      |      |          | 3.5  |
| Max Green Setting (Gmax),    | 20.0  | .0     |      |          | 15.0 |
| Max Q Clear Time (g_c+I1),   |       |        |      |          | 7.3  |
| Green Ext Time (p_c), s      | 1.3   |        |      |          | 2.4  |
| · ·                          |       |        |      |          |      |
| Intersection Summary         |       |        |      |          |      |
| HCM 6th Ctrl Delay           |       | 10.2   |      |          |      |
| HCM 6th LOS                  |       | В      |      |          |      |
| Notes                        |       |        |      |          |      |
| Notes                        |       |        |      |          |      |

User approved volume balancing among the lanes for turning movement.

| •                             | <b>-</b> | •    | •    | •    | •    | 4    | <b>†</b> | /    | <b>&gt;</b> | <b>↓</b> | 4    |  |
|-------------------------------|----------|------|------|------|------|------|----------|------|-------------|----------|------|--|
| Movement EBL                  | EBT      | EBR  | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |  |
| Lane Configurations 7         | र्स      | 7    | ሻ    | ĵ.   |      |      | <b>^</b> | 7    | ሻ           | <b>^</b> | 7    |  |
| Traffic Volume (veh/h) 470    | 60       | 360  | 50   | 100  | 60   | 350  | 610      | 40   | 30          | 520      | 290  |  |
| Future Volume (veh/h) 470     | 60       | 360  | 50   | 100  | 60   | 350  | 610      | 40   | 30          | 520      | 290  |  |
| Initial Q (Qb), veh 0         | 0        | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0           | 0        | 0    |  |
| Ped-Bike Adj(A_pbT) 1.00      |          | 0.99 | 1.00 |      | 1.00 | 1.00 |          | 0.99 | 1.00        |          | 0.99 |  |
| Parking Bus, Adj 1.00         | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |  |
| Work Zone On Approach         | No       |      |      | No   |      |      | No       |      |             | No       |      |  |
| Adj Sat Flow, veh/h/ln 1870   | 1870     | 1870 | 1870 | 1870 | 1870 | 1870 | 1870     | 1870 | 1870        | 1870     | 1870 |  |
| Adj Flow Rate, veh/h 557      | 0        | 84   | 54   | 109  | 38   | 380  | 663      | 17   | 33          | 565      | 73   |  |
| Peak Hour Factor 0.92         | 0.92     | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92     | 0.92 | 0.92        | 0.92     | 0.92 |  |
| Percent Heavy Veh, % 2        | 2        | 2    | 2    | 2    | 2    | 2    | 2        | 2    | 2           | 2        | 2    |  |
| Cap, veh/h 718                | 0        | 317  | 216  | 161  | 56   | 440  | 1444     | 640  | 82          | 744      | 330  |  |
| Arrive On Green 0.20          | 0.00     | 0.20 | 0.12 | 0.12 | 0.11 | 0.25 | 0.41     | 0.41 | 0.05        | 0.21     | 0.21 |  |
| Sat Flow, veh/h 3563          | 0        | 1573 | 1781 | 1325 | 462  | 1781 | 3554     | 1575 | 1781        | 3554     | 1574 |  |
| Grp Volume(v), veh/h 557      | 0        | 84   | 54   | 0    | 147  | 380  | 663      | 17   | 33          | 565      | 73   |  |
| Grp Sat Flow(s), veh/h/ln1781 | 0        | 1573 | 1781 | 0    | 1787 | 1781 | 1777     | 1575 | 1781        | 1777     | 1574 |  |
| Q Serve(g_s), s 10.7          | 0.0      | 3.3  | 2.0  | 0.0  | 5.7  | 14.8 | 9.9      | 0.5  | 1.3         | 10.8     | 2.8  |  |
| Cycle Q Clear(g_c), s 10.7    | 0.0      | 3.3  | 2.0  | 0.0  | 5.7  | 14.8 | 9.9      | 0.5  | 1.3         | 10.8     | 2.8  |  |
| Prop In Lane 1.00             |          | 1.00 | 1.00 |      | 0.26 | 1.00 |          | 1.00 | 1.00        |          | 1.00 |  |
| Lane Grp Cap(c), veh/h 718    | 0        | 317  | 216  | 0    | 217  | 440  | 1444     | 640  | 82          | 744      | 330  |  |
| V/C Ratio(X) 0.78             | 0.00     | 0.27 | 0.25 | 0.00 | 0.68 | 0.86 | 0.46     | 0.03 | 0.40        | 0.76     | 0.22 |  |
| Avail Cap(c_a), veh/h 939     | 0        | 415  | 273  | 0    | 274  | 445  | 1444     | 640  | 280         | 854      | 378  |  |
| HCM Platoon Ratio 1.00        | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |  |
| Upstream Filter(I) 1.00       | 0.00     | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |  |
| Uniform Delay (d), s/veh 27.4 | 0.0      | 24.4 | 28.8 | 0.0  | 30.6 | 26.1 | 15.7     | 12.9 | 33.6        | 26.9     | 23.7 |  |
| Incr Delay (d2), s/veh 2.1    | 0.0      | 0.2  | 0.2  | 0.0  | 2.5  | 15.2 | 0.1      | 0.0  | 1.2         | 2.8      | 0.1  |  |
| Initial Q Delay(d3),s/veh 0.0 | 0.0      | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0         | 0.0      | 0.0  |  |
| %ile BackOfQ(50%),veh/ln4.6   | 0.0      | 1.2  | 0.8  | 0.0  | 2.6  | 7.7  | 3.6      | 0.2  | 0.6         | 4.5      | 1.0  |  |
| Unsig. Movement Delay, s/veh  |          |      |      |      |      |      |          |      |             |          |      |  |
| LnGrp Delay(d),s/veh 29.5     | 0.0      | 24.6 | 29.1 | 0.0  | 33.2 | 41.3 | 15.8     | 12.9 | 34.8        | 29.7     | 23.9 |  |
| LnGrp LOS C                   | Α        | С    | С    | Α    | С    | D    | В        | В    | С           | С        | С    |  |
| Approach Vol, veh/h           | 641      |      |      | 201  |      |      | 1060     |      |             | 671      |      |  |
| Approach Delay, s/veh         | 28.9     |      |      | 32.1 |      |      | 24.9     |      |             | 29.3     |      |  |
| Approach LOS                  | С        |      |      | С    |      |      | С        |      |             | С        |      |  |
| Timer - Assigned Phs          | 2        | 3    | 4    |      | 6    | 7    | 8        |      |             |          |      |  |
|                               |          |      |      |      |      | •    |          |      |             |          |      |  |
| Phs Duration (G+Y+Rc), s      | 18.6     | 21.9 | 19.2 |      | 12.8 | 7.3  | 33.7     |      |             |          |      |  |
| Change Period (Y+Rc), s       | 5.1      | 5.1  | 5.4  |      | 5.1  | 5.4  | * 5.4    |      |             |          |      |  |
| Max Green Setting (Gmax), s   | 18.0     | 17.0 | 16.0 |      | 10.0 | 10.0 | * 24     |      |             |          |      |  |
| Max Q Clear Time (g_c+l1), s  | 12.7     | 16.8 | 12.8 |      | 7.7  | 3.3  | 11.9     |      |             |          |      |  |
| Green Ext Time (p_c), s       | 0.5      | 0.0  | 0.7  |      | 0.1  | 0.0  | 1.9      |      |             |          |      |  |
| Intersection Summary          |          |      |      |      |      |      |          |      |             |          |      |  |
| HCM 6th Ctrl Delay            |          | 27.6 |      |      |      |      |          |      |             |          |      |  |
| HCM 6th LOS                   |          | С    |      |      |      |      |          |      |             |          |      |  |

Notes

User approved pedestrian interval to be less than phase max green.

User approved volume balancing among the lanes for turning movement.

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection              |    |  |  |  |
|---------------------------|----|--|--|--|
| Intersection Delay, s/veh | 11 |  |  |  |
| Intersection LOS          | В  |  |  |  |

| Movement                | EBL             | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|-------------------------|-----------------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations     |                 | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h      | 50              | 10   | 190  | 10   | 10   | 10   | 130  | 150  | 10   | 10   | 120  | 60   |  |
| Future Vol, veh/h       | 50              | 10   | 190  | 10   | 10   | 10   | 130  | 150  | 10   | 10   | 120  | 60   |  |
| Peak Hour Factor        | 0.92            | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Heavy Vehicles, %       | 2               | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow               | 54              | 11   | 207  | 11   | 11   | 11   | 141  | 163  | 11   | 11   | 130  | 65   |  |
| Number of Lanes         | 0               | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                | EB              |      |      | WB   |      |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach       | WB              |      |      | EB   |      |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes          | 1               |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Le | eft SB          |      |      | NB   |      |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left  | 1               |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Ri | igh <b>t</b> NB |      |      | SB   |      |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right | 1               |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay       | 10.7            |      |      | 8.9  |      |      | 12   |      |      | 10   |      |      |  |
| HCM LOS                 | В               |      |      | Α    |      |      | В    |      |      | Α    |      |      |  |

| Lane                   | NBLn1 | EBLn1\ | NBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 45%   | 20%    | 33%   | 5%    |
| Vol Thru, %            | 52%   | 4%     | 33%   | 63%   |
| Vol Right, %           | 3%    | 76%    | 33%   | 32%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 290   | 250    | 30    | 190   |
| LT Vol                 | 130   | 50     | 10    | 10    |
| Through Vol            | 150   | 10     | 10    | 120   |
| RT Vol                 | 10    | 190    | 10    | 60    |
| Lane Flow Rate         | 315   | 272    | 33    | 207   |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.438 | 0.363  | 0.051 | 0.287 |
| Departure Headway (Hd) | 5.001 | 4.814  | 5.582 | 5.004 |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Cap                    | 709   | 736    | 644   | 723   |
| Service Time           | 3.099 | 2.912  | 3.594 | 3.004 |
| HCM Lane V/C Ratio     | 0.444 | 0.37   | 0.051 | 0.286 |
| HCM Control Delay      | 12    | 10.7   | 8.9   | 10    |
| HCM Lane LOS           | В     | В      | Α     | Α     |
| HCM 95th-tile Q        | 2.2   | 1.7    | 0.2   | 1.2   |

| Intersection           |        |           |          |        |      |          |            |            |            |            |            |       |
|------------------------|--------|-----------|----------|--------|------|----------|------------|------------|------------|------------|------------|-------|
| Int Delay, s/veh       | 31.3   |           |          |        |      |          |            |            |            |            |            |       |
| Movement               | EBL    | EBT       | EBR      | WBL    | WBT  | WBR      | NBL        | NBT        | NBR        | SBL        | SBT        | SBR   |
| Lane Configurations    | ሻ      | 1>        | LDIX     | VVDL   | 4    | WDIX     | IVDL       | 4          | NDI        | ODL        | 4          | ODIN  |
| Traffic Vol, veh/h     | 50     | 290       | 110      | 70     | 350  | 130      | 20         | 80         | 20         | 70         | 50         | 30    |
| Future Vol, veh/h      | 50     | 290       | 110      | 70     | 350  | 130      | 20         | 80         | 20         | 70         | 50         | 30    |
| Conflicting Peds, #/hr | 0      | 0         | 0        | 0      | 0    | 0        | 0          | 0          | 0          | 0          | 0          | 0     |
| Sign Control           | Free   | Free      | Free     | Free   | Free | Free     | Stop       | Stop       | Stop       | Stop       | Stop       | Stop  |
| RT Channelized         | -      | -         | None     | -      | -    | None     | -<br>-     | -<br>-     | None       | -<br>-     | -<br>-     | None  |
| Storage Length         | 100    | _         | -        | _      | _    | -        | _          | _          | -          | _          | _          | -     |
| Veh in Median Storage  |        | 0         | _        | _      | 0    | _        | _          | 0          | _          | -          | 0          | -     |
| Grade, %               | -      | 0         | _        | -      | 0    | _        | _          | 0          | -          | _          | 0          | _     |
| Peak Hour Factor       | 92     | 92        | 92       | 92     | 92   | 92       | 92         | 92         | 92         | 92         | 92         | 92    |
| Heavy Vehicles, %      | 2      | 2         | 2        | 2      | 2    | 2        | 2          | 2          | 2          | 2          | 2          | 2     |
| Mvmt Flow              | 54     | 315       | 120      | 76     | 380  | 141      | 22         | 87         | 22         | 76         | 54         | 33    |
|                        |        |           |          |        |      |          |            |            |            |            |            |       |
| Major/Minor            | Majari |           |          | Majora |      |          | \liner1    |            |            | Minor      |            |       |
|                        | Major1 |           |          | Major2 |      |          | Minor1     | 115        |            | Minor2     | 1111       | 454   |
| Conflicting Flow All   | 521    | 0         | 0        | 435    | 0    | 0        | 1129       | 1156       | 375        | 1141       | 1146       | 451   |
| Stage 1                | -      | -         | -        | -      | -    | -        | 483        | 483        | -          | 603        | 603        | -     |
| Stage 2                | - 4.10 | -         | -        | - 4 10 | -    | -        | 646        | 673        | -          | 538        | 543        | -     |
| Critical Hdwy          | 4.12   | -         | -        | 4.12   | -    | -        | 7.12       | 6.52       | 6.22       | 7.12       | 6.52       | 6.22  |
| Critical Hdwy Stg 1    | -      | -         | -        | -      | -    | -        | 6.12       | 5.52       | -          | 6.12       | 5.52       | -     |
| Critical Hdwy Stg 2    | 2 210  | -         | -        | 2 210  | -    | -        | 6.12       | 5.52       | 2 210      | 6.12       | 5.52       | -     |
| Follow-up Hdwy         | 2.218  | -         | -        | 2.218  | -    | -        | 3.518      | 4.018      | 3.318      | 3.518      | 4.018      | 3.318 |
| Pot Cap-1 Maneuver     | 1045   | -         | -        | 1125   | -    | -        | 181        | 197        | 671        | 178        | 199        | 608   |
| Stage 1                | -      | -         | -        | -      | -    | -        | 565        | 553        | -          | 486        | 488        | -     |
| Stage 2                | -      | -         | -        | -      | -    | -        | 460        | 454        | -          | 527        | 520        | -     |
| Platoon blocked, %     | 1045   | -         | -        | 1100   | -    | -        | 115        | 140        | 471        | .02        | 170        | 400   |
| Mov Cap 2 Manager      | 1045   | -         | -        | 1125   | -    | -        | 115<br>115 | 169<br>169 | 671        | 92<br>92   | 170        | 608   |
| Mov Cap-2 Maneuver     | -      | -         | -        | -      | -    | -        |            | 524        | -          |            | 170        | -     |
| Stage 1                | -      | -         | -        | -      | -    | -        | 536<br>345 | 410        | -          | 461<br>403 | 441<br>493 | -     |
| Stage 2                | -      | -         | -        | -      | -    | -        | 343        | 410        | -          | 403        | 493        | -     |
|                        |        |           |          |        |      |          |            |            |            |            |            |       |
| Approach               | EB     |           |          | WB     |      |          | NB         |            |            | SB         |            |       |
| HCM Control Delay, s   | 1      |           |          | 1.1    |      |          | 67.4       |            |            | 203.8      |            |       |
| HCM LOS                |        |           |          |        |      |          | F          |            |            | F          |            |       |
|                        |        |           |          |        |      |          |            |            |            |            |            |       |
| Minor Lane/Major Mvm   | nt     | NBLn1     | EBL      | EBT    | EBR  | WBL      | WBT        | WBR        | SBI n1     |            |            |       |
| Capacity (veh/h)       |        | 177       | 1045     |        |      | 1125     |            | -          |            |            |            |       |
| HCM Lane V/C Ratio     |        | 0.737     | 0.052    | -      |      | 0.068    | -          |            | 1.199      |            |            |       |
| HCM Control Delay (s)  | 1      | 67.4      | 8.6      | -      | -    | 8.4      | 0          |            | 203.8      |            |            |       |
| HCM Lane LOS           |        | 67.4<br>F | 6.0<br>A | -      | -    | 0.4<br>A | A          | -          | 203.6<br>F |            |            |       |
| HCM 95th %tile Q(veh   | )      | 4.7       | 0.2      | -      | -    | 0.2      | - A        | -          | 9.7        |            |            |       |
| 110W 75W 70WE Q(VEH    | ')     | 4.7       | 0.2      |        | _    | 0.2      |            | _          | 7.1        |            |            |       |

|                                                       | ۶           | <b>→</b>  | •     | •           | <b>←</b>  | 4    | 1          | <b>†</b>   | ~    | <b>/</b>    | <b>†</b>  | ✓         |
|-------------------------------------------------------|-------------|-----------|-------|-------------|-----------|------|------------|------------|------|-------------|-----------|-----------|
| Movement                                              | EBL         | EBT       | EBR   | WBL         | WBT       | WBR  | NBL        | NBT        | NBR  | SBL         | SBT       | SBR       |
| Lane Configurations                                   |             | 4         |       |             | 4         |      |            | 4          |      | ሻ           | ₽         |           |
| Traffic Volume (veh/h)                                | 30          | 130       | 50    | 20          | 180       | 390  | 40         | 630        | 20   | 260         | 280       | 30        |
| Future Volume (veh/h)                                 | 30          | 130       | 50    | 20          | 180       | 390  | 40         | 630        | 20   | 260         | 280       | 30        |
| Initial Q (Qb), veh                                   | 0           | 0         | 0     | 0           | 0         | 0    | 0          | 0          | 0    | 0           | 0         | 0         |
| Ped-Bike Adj(A_pbT)                                   | 1.00        |           | 0.99  | 1.00        |           | 0.99 | 1.00       |            | 1.00 | 1.00        |           | 0.99      |
| Parking Bus, Adj                                      | 1.00        | 1.00      | 1.00  | 1.00        | 1.00      | 1.00 | 1.00       | 1.00       | 1.00 | 1.00        | 1.00      | 1.00      |
| Work Zone On Approach                                 |             | No        |       |             | No        |      |            | No         |      |             | No        |           |
| Adj Sat Flow, veh/h/ln                                | 1870        | 1870      | 1870  | 1870        | 1870      | 1870 | 1870       | 1870       | 1870 | 1870        | 1870      | 1870      |
| Adj Flow Rate, veh/h                                  | 33          | 141       | 39    | 22          | 196       | 328  | 43         | 685        | 21   | 283         | 304       | 28        |
| Peak Hour Factor                                      | 0.92        | 0.92      | 0.92  | 0.92        | 0.92      | 0.92 | 0.92       | 0.92       | 0.92 | 0.92        | 0.92      | 0.92      |
| Percent Heavy Veh, %                                  | 2           | 2         | 2     | 2           | 2         | 2    | 2          | 2          | 2    | 2           | 2         | 2         |
| Cap, veh/h                                            | 106         | 409       | 103   | 63          | 231       | 367  | 28         | 451        | 14   | 365         | 345       | 32        |
| Arrive On Green                                       | 0.36        | 0.36      | 0.35  | 0.37        | 0.37      | 0.35 | 0.27       | 0.27       | 0.26 | 0.20        | 0.20      | 0.19      |
| Sat Flow, veh/h                                       | 138         | 1127      | 284   | 34          | 630       | 999  | 107        | 1697       | 52   | 1781        | 1685      | 155       |
| Grp Volume(v), veh/h                                  | 213         | 0         | 0     | 546         | 0         | 0    | 749        | 0          | 0    | 283         | 0         | 332       |
| Grp Sat Flow(s), veh/h/ln                             | 1549        | 0         | 0     | 1663        | 0         | 0    | 1856       | 0          | 0    | 1781        | 0         | 1840      |
| Q Serve(g_s), s                                       | 0.0         | 0.0       | 0.0   | 9.6         | 0.0       | 0.0  | 19.6       | 0.0        | 0.0  | 11.1        | 0.0       | 12.9      |
| Cycle Q Clear(g_c), s                                 | 6.3         | 0.0       | 0.0   | 22.8        | 0.0       | 0.0  | 19.6       | 0.0        | 0.0  | 11.1        | 0.0       | 12.9      |
| Prop In Lane                                          | 0.15        | •         | 0.18  | 0.04        | 0         | 0.60 | 0.06       | 0          | 0.03 | 1.00        | 0         | 0.08      |
| Lane Grp Cap(c), veh/h                                | 618         | 0         | 0     | 661         | 0         | 0    | 493        | 0          | 0    | 365         | 0         | 377       |
| V/C Ratio(X)                                          | 0.34        | 0.00      | 0.00  | 0.83        | 0.00      | 0.00 | 1.52       | 0.00       | 0.00 | 0.78        | 0.00      | 0.88      |
| Avail Cap(c_a), veh/h                                 | 618         | 0         | 0     | 729         | 0         | 0    | 493        | 0          | 0    | 365         | 0         | 377       |
| HCM Platoon Ratio                                     | 1.00        | 1.00      | 1.00  | 1.00        | 1.00      | 1.00 | 1.00       | 1.00       | 1.00 | 1.00        | 1.00      | 1.00      |
| Upstream Filter(I)                                    | 1.00        | 0.00      | 0.00  | 1.00        | 0.00      | 0.00 | 1.00       | 0.00       | 0.00 | 1.00        | 0.00      | 1.00      |
| Uniform Delay (d), s/veh                              | 17.1<br>0.1 | 0.0       | 0.0   | 22.4<br>6.4 | 0.0       | 0.0  | 27.1       | 0.0        | 0.0  | 27.7<br>9.2 | 0.0       | 28.5      |
| Incr Delay (d2), s/veh                                | 0.1         | 0.0       | 0.0   | 0.4         | 0.0       | 0.0  | 243.8      | 0.0        | 0.0  | 0.0         | 0.0       | 20.2      |
| Initial Q Delay(d3),s/veh<br>%ile BackOfQ(50%),veh/ln | 2.4         | 0.0       | 0.0   | 9.2         | 0.0       | 0.0  | 41.7       | 0.0        | 0.0  | 5.4         | 0.0       | 7.5       |
| Unsig. Movement Delay, s/veh                          |             | 0.0       | 0.0   | 9.2         | 0.0       | 0.0  | 41.7       | 0.0        | 0.0  | 5.4         | 0.0       | 7.5       |
| LnGrp Delay(d),s/veh                                  | 17.2        | 0.0       | 0.0   | 28.8        | 0.0       | 0.0  | 270.9      | 0.0        | 0.0  | 37.0        | 0.0       | 48.7      |
| LnGrp LOS                                             | 17.2<br>B   | Α         | Α     | 20.0<br>C   | Α         | Α    | 270.9<br>F | Α          | Α    | 37.0<br>D   | Α         | 40.7<br>D |
| Approach Vol, veh/h                                   | D           | 213       |       |             | 546       |      | <u> </u>   | 749        |      | <u> </u>    | 615       |           |
| Approach Delay, s/veh                                 |             | 17.2      |       |             | 28.8      |      |            | 270.9      |      |             | 43.3      |           |
| Approach LOS                                          |             | 17.2<br>B |       |             | 20.0<br>C |      |            | 270.9<br>F |      |             | 43.3<br>D |           |
| **                                                    |             |           |       |             | C         |      |            |            |      |             | D         |           |
| Timer - Assigned Phs                                  |             | 2         |       | 4           |           | 6    |            | 8          |      |             |           |           |
| Phs Duration (G+Y+Rc), s                              |             | 23.6      |       | 31.1        |           | 19.1 |            | 31.1       |      |             |           |           |
| Change Period (Y+Rc), s                               |             | 4.6       |       | * 5.4       |           | 5.4  |            | 5.4        |      |             |           |           |
| Max Green Setting (Gmax), s                           |             | 19.0      |       | * 24        |           | 13.7 |            | 28.7       |      |             |           |           |
| Max Q Clear Time (g_c+l1), s                          |             | 21.6      |       | 8.3         |           | 14.9 |            | 24.8       |      |             |           |           |
| Green Ext Time (p_c), s                               |             | 0.0       |       | 0.4         |           | 0.0  |            | 0.6        |      |             |           |           |
| Intersection Summary                                  |             |           |       |             |           |      |            |            |      |             |           |           |
| HCM 6th Ctrl Delay                                    |             |           | 117.2 |             |           |      |            |            |      |             |           |           |
| HCM 6th LOS                                           |             |           | F     |             |           |      |            |            |      |             |           |           |

| €                              | •       | •    | Ť        |          | -    | ţ        |
|--------------------------------|---------|------|----------|----------|------|----------|
| Movement WBI                   | . WBR   | WBR  | NBT      | NBR      | SBL  | SBT      |
| Lane Configurations            | 7       | 7    | <b>†</b> | 7        | ሻ    | <b>1</b> |
| Traffic Volume (veh/h) 320     |         |      | 520      | 670      | 20   | 240      |
| Future Volume (veh/h) 320      | 20      | 20   | 520      | 670      | 20   | 240      |
| Initial Q (Qb), veh            | 0       | 0    | 0        | 0        | 0    | 0        |
| Ped-Bike Adj(A_pbT) 1.00       | 1.00    | 1.00 |          | 1.00     | 1.00 |          |
| Parking Bus, Adj 1.00          | 1.00    | 1.00 | 1.00     | 1.00     | 1.00 | 1.00     |
| Work Zone On Approach No       | )       |      | No       |          |      | No       |
| Adj Sat Flow, veh/h/ln 1870    | 1870    | 1870 | 1870     | 1870     | 1870 | 1870     |
| Adj Flow Rate, veh/h 348       | 5       | 5    | 565      | 728      | 22   | 261      |
| Peak Hour Factor 0.93          | 0.92    | 0.92 | 0.92     | 0.92     | 0.92 | 0.92     |
| Percent Heavy Veh, %           | 2       | 2    | 2        | 2        | 2    | 2        |
| Cap, veh/h 41                  | 369     | 369  | 945      | 801      | 103  | 1181     |
| Arrive On Green 0.23           | 0.23    | 0.23 | 0.51     | 0.51     | 0.06 | 0.63     |
| Sat Flow, veh/h 178            | 1585    | 1585 | 1870     | 1585     | 1781 | 1870     |
| Grp Volume(v), veh/h 348       | 5       | 5    | 565      | 728      | 22   | 261      |
| Grp Sat Flow(s), veh/h/ln178   |         |      | 1870     | 1585     | 1781 | 1870     |
| Q Serve(g_s), s 11.0           |         |      | 12.6     | 24.7     | 0.7  | 3.5      |
| Cycle Q Clear( $g_c$ ), s 11.0 |         |      | 12.6     | 24.7     | 0.7  | 3.5      |
| Prop In Lane 1.00              |         |      | 12.0     | 1.00     | 1.00 | 0.0      |
| Lane Grp Cap(c), veh/h 414     |         |      | 945      | 801      | 103  | 1181     |
| V/C Ratio(X) 0.84              |         |      | 0.60     | 0.91     | 0.21 | 0.22     |
| Avail Cap(c_a), veh/h 92       |         |      | 1025     | 868      | 430  | 1181     |
| HCM Platoon Ratio 1.00         |         |      | 1.00     | 1.00     | 1.00 | 1.00     |
| Upstream Filter(I) 1.00        |         |      | 1.00     | 1.00     | 1.00 | 1.00     |
| Uniform Delay (d), s/veh 21.   |         |      | 10.3     | 13.3     | 26.4 | 4.6      |
| Incr Delay (d2), s/veh 1.8     |         |      | 0.5      | 12.2     | 0.4  | 0.0      |
| Initial Q Delay(d3),s/veh 0.0  |         |      | 0.0      | 0.0      | 0.0  | 0.0      |
| %ile BackOfQ(50%),veh/lr4.     |         |      | 4.0      | 9.1      | 0.0  | 0.8      |
| Unsig. Movement Delay, s/v     |         |      | 4.0      | 9.1      | 0.5  | 0.0      |
|                                |         |      | 10.8     | 25.5     | 26.8 | 4.7      |
| LnGrp Delay(d),s/veh 23.3      |         |      |          |          |      |          |
| LnGrp LOS (                    |         | D    | B        | <u>C</u> | С    | A        |
| Approach Vol, veh/h 353        |         |      | 1293     |          |      | 283      |
| Approach Delay, s/veh 23.2     |         |      | 19.0     |          |      | 6.4      |
| Approach LOS (                 |         |      | В        |          |      | Α        |
| Timer - Assigned Phs           | 2       |      |          | 4        |      | 6        |
| Phs Duration (G+Y+Rc), s7.4    | 33.7    | 33.7 |          | 17.7     |      | 41.1     |
| Change Period (Y+Rc), s 6.2    | 6.2     | 6.2  |          | 4.6      |      | 6.2      |
| Max Green Setting (Gmalk),     | 30.0    | 30.0 |          | 30.0     |      | 30.0     |
| Max Q Clear Time (g_c+l12),    | \$ 26.7 | 26.7 |          | 13.0     |      | 5.5      |
| Green Ext Time (p_c), s 0.0    |         | 0.8  |          | 0.2      |      | 0.4      |
| Intersection Summary           |         |      |          |          |      |          |
|                                |         |      | 10.0     |          |      |          |
| HCM 6th Ctrl Delay             |         |      | 18.0     |          |      |          |
| HCM 6th LOS                    |         |      | В        |          |      |          |
| Notes                          |         |      |          |          |      |          |

| Intersection                  |        |        |      |        |      |      |        |       |        |        |       |       |
|-------------------------------|--------|--------|------|--------|------|------|--------|-------|--------|--------|-------|-------|
| Intersection Int Delay, s/veh | 1      |        |      |        |      |      |        |       |        |        |       |       |
|                               | •      |        |      |        |      |      |        |       |        |        |       |       |
| Movement                      | EBL    | EBT    | EBR  | WBL    | WBT  | WBR  | NBL    | NBT   | NBR    | SBL    | SBT   | SBR   |
| Lane Configurations           | - ሽ    | Þ      |      | - ሽ    | Þ    |      |        | 4     |        |        | 4     |       |
| Traffic Vol, veh/h            | 20     | 350    | 0    | 0      | 420  | 20   | 0      | 0     | 0      | 20     | 0     | 20    |
| Future Vol, veh/h             | 20     | 350    | 0    | 0      | 420  | 20   | 0      | 0     | 0      | 20     | 0     | 20    |
| Conflicting Peds, #/hr        | 0      | 0      | 0    | 0      | 0    | 0    | 0      | 0     | 0      | 0      | 0     | 0     |
| Sign Control                  | Free   | Free   | Free | Free   | Free | Free | Stop   | Stop  | Stop   | Stop   | Stop  | Stop  |
| RT Channelized                | -      | -      | None | -      | -    | None | -      | -     | None   | -      | -     | None  |
| Storage Length                | 90     | -      | -    | 90     | -    | -    | -      | -     | -      | -      | -     | -     |
| Veh in Median Storage         | .,# -  | 0      | -    | -      | 0    | -    | -      | 0     | -      | -      | 0     | -     |
| Grade, %                      | -      | 0      | -    | -      | 0    | -    | -      | 0     | -      | -      | 0     | -     |
| Peak Hour Factor              | 92     | 92     | 92   | 92     | 92   | 92   | 92     | 92    | 92     | 92     | 92    | 92    |
| Heavy Vehicles, %             | 2      | 2      | 2    | 2      | 2    | 2    | 2      | 2     | 2      | 2      | 2     | 2     |
| Mvmt Flow                     | 22     | 380    | 0    | 0      | 457  | 22   | 0      | 0     | 0      | 22     | 0     | 22    |
|                               |        |        |      |        |      |      |        |       |        |        |       |       |
| Major/Minor N                 | Major1 |        |      | Major2 |      | 1    | Minor1 |       |        | Minor2 |       |       |
| Conflicting Flow All          | 479    | 0      | 0    | 380    | 0    | 0    | 903    | 903   | 380    | 892    | 892   | 468   |
|                               | 4/7    | -      | U    | 300    | -    |      | 424    | 424   |        | 468    | 468   | 400   |
| Stage 1                       | -      |        | -    | -      |      | -    | 479    | 479   | -      | 408    | 408   | -     |
| Stage 2                       | 4.12   | -      | -    | 4.12   | -    | -    | 7.12   | 6.52  | 6.22   | 7.12   | 6.52  | 6.22  |
| Critical Hdwy                 | 4.12   | -      | -    | 4.12   | -    | -    | 6.12   | 5.52  | 0.22   | 6.12   | 5.52  |       |
| Critical Hdwy Stg 1           | -      | -      | -    | -      | -    | -    |        |       | -      |        |       | -     |
| Critical Hdwy Stg 2           | 2 210  | -      | -    | 2 210  | -    | -    | 6.12   | 5.52  | 2 210  | 6.12   | 5.52  | 2 210 |
| Follow-up Hdwy                | 2.218  | -      | -    | 2.218  | -    | -    | 3.518  | 4.018 | 3.318  | 3.518  | 4.018 |       |
| Pot Cap-1 Maneuver            | 1083   | -      | -    | 1178   | -    | -    | 258    | 277   | 667    | 263    | 281   | 595   |
| Stage 1                       | -      | -      | -    | -      | -    | -    | 608    | 587   | -      | 575    | 561   | -     |
| Stage 2                       | -      | -      | -    | -      | -    | -    | 568    | 555   | -      | 608    | 587   | -     |
| Platoon blocked, %            | 1000   | -      | -    | 4470   | -    | -    | 0.15   | 074   | , , -  | 050    | 675   | E05   |
| Mov Cap-1 Maneuver            | 1083   | -      | -    | 1178   | -    | -    | 245    | 271   | 667    | 259    | 275   | 595   |
| Mov Cap-2 Maneuver            | -      | -      | -    | -      | -    | -    | 245    | 271   | -      | 259    | 275   | -     |
| Stage 1                       | -      | -      | -    | -      | -    | -    | 596    | 575   | -      | 564    | 561   | -     |
| Stage 2                       | -      | -      | -    | -      | -    | -    | 547    | 555   | -      | 596    | 575   | -     |
|                               |        |        |      |        |      |      |        |       |        |        |       |       |
| Approach                      | EB     |        |      | WB     |      |      | NB     |       |        | SB     |       |       |
| HCM Control Delay, s          | 0.5    |        |      | 0      |      |      | 0      |       |        | 16.3   |       |       |
| HCM LOS                       | 3.0    |        |      |        |      |      | A      |       |        | C      |       |       |
|                               |        |        |      |        |      |      | , \    |       |        |        |       |       |
| Minor Long/Major M.           | .+ .   | IDI ~1 | EDI  | ГРТ    | EDD  | WDI  | WDT    | MDD   | CDI ~1 |        |       |       |
| Minor Lane/Major Mvm          | it ľ   | VBLn1  | EBL  | EBT    | EBR  | WBL  | WBT    | WBK:  | SBLn1  |        |       |       |
| Capacity (veh/h)              |        | -      | 1083 | -      | -    | 1178 | -      | -     | 361    |        |       |       |
| HCM Lane V/C Ratio            |        | -      | 0.02 | -      | -    | -    | -      | -     | 0.12   |        |       |       |
| HCM Control Delay (s)         |        | 0      | 8.4  | -      | -    | 0    | -      | -     | 16.3   |        |       |       |
| HCM Lane LOS                  |        | Α      | Α    | -      | -    | Α    | -      | -     | С      |        |       |       |
| HCM 95th %tile Q(veh)         |        | -      | 0.1  | -      | -    | 0    | -      | -     | 0.4    |        |       |       |

|                              | ۶    | <b>→</b> | •    | •     | <b>←</b> | •    | 4    | <b>†</b> | /    | <b>&gt;</b> | ţ    | 4    |
|------------------------------|------|----------|------|-------|----------|------|------|----------|------|-------------|------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL   | WBT      | WBR  | NBL  | NBT      | NBR  | SBL         | SBT  | SBR  |
| Lane Configurations          | 7    | 1>       |      | *     | 1>       |      | ሻ    | ħβ       |      | *           | ħβ   |      |
| Traffic Volume (veh/h)       | 110  | 350      | 60   | 70    | 380      | 240  | 70   | 250      | 100  | 240         | 260  | 110  |
| Future Volume (veh/h)        | 110  | 350      | 60   | 70    | 380      | 240  | 70   | 250      | 100  | 240         | 260  | 110  |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0     | 0        | 0    | 0    | 0        | 0    | 0           | 0    | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00  |          | 1.00 | 1.00 |          | 0.98 | 1.00        |      | 0.99 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00 | 1.00 |
| Work Zone On Approach        |      | No       |      |       | No       |      |      | No       |      |             | No   |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870  | 1870     | 1870 | 1870 | 1870     | 1870 | 1870        | 1870 | 1870 |
| Adj Flow Rate, veh/h         | 120  | 380      | 61   | 76    | 413      | 244  | 76   | 272      | 70   | 261         | 283  | 79   |
| Peak Hour Factor             | 0.92 | 0.92     | 0.92 | 0.92  | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92        | 0.92 | 0.92 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2     | 2        | 2    | 2    | 2        | 2    | 2           | 2    | 2    |
| Cap, veh/h                   | 216  | 595      | 96   | 191   | 401      | 237  | 191  | 446      | 112  | 299         | 603  | 165  |
| Arrive On Green              | 0.12 | 0.38     | 0.38 | 0.11  | 0.36     | 0.36 | 0.11 | 0.16     | 0.15 | 0.17        | 0.22 | 0.21 |
| Sat Flow, veh/h              | 1781 | 1571     | 252  | 1781  | 1100     | 650  | 1781 | 2800     | 706  | 1781        | 2749 | 752  |
| Grp Volume(v), veh/h         | 120  | 0        | 441  | 76    | 0        | 657  | 76   | 171      | 171  | 261         | 181  | 181  |
| Grp Sat Flow(s), veh/h/ln    | 1781 | 0        | 1824 | 1781  | 0        | 1750 | 1781 | 1777     | 1729 | 1781        | 1777 | 1724 |
| Q Serve(g_s), s              | 5.4  | 0.0      | 16.9 | 3.4   | 0.0      | 31.2 | 3.4  | 7.6      | 7.9  | 12.2        | 7.6  | 7.9  |
| Cycle Q Clear(g_c), s        | 5.4  | 0.0      | 16.9 | 3.4   | 0.0      | 31.2 | 3.4  | 7.6      | 7.9  | 12.2        | 7.6  | 7.9  |
| Prop In Lane                 | 1.00 |          | 0.14 | 1.00  |          | 0.37 | 1.00 |          | 0.41 | 1.00        |      | 0.44 |
| Lane Grp Cap(c), veh/h       | 216  | 0        | 691  | 191   | 0        | 639  | 191  | 283      | 275  | 299         | 390  | 378  |
| V/C Ratio(X)                 | 0.56 | 0.00     | 0.64 | 0.40  | 0.00     | 1.03 | 0.40 | 0.60     | 0.62 | 0.87        | 0.46 | 0.48 |
| Avail Cap(c_a), veh/h        | 542  | 0        | 691  | 542   | 0        | 639  | 229  | 582      | 566  | 333         | 582  | 565  |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00 | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 1.00 | 1.00  | 0.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00 | 1.00 |
| Uniform Delay (d), s/veh     | 35.4 | 0.0      | 21.8 | 35.6  | 0.0      | 27.2 | 35.6 | 33.4     | 33.8 | 34.7        | 29.0 | 29.3 |
| Incr Delay (d2), s/veh       | 2.2  | 0.0      | 2.0  | 1.3   | 0.0      | 43.2 | 1.3  | 2.1      | 2.3  | 20.3        | 0.9  | 0.9  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0   | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0         | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 2.4  | 0.0      | 6.9  | 1.5   | 0.0      | 19.5 | 1.5  | 3.3      | 3.3  | 6.8         | 3.2  | 3.2  |
| Unsig. Movement Delay, s/veh | l    |          |      |       |          |      |      |          |      |             |      |      |
| LnGrp Delay(d),s/veh         | 37.6 | 0.0      | 23.8 | 36.9  | 0.0      | 70.4 | 36.9 | 35.5     | 36.1 | 55.0        | 29.9 | 30.3 |
| LnGrp LOS                    | D    | Α        | С    | D     | Α        | F    | D    | D        | D    | Е           | С    | С    |
| Approach Vol, veh/h          |      | 561      |      |       | 733      |      |      | 418      |      |             | 623  |      |
| Approach Delay, s/veh        |      | 26.7     |      |       | 66.9     |      |      | 36.0     |      |             | 40.5 |      |
| Approach LOS                 |      | С        |      |       | Е        |      |      | D        |      |             | D    |      |
| Timer - Assigned Phs         | 1    | 2        | 3    | 4     | 5        | 6    | 7    | 8        |      |             |      |      |
| Phs Duration (G+Y+Rc), s     | 13.2 | 22.7     | 14.4 | 35.2  | 18.3     | 17.6 | 13.2 | 36.4     |      |             |      |      |
| Change Period (Y+Rc), s      | 4.0  | 5.0      | 4.0  | * 4.2 | 4.0      | 5.0  | 4.0  | * 4.2    |      |             |      |      |
| Max Green Setting (Gmax), s  | 11.0 | 27.0     | 26.0 | * 31  | 16.0     | 27.0 | 26.0 | * 31     |      |             |      |      |
| Max Q Clear Time (g_c+l1), s | 5.4  | 9.9      | 7.4  | 33.2  | 14.2     | 9.9  | 5.4  | 18.9     |      |             |      |      |
| Green Ext Time (p_c), s      | 0.1  | 1.9      | 0.3  | 0.0   | 0.1      | 1.6  | 0.1  | 2.0      |      |             |      |      |
| Intersection Summary         |      |          |      |       |          |      |      |          |      |             |      |      |
| HCM 6th Ctrl Delay           |      |          | 44.7 |       |          |      |      |          |      |             |      |      |
| HCM 6th LOS                  |      |          | D    |       |          |      |      |          |      |             |      |      |
| Notes                        |      |          |      |       |          |      |      |          |      |             |      |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

# ATTACHMENT C-2 EXISTING PLUS PROGRAM CONDITIONS OUTPUTS



### 1: Geyserville Ave & Canyon Road

| Intersection              |     |  |
|---------------------------|-----|--|
| Intersection Delay, s/veh | 8.6 |  |
| Intersection LOS          | Α   |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 40   | 10   | 178  | 10   | 10   | 10   | 118  | 20   | 10   | 10   | 20   | 20   |
| Future Vol, veh/h          | 40   | 10   | 178  | 10   | 10   | 10   | 118  | 20   | 10   | 10   | 20   | 20   |
| Peak Hour Factor           | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 43   | 11   | 193  | 11   | 11   | 11   | 128  | 22   | 11   | 11   | 22   | 22   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.6  |      |      | 7.8  |      |      | 9    |      |      | 7.9  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 80%   | 18%   | 33%   | 20%   |  |
| Vol Thru, %            | 14%   | 4%    | 33%   | 40%   |  |
| Vol Right, %           | 7%    | 78%   | 33%   | 40%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 148   | 228   | 30    | 50    |  |
| LT Vol                 | 118   | 40    | 10    | 10    |  |
| Through Vol            | 20    | 10    | 10    | 20    |  |
| RT Vol                 | 10    | 178   | 10    | 20    |  |
| Lane Flow Rate         | 161   | 248   | 33    | 54    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.211 | 0.279 | 0.041 | 0.068 |  |
| Departure Headway (Hd) | 4.715 | 4.059 | 4.58  | 4.529 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 763   | 887   | 782   | 790   |  |
| Service Time           | 2.74  | 2.075 | 2.607 | 2.559 |  |
| HCM Lane V/C Ratio     | 0.211 | 0.28  | 0.042 | 0.068 |  |
| HCM Control Delay      | 9     | 8.6   | 7.8   | 7.9   |  |
| HCM Lane LOS           | Α     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 0.8   | 1.1   | 0.1   | 0.2   |  |

| _                                       | ၨ               | <b>→</b> | •        | •     | <b>←</b>        | •        | •    | <b>†</b> | ~         | <b>\</b>  | <b>↓</b> | 1    |  |
|-----------------------------------------|-----------------|----------|----------|-------|-----------------|----------|------|----------|-----------|-----------|----------|------|--|
| Movement                                | EBL             | EBT      | EBR      | WBL   | WBT             | WBR      | NBL  | NBT      | NBR       | SBL       | SBT      | SBR  |  |
| Lane Configurations                     | ች               | <b></b>  |          |       | <b></b>         | 7        | ች    | î,       |           | ች         | f.       |      |  |
| Traffic Volume (veh/h)                  | 55              | 300      | 0        | 0     | 310             | 98       | 10   | 22       | 20        | 154       | 0        | 40   |  |
| Future Volume (veh/h)                   | 55              | 300      | 0        | 0     | 310             | 98       | 10   | 22       | 20        | 154       | 0        | 40   |  |
| Initial Q (Qb), veh                     | 0               | 0        | 0        | 0     | 0               | 0        | 0    | 0        | 0         | 0         | 0        | 0    |  |
| Ped-Bike Adj(A_pbT)                     | 1.00            |          | 1.00     | 1.00  |                 | 0.99     | 0.99 |          | 0.99      | 0.99      |          | 0.99 |  |
| Parking Bus, Adj                        | 1.00            | 1.00     | 1.00     | 1.00  | 1.00            | 1.00     | 1.00 | 1.00     | 1.00      | 1.00      | 1.00     | 1.00 |  |
| Work Zone On Approac                    |                 | No       |          |       | No              |          |      | No       |           |           | No       |      |  |
| Adj Sat Flow, veh/h/ln                  | 1870            | 1870     | 0        | 0     | 1870            | 1870     | 1870 | 1870     | 1870      | 1870      | 1870     | 1870 |  |
| Adj Flow Rate, veh/h                    | 60              | 326      | 0        | 0     | 337             | 44       | 11   | 24       | 5         | 167       | 0        | 9    |  |
| Peak Hour Factor                        | 0.92            | 0.92     | 0.92     | 0.92  | 0.92            | 0.92     | 0.92 | 0.92     | 0.92      | 0.92      | 0.92     | 0.92 |  |
| Percent Heavy Veh, %                    | 2               | 2        | 0        | 0     | 2               | 2        | 2    | 2        | 2         | 2         | 2        | 2    |  |
| Cap, veh/h                              | 501             | 965      | 0        | 0     | 549             | 461      | 499  | 323      | 67        | 483       | 0        | 338  |  |
| Arrive On Green                         | 0.09            | 0.52     | 0.00     | 0.00  | 0.29            | 0.29     | 0.22 | 0.22     | 0.22      | 0.22      | 0.00     | 0.22 |  |
| Sat Flow, veh/h                         | 1781            | 1870     | 0.00     | 0.00  | 1870            | 1572     | 1390 | 1498     | 312       | 1366      | 0.00     | 1568 |  |
| Grp Volume(v), veh/h                    | 60              | 326      | 0        | 0     | 337             | 44       | 11   | 0        | 29        | 167       | 0        | 9    |  |
| Grp Sat Flow(s), veh/h/li               |                 | 1870     | 0        | 0     | 1870            | 1572     | 1390 | 0        | 1810      | 1366      | 0        | 1568 |  |
| Q Serve(g_s), s                         | 0.7             | 3.6      | 0.0      | 0.0   | 5.4             | 0.7      | 0.2  | 0.0      | 0.4       | 3.9       | 0.0      | 0.2  |  |
| Cycle Q Clear(g_c), s                   | 0.7             | 3.6      | 0.0      | 0.0   | 5.4             | 0.7      | 0.4  | 0.0      | 0.4       | 4.3       | 0.0      | 0.2  |  |
| Prop In Lane                            | 1.00            | 0.0      | 0.00     | 0.00  | J. <del>T</del> | 1.00     | 1.00 | 0.0      | 0.17      | 1.00      | 0.0      | 1.00 |  |
| Lane Grp Cap(c), veh/h                  |                 | 965      | 0.00     | 0.00  | 549             | 461      | 499  | 0        | 390       | 483       | 0        | 338  |  |
| V/C Ratio(X)                            | 0.12            | 0.34     | 0.00     | 0.00  | 0.61            | 0.10     | 0.02 | 0.00     | 0.07      | 0.35      | 0.00     | 0.03 |  |
| Avail Cap(c_a), veh/h                   | 700             | 1709     | 0.00     | 0.00  | 2243            | 1884     | 914  | 0.00     | 930       | 890       | 0.00     | 806  |  |
| HCM Platoon Ratio                       | 1.00            | 1.00     | 1.00     | 1.00  | 1.00            | 1.00     | 1.00 | 1.00     | 1.00      | 1.00      | 1.00     | 1.00 |  |
| Upstream Filter(I)                      | 1.00            | 1.00     | 0.00     | 0.00  | 1.00            | 1.00     | 1.00 | 0.00     | 1.00      | 1.00      | 0.00     | 1.00 |  |
| Uniform Delay (d), s/vel                |                 | 5.0      | 0.00     | 0.00  | 10.7            | 9.0      | 11.0 | 0.00     | 11.0      | 12.7      | 0.00     | 10.8 |  |
| Incr Delay (d2), s/veh                  | 0.1             | 0.2      | 0.0      | 0.0   | 1.1             | 0.1      | 0.0  | 0.0      | 0.1       | 0.4       | 0.0      | 0.0  |  |
| Initial Q Delay(d3),s/veh               |                 | 0.2      | 0.0      | 0.0   | 0.0             | 0.0      | 0.0  | 0.0      | 0.0       | 0.4       | 0.0      | 0.0  |  |
| • • • • • • • • • • • • • • • • • • • • |                 | 0.0      | 0.0      | 0.0   | 1.9             | 0.0      | 0.0  | 0.0      | 0.0       | 1.0       | 0.0      | 0.0  |  |
| %ile BackOfQ(50%),vel                   |                 |          | 0.0      | 0.0   | 1.9             | 0.2      | 0.1  | 0.0      | 0.2       | 1.0       | 0.0      | 0.0  |  |
| Unsig. Movement Delay                   | 7, s/ven<br>6.7 | 5.2      | 0.0      | 0.0   | 11.8            | 9.1      | 11.0 | 0.0      | 11.0      | 13.1      | 0.0      | 10.9 |  |
| LnGrp Delay(d),s/veh<br>LnGrp LOS       |                 |          | 0.0<br>A |       | 11.6<br>B       | 9.1<br>A |      |          | 11.0<br>B | 13.1<br>B |          |      |  |
| <u> </u>                                | A               | A 206    | A        | A     |                 | Α        | В    | A 40     | D         | D         | 176      | В    |  |
| Approach Vol, veh/h                     |                 | 386      |          |       | 381             |          |      | 40       |           |           | 176      |      |  |
| Approach LOS                            |                 | 5.4      |          |       | 11.5            |          |      | 11.0     |           |           | 13.0     |      |  |
| Approach LOS                            |                 | Α        |          |       | В               |          |      | В        |           |           | В        |      |  |
| Timer - Assigned Phs                    |                 | 2        |          | 4     | 5               | 6        |      | 8        |           |           |          |      |  |
| Phs Duration (G+Y+Rc)                   |                 | 22.8     |          | 12.3  | 7.8             | 15.0     |      | 12.3     |           |           |          |      |  |
| Change Period (Y+Rc),                   |                 | * 4.7    |          | * 4.7 | * 4.7           | * 4.7    |      | * 4.7    |           |           |          |      |  |
| Max Green Setting (Gm                   |                 | * 32     |          | * 18  | * 7             | * 42     |      | * 18     |           |           |          |      |  |
| Max Q Clear Time (g_c                   |                 | 5.6      |          | 6.3   | 2.7             | 7.4      |      | 2.4      |           |           |          |      |  |
| Green Ext Time (p_c), s                 | 8               | 2.1      |          | 0.4   | 0.0             | 2.5      |      | 0.1      |           |           |          |      |  |
| Intersection Summary                    |                 |          |          |       |                 |          |      |          |           |           |          |      |  |
| HCM 6th Ctrl Delay                      |                 |          | 9.3      |       |                 |          |      |          |           |           |          |      |  |
| HCM 6th LOS                             |                 |          | Α        |       |                 |          |      |          |           |           |          |      |  |
|                                         |                 |          |          |       |                 |          |      |          |           |           |          |      |  |

User approved pedestrian interval to be less than phase max green.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| 3: Gravenstein h          |         |          |      |          | Rive     | r Rd     |          |      |          |          | E    | Existing | plus Project Conditions AM |
|---------------------------|---------|----------|------|----------|----------|----------|----------|------|----------|----------|------|----------|----------------------------|
|                           | ۶       | <b>→</b> | •    | •        | <b>←</b> | •        | •        | †    | <b>/</b> | <b>/</b> | ţ    | 4        |                            |
| Movement                  | EBL     | EBT      | EBR  | WBL      | WBT      | WBR      | NBL      | NBT  | NBR      | SBL      | SBT  | SBR      |                            |
| Lane Configurations       |         | - ↑      | 7    | <b>ነ</b> | ₽        |          | <u>ነ</u> | ₽    |          |          | 4    |          |                            |
| Traffic Volume (veh/h)    | 0       | 335      | 139  | 20       | 290      | 10       | 108      | 30   | 70       | 10       | 20   | 10       |                            |
| Future Volume (veh/h)     | 0       | 335      | 139  | 20       | 290      | 10       | 108      | 30   | 70       | 10       | 20   | 10       |                            |
| Initial Q (Qb), veh       | 0       | 0        | 0    | 0        | 0        | 0        | 0        | 0    | 0        | 0        | 0    | 0        |                            |
| Ped-Bike Adj(A_pbT)       | 1.00    |          | 0.99 | 1.00     |          | 0.99     | 0.99     |      | 1.00     | 1.00     |      | 0.99     |                            |
| Parking Bus, Adj          | 1.00    | 1.00     | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 | 1.00     |                            |
| Work Zone On Approac      | :h      | No       |      |          | No       |          |          | No   |          |          | No   |          |                            |
| Adj Sat Flow, veh/h/ln    | 0       | 1870     | 1870 | 1870     | 1870     | 1870     | 1870     | 1870 | 1870     | 1870     | 1870 | 1870     |                            |
| Adj Flow Rate, veh/h      | 0       | 364      | 97   | 22       | 315      | 10       | 117      | 33   | 16       | 11       | 22   | 2        |                            |
| Peak Hour Factor          | 0.92    | 0.92     | 0.92 | 0.92     | 0.92     | 0.92     | 0.92     | 0.92 | 0.92     | 0.92     | 0.92 | 0.92     |                            |
| Percent Heavy Veh, %      | 0       | 2        | 2    | 2        | 2        | 2        | 2        | 2    | 2        | 2        | 2    | 2        |                            |
| Cap, veh/h                | 0       | 578      | 486  | 432      | 896      | 28       | 529      | 270  | 131      | 206      | 305  | 23       |                            |
| Arrive On Green           | 0.00    | 0.31     | 0.31 | 0.05     | 0.50     | 0.50     | 0.23     | 0.23 | 0.23     | 0.23     | 0.23 | 0.23     |                            |
| Sat Flow, veh/h           | 0       | 1870     | 1572 | 1781     | 1802     | 57       | 1373     | 1190 | 577      | 294      | 1346 | 99       |                            |
| Grp Volume(v), veh/h      | 0       | 364      | 97   | 22       | 0        | 325      | 117      | 0    | 49       | 35       | 0    | 0        |                            |
| Grp Sat Flow(s), veh/h/li | n 0     | 1870     | 1572 | 1781     | 0        | 1860     | 1373     | 0    | 1767     | 1740     | 0    | 0        |                            |
| Q Serve(g_s), s           | 0.0     | 5.7      | 1.5  | 0.2      | 0.0      | 3.6      | 1.8      | 0.0  | 0.8      | 0.0      | 0.0  | 0.0      |                            |
| Cycle Q Clear(g_c), s     | 0.0     | 5.7      | 1.5  | 0.2      | 0.0      | 3.6      | 2.3      | 0.0  | 0.8      | 0.5      | 0.0  | 0.0      |                            |
| Prop In Lane              | 0.00    |          | 1.00 | 1.00     |          | 0.03     | 1.00     |      | 0.33     | 0.31     |      | 0.06     |                            |
| Lane Grp Cap(c), veh/h    | 0       | 578      | 486  | 432      | 0        | 924      | 529      | 0    | 400      | 533      | 0    | 0        |                            |
| V/C Ratio(X)              | 0.00    | 0.63     | 0.20 | 0.05     | 0.00     | 0.35     | 0.22     | 0.00 | 0.12     | 0.07     | 0.00 | 0.00     |                            |
| Avail Cap(c_a), veh/h     | 0       | 1320     | 1110 | 815      | 0        | 1313     | 1429     | 0    | 1559     | 645      | 0    | 0        |                            |
| HCM Platoon Ratio         | 1.00    | 1.00     | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 | 1.00     |                            |
| Upstream Filter(I)        | 0.00    | 1.00     | 1.00 | 1.00     | 0.00     | 1.00     | 1.00     | 0.00 | 1.00     | 1.00     | 0.00 | 0.00     |                            |
| Uniform Delay (d), s/vel  | h 0.0   | 10.1     | 8.7  | 6.7      | 0.0      | 5.2      | 11.0     | 0.0  | 10.5     | 10.4     | 0.0  | 0.0      |                            |
| Incr Delay (d2), s/veh    | 0.0     | 1.1      | 0.2  | 0.0      | 0.0      | 0.2      | 0.2      | 0.0  | 0.1      | 0.1      | 0.0  | 0.0      |                            |
| Initial Q Delay(d3),s/veh | n 0.0   | 0.0      | 0.0  | 0.0      | 0.0      | 0.0      | 0.0      | 0.0  | 0.0      | 0.0      | 0.0  | 0.0      |                            |
| %ile BackOfQ(50%),vel     | h/lr0.0 | 1.9      | 0.4  | 0.1      | 0.0      | 0.9      | 0.6      | 0.0  | 0.2      | 0.2      | 0.0  | 0.0      |                            |
| Unsig. Movement Delay     | , s/veh |          |      |          |          |          |          |      |          |          |      |          |                            |
| LnGrp Delay(d),s/veh      | 0.0     | 11.2     | 8.9  | 6.8      | 0.0      | 5.4      | 11.2     | 0.0  | 10.6     | 10.4     | 0.0  | 0.0      |                            |
| LnGrp LOS                 | Α       | В        | Α    | Α        | Α        | Α        | В        | Α    | В        | В        | Α    | Α        |                            |
| Approach Vol, veh/h       |         | 461      |      |          | 347      |          |          | 166  |          |          | 35   |          |                            |
| Approach Delay, s/veh     |         | 10.7     |      |          | 5.5      |          |          | 11.0 |          |          | 10.4 |          |                            |
| Approach LOS              |         | В        |      |          | Α        |          |          | В    |          |          | В    |          |                            |
| Timer - Assigned Phs      | 1       | 2        |      | 4        |          | 6        |          | 8    |          |          |      |          |                            |
|                           |         |          |      |          |          | <u> </u> |          |      |          |          |      |          |                            |

12.4

\* 4.7

\* 30

4.3

0.6

| ļ | nt | te | rs | ect | ion | S | ur | nn | nary |  |
|---|----|----|----|-----|-----|---|----|----|------|--|
| Ī |    | _  |    | 011 | ~   |   |    |    |      |  |

Phs Duration (G+Y+Rc), s6.4

Change Period (Y+Rc), \$ 4.7

Max Green Setting (Gmax), &

Max Q Clear Time (g\_c+l12),2s

Green Ext Time (p\_c), s 0.0

9.0 HCM 6th Ctrl Delay HCM 6th LOS Α

#### Notes

User approved pedestrian interval to be less than phase max green.

15.2

\* 4.7

\* 24

7.7

2.4

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

12.4

\* 4.7

\* 10

2.5

0.0

21.6

\* 4.7

\* 24

5.6

1.9

| Intersection           |        |       |         |          |          |      |
|------------------------|--------|-------|---------|----------|----------|------|
| Int Delay, s/veh       | 3.7    |       |         |          |          |      |
|                        |        | EDD   | NDI     | NDT      | CDT      | CDD  |
| Movement               | EBL    | EBR   | NBL     | NBT      | SBT      | SBR  |
| Lane Configurations    | ነ      | 7     | <u></u> | <b>↑</b> | <b>↑</b> | 7    |
| Traffic Vol, veh/h     | 132    | 30    | 30      | 144      | 656      | 308  |
| Future Vol, veh/h      | 132    | 30    | 30      | 144      | 656      | 308  |
| Conflicting Peds, #/hr |        | 0     | 0       | 0        | 0        | 0    |
| Sign Control           | Stop   | Stop  | Free    | Free     | Free     | Free |
| RT Channelized         | -      | Stop  | -       | None     | -        | None |
| Storage Length         | 0      | 90    | 70      | -        | -        | 100  |
| Veh in Median Storag   | je,# 0 | -     | -       | 0        | 0        | -    |
| Grade, %               | 0      | -     | -       | 0        | 0        | -    |
| Peak Hour Factor       | 92     | 92    | 92      | 92       | 92       | 92   |
| Heavy Vehicles, %      | 2      | 2     | 2       | 2        | 2        | 2    |
| Mvmt Flow              | 143    | 33    | 33      | 157      | 713      | 335  |
|                        |        |       |         |          |          |      |
|                        |        |       |         |          |          |      |
| Major/Minor            | Minor2 |       | Major1  |          | Major2   | _    |
| Conflicting Flow All   | 936    | 713   | 1048    | 0        | -        | 0    |
| Stage 1                | 713    | -     | -       | -        | -        | -    |
| Stage 2                | 223    | -     | -       | -        | -        | -    |
| Critical Hdwy          | 6.42   | 6.22  | 4.12    | -        | -        | -    |
| Critical Hdwy Stg 1    | 5.42   | -     | -       | -        | -        | -    |
| Critical Hdwy Stg 2    | 5.42   | -     | -       | -        | -        | -    |
| Follow-up Hdwy         | 3.518  | 3.318 | 2.218   | -        | -        | -    |
| Pot Cap-1 Maneuver     | 294    | 432   | 664     | -        | -        | -    |
| Stage 1                | 486    | -     | -       | -        | -        | -    |
| Stage 2                | 814    | _     | _       | _        | -        | -    |
| Platoon blocked, %     | •      |       |         | _        | _        | _    |
| Mov Cap-1 Maneuver     | r 279  | 432   | 664     | _        | _        | _    |
| Mov Cap-2 Maneuve      |        | -     | -       | _        | _        | _    |
| Stage 1                | 462    | _     | -       | -        | -        | -    |
| Stage 1                | 814    | -     | _       |          | _        |      |
| Staye 2                | 014    | -     | -       | -        | -        | -    |
|                        |        |       |         |          |          |      |
| Approach               | EB     |       | NB      |          | SB       |      |
| HCM Control Delay, s   | 27.7   |       | 1.8     |          | 0        |      |
| HCM LOS                | D      |       |         |          |          |      |
|                        |        |       |         |          |          |      |
| NA' 1 /NA - ' NA       | 1      | NDI   | NDT     | EDL .41  | EDL . 0  | ODT  |
| Minor Lane/Major Mv    | mt     | NBL   | NRT     | EBLn1    |          | SBT  |
| Capacity (veh/h)       |        | 664   | -       | 279      | 432      | -    |
| HCM Lane V/C Ratio     |        | 0.049 | -       | 0.514    |          | -    |
| HCM Control Delay (s   | s)     | 10.7  | -       | 30.8     | 14       | -    |
| HCM Lane LOS           |        | В     | -       | D        | В        | -    |
| HCM 95th %tile Q(ve    | h)     | 0.2   | -       | 2.7      | 0.2      | -    |
|                        |        |       |         |          |          |      |

|                              | ۶    | <b>→</b>  | •     | •    | •         | •     | 4        | <b>†</b> | /    | <b>/</b> | ļ          | 4    |
|------------------------------|------|-----------|-------|------|-----------|-------|----------|----------|------|----------|------------|------|
| Movement                     | EBL  | EBT       | EBR   | WBL  | WBT       | WBR   | NBL      | NBT      | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations          | ሻ    | <b>†</b>  | 7     | ሻ    | ₽         |       | ሻ        | <b>↑</b> | 7    |          | 4          |      |
| Traffic Volume (veh/h)       | 61   | 271       | 160   | 182  | 493       | 20    | 570      | 141      | 121  | 30       | 222        | 206  |
| Future Volume (veh/h)        | 61   | 271       | 160   | 182  | 493       | 20    | 570      | 141      | 121  | 30       | 222        | 206  |
| Initial Q (Qb), veh          | 0    | 0         | 0     | 0    | 0         | 0     | 0        | 0        | 0    | 0        | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |           | 0.99  | 1.00 |           | 0.99  | 1.00     |          | 0.99 | 1.00     |            | 0.99 |
| Parking Bus, Adj             | 1.00 | 1.00      | 1.00  | 1.00 | 1.00      | 1.00  | 1.00     | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Work Zone On Approach        |      | No        |       |      | No        |       |          | No       |      |          | No         |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870      | 1870  | 1870 | 1870      | 1870  | 1870     | 1870     | 1870 | 1870     | 1870       | 1870 |
| Adj Flow Rate, veh/h         | 66   | 295       | 38    | 198  | 536       | 21    | 620      | 153      | 35   | 33       | 241        | 201  |
| Peak Hour Factor             | 0.92 | 0.92      | 0.92  | 0.92 | 0.92      | 0.92  | 0.92     | 0.92     | 0.92 | 0.92     | 0.92       | 0.92 |
| Percent Heavy Veh, %         | 2    | 2         | 2     | 2    | 2         | 2     | 2        | 2        | 2    | 2        | 2          | 2    |
| Cap, veh/h                   | 85   | 376       | 315   | 229  | 497       | 19    | 495      | 520      | 437  | 22       | 162        | 135  |
| Arrive On Green              | 0.05 | 0.20      | 0.20  | 0.13 | 0.28      | 0.28  | 0.28     | 0.28     | 0.28 | 0.19     | 0.19       | 0.19 |
| Sat Flow, veh/h              | 1781 | 1870      | 1565  | 1781 | 1787      | 70    | 1781     | 1870     | 1571 | 120      | 876        | 730  |
| Grp Volume(v), veh/h         | 66   | 295       | 38    | 198  | 0         | 557   | 620      | 153      | 35   | 475      | 0          | 0    |
| Grp Sat Flow(s), veh/h/ln    | 1781 | 1870      | 1565  | 1781 | 0         | 1857  | 1781     | 1870     | 1571 | 1726     | 0          | 0    |
| Q Serve(g_s), s              | 4.0  | 16.1      | 2.1   | 11.8 | 0.0       | 30.0  | 30.0     | 6.9      | 1.8  | 20.0     | 0.0        | 0.0  |
| Cycle Q Clear(g_c), s        | 4.0  | 16.1      | 2.1   | 11.8 | 0.0       | 30.0  | 30.0     | 6.9      | 1.8  | 20.0     | 0.0        | 0.0  |
| Prop In Lane                 | 1.00 |           | 1.00  | 1.00 |           | 0.04  | 1.00     |          | 1.00 | 0.07     |            | 0.42 |
| Lane Grp Cap(c), veh/h       | 85   | 376       | 315   | 229  | 0         | 516   | 495      | 520      | 437  | 320      | 0          | 0    |
| V/C Ratio(X)                 | 0.77 | 0.78      | 0.12  | 0.87 | 0.00      | 1.08  | 1.25     | 0.29     | 0.08 | 1.48     | 0.00       | 0.00 |
| Avail Cap(c_a), veh/h        | 330  | 520       | 435   | 330  | 0         | 516   | 495      | 520      | 437  | 320      | 0          | 0    |
| HCM Platoon Ratio            | 1.00 | 1.00      | 1.00  | 1.00 | 1.00      | 1.00  | 1.00     | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00 | 1.00      | 1.00  | 1.00 | 0.00      | 1.00  | 1.00     | 1.00     | 1.00 | 1.00     | 0.00       | 0.00 |
| Uniform Delay (d), s/veh     | 50.8 | 40.9      | 35.3  | 46.1 | 0.0       | 38.9  | 38.9     | 30.6     | 28.7 | 43.9     | 0.0        | 0.0  |
| Incr Delay (d2), s/veh       | 5.5  | 3.4       | 0.1   | 11.2 | 0.0       | 62.4  | 129.0    | 0.1      | 0.0  | 234.0    | 0.0        | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0       | 0.0   | 0.0  | 0.0       | 0.0   | 0.0      | 0.0      | 0.0  | 0.0      | 0.0        | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 1.8  | 7.5       | 0.8   | 5.8  | 0.0       | 22.0  | 30.2     | 3.0      | 0.7  | 29.2     | 0.0        | 0.0  |
| Unsig. Movement Delay, s/veh |      | 1.0       | 0.0   | 0.0  | 0.0       | LL.U  | 00.2     | 0.0      | 0.7  | 20.2     | 0.0        | 0.0  |
| LnGrp Delay(d),s/veh         | 56.3 | 44.3      | 35.3  | 57.3 | 0.0       | 101.4 | 168.0    | 30.7     | 28.8 | 278.0    | 0.0        | 0.0  |
| LnGrp LOS                    | E    | D         | D     | E    | Α         | F     | F        | C        | C    | F        | Α          | A    |
| Approach Vol, veh/h          |      | 399       |       |      | 755       |       | <u>'</u> | 808      |      | <u> </u> | 475        |      |
| Approach Delay, s/veh        |      | 45.4      |       |      | 89.8      |       |          | 135.9    |      |          | 278.0      |      |
| Approach LOS                 |      | 45.4<br>D |       |      | 09.0<br>F |       |          |          |      |          | 270.0<br>F |      |
|                              |      |           |       |      |           |       |          | F        |      |          | Г          |      |
| Timer - Assigned Phs         | 1    | 2         |       | 4    | 5         | 6     |          | 8        |      |          |            |      |
| Phs Duration (G+Y+Rc), s     | 19.3 | 27.7      |       | 25.1 | 11.0      | 36.0  |          | 35.8     |      |          |            |      |
| Change Period (Y+Rc), s      | 5.4  | 6.0       |       | 5.1  | 5.8       | 6.0   |          | 5.8      |      |          |            |      |
| Max Green Setting (Gmax), s  | 20.0 | 30.0      |       | 20.0 | 20.0      | 30.0  |          | 30.0     |      |          |            |      |
| Max Q Clear Time (g_c+I1), s | 13.8 | 18.1      |       | 22.0 | 6.0       | 32.0  |          | 32.0     |      |          |            |      |
| Green Ext Time (p_c), s      | 0.1  | 8.0       |       | 0.0  | 0.0       | 0.0   |          | 0.0      |      |          |            |      |
| Intersection Summary         |      |           |       |      |           |       |          |          |      |          |            |      |
| HCM 6th Ctrl Delay           |      |           | 134.5 |      |           |       |          |          |      |          |            |      |
| HCM 6th LOS                  |      |           | F     |      |           |       |          |          |      |          |            |      |
| Notes                        |      |           |       |      |           |       |          |          |      |          |            |      |

| Movement         EBL         EBT         EBR         WBL         WBT         WBR         NBL         NBT         NBR         SBL         SBR           Lane Configurations         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Traffic Volume (veh/h)         30         120         282         30         241         30         294         154         10         30         666         60           Future Volume (veh/h)         30         120         282         30         241         30         294         154         10         30         666         60           Initial Q (Qb), veh         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                          |  |
| Traffic Volume (veh/h)         30         120         282         30         241         30         294         154         10         30         666         60           Future Volume (veh/h)         30         120         282         30         241         30         294         154         10         30         666         60           Initial Q (Qb), veh         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                          |  |
| Future Volume (veh/h) 30 120 282 30 241 30 294 154 10 30 666 60 Initial Q (Qb), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Ped-Bike Adj(A_pbT)       1.00       0.99       1.00       0.99       1.00       1.00       1.00       1.00       0.99         Parking Bus, Adj       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00                                                                                     |  |
| Ped-Bike Adj(A_pbT)       1.00       0.99       1.00       0.99       1.00       1.00       1.00       1.00       0.99         Parking Bus, Adj       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00                                                                                     |  |
| Work Zone On Approach         No         No         No         No         No         No         No         Adj Sat Flow, veh/h/ln         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870 |  |
| Adj Sat Flow, veh/h/ln       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1870       1970       1970       1970       1970       1970       1970       1970       1970       1970       1970       1970       <                                                                             |  |
| Adj Flow Rate, veh/h       33       130       57       33       262       28       320       167       6       33       724       24         Peak Hour Factor       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92 <td></td>                                                                                   |  |
| Peak Hour Factor       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.92       0.9                                                                                 |  |
| Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Cap, veh/h       45       369       309       45       312       33       354       971       819       45       647       544         Arrive On Green       0.03       0.20       0.03       0.19       0.19       0.20       0.52       0.52       0.03       0.35       0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Arrive On Green 0.03 0.20 0.20 0.03 0.19 0.19 0.20 0.52 0.52 0.03 0.35 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Arrive On Green 0.03 0.20 0.20 0.03 0.19 0.19 0.20 0.52 0.52 0.03 0.35 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Sat Flow, yeh/h 1781 1870 1565 1781 1659 177 1781 1870 1577 1781 1870 1574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Out 10W, voim 1701 1070 1000 1701 1000 177 1701 1070 1074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Grp Volume(v), veh/h 33 130 57 33 0 290 320 167 6 33 724 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Grp Sat Flow(s), veh/h/ln1781 1870 1565 1781 0 1837 1781 1870 1577 1781 1870 1574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Q Serve(g_s), s 1.6 5.2 2.6 1.6 0.0 13.2 15.2 4.1 0.2 1.6 30.0 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Cycle Q Clear(g_c), s 1.6 5.2 2.6 1.6 0.0 13.2 15.2 4.1 0.2 1.6 30.0 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Prop In Lane 1.00 1.00 1.00 0.10 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Lane Grp Cap(c), veh/h 45 369 309 45 0 345 354 971 819 45 647 544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| V/C Ratio(X) 0.73 0.35 0.18 0.73 0.00 0.84 0.90 0.17 0.01 0.73 1.12 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Avail Cap(c_a), veh/h 246 862 721 246 0 550 410 971 819 205 647 544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Uniform Delay (d), s/veh 42.0 30.0 29.0 42.0 0.0 34.0 33.9 11.0 10.1 42.0 28.4 18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Incr Delay (d2), s/veh 8.2 0.2 0.1 8.2 0.0 3.4 19.4 0.0 0.0 8.2 73.1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| %ile BackOfQ(50%),veh/lr0.8 2.3 1.0 0.8 0.0 6.1 8.2 1.6 0.1 0.8 25.6 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Unsig. Movement Delay, s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| LnGrp Delay(d),s/veh 50.2 30.3 29.1 50.2 0.0 37.3 53.4 11.0 10.1 50.2 101.5 18.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| LnGrp LOS D C C D A D D B B D F B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Approach Vol, veh/h 220 323 493 781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Approach Delay, s/veh 33.0 38.7 38.5 96.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Approach LOS C D D F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s6.8 22.5 22.4 35.1 7.6 21.7 7.3 50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Change Period (Y+Rc), s 4.6 5.4 5.1 5.1 5.4 * 5.4 5.1 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Max Green Setting (Gmax2, & 40.0 20.0 30.0 12.0 * 26 10.0 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Max Q Clear Time (g_c+l13),6s 7.2 17.2 32.0 3.6 15.2 3.6 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Green Ext Time (p_c), s 0.0 0.2 0.1 0.0 0.0 0.5 0.0 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| n = 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| HCM 6th Ctrl Delay 62.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| HCM 6th LOS E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |

| Intersection               |            |                   |          |            |           |         |              |              |              |          |              |          |            |
|----------------------------|------------|-------------------|----------|------------|-----------|---------|--------------|--------------|--------------|----------|--------------|----------|------------|
| Int Delay, s/veh           | 46.8       |                   |          |            |           |         |              |              |              |          |              |          |            |
| Movement                   | EBL        | EBT               | EBR      | WBL        | WBT       | WBR     | NBL          | NBT          | NBR          | SBL      | SBT          | SBR      |            |
| Lane Configurations        | LDL        |                   | LDIX     | VVDL       |           | WDIX    | NDL<br>Š     | NDT          | NDIX<br>7    | ODL      | 4            | ODIN     |            |
| Traffic Vol, veh/h         | 40         | 10                | 20       | 142        | <b>4</b>  | 10      | 10           | <b>T</b> 347 | 80           | 20       | 858          | 20       |            |
| Future Vol, veh/h          | 40         | 10                | 20       | 142        | 10        | 10      | 10           | 347          | 80           | 20       | 858          | 20       |            |
| Conflicting Peds, #/hr     | 0          | 0                 | 0        | 0          | 0         | 0       | 0            | 0            | 0            | 0        | 000          | 0        |            |
| Sign Control               | Stop       | Stop              | Stop     | Stop       | Stop      | Stop    | Free         | Free         | Free         | Free     | Free         | Free     |            |
| RT Channelized             | Stop<br>-  | Stop<br>-         | None     | Slop<br>-  | Stop<br>- | None    | -            | -            | None         | -        | -            | None     |            |
| Storage Length             | _          | _                 | INOITE   | <u>-</u>   | _         | INOITE  | 50           | _            | 270          | _        | _            | TNOTIC   |            |
| Veh in Median Storage      |            | 0                 | _        | _          | 0         | _       | -            | 0            | 210          | _        | 0            | _        |            |
| Grade, %                   | -, π       | 0                 | <u>-</u> | <u>-</u>   | 0         | _       | <u>-</u>     | 0            | <u>-</u>     | <u>-</u> | 0            | _        |            |
| Peak Hour Factor           | 92         | 92                | 92       | 92         | 92        | 92      | 92           | 92           | 92           | 92       | 92           | 92       |            |
| Heavy Vehicles, %          | 2          | 2                 | 2        | 2          | 2         | 2       | 2            | 2            | 2            | 2        | 2            | 2        |            |
| Mvmt Flow                  | 43         | 11                | 22       | 154        | 11        | 11      | 11           | 377          | 87           | 22       | 933          | 22       |            |
| WITH TOW                   | 70         |                   | LL       | 10-1       | 11        | 11      |              | UII          | 01           | LL       | 500          | LL       |            |
|                            |            |                   |          |            |           |         |              |              |              |          |              |          |            |
|                            | Minor2     |                   |          | Minor1     |           |         | Major1       |              |              | Major2   |              |          |            |
| Conflicting Flow All       | 1442       | 1474              | 944      | 1404       | 1398      | 377     | 955          | 0            | 0            | 464      | 0            | 0        |            |
| Stage 1                    | 988        | 988               | -        | 399        | 399       | -       | -            | -            | -            | -        | -            | -        |            |
| Stage 2                    | 454        | 486               | -        | 1005       | 999       | -       | -            | -            | -            | -        | -            | -        |            |
| Critical Hdwy              | 7.12       | 6.52              | 6.22     | 7.12       | 6.52      | 6.22    | 4.12         | -            | -            | 4.12     | -            | -        |            |
| Critical Hdwy Stg 1        | 6.12       | 5.52              | -        | 6.12       | 5.52      | -       | -            | -            | -            | -        | -            | -        |            |
| Critical Hdwy Stg 2        | 6.12       | 5.52              | -        | 6.12       | 5.52      | -       | -            | -            | -            | -        | -            | -        |            |
| Follow-up Hdwy             | 3.518      | 4.018             | 3.318    | 3.518      | 4.018     | 3.318   | 2.218        | -            | -            | 2.218    | -            | -        |            |
| Pot Cap-1 Maneuver         | 110        | 127               |          | ~ 117      | 141       | 670     | 720          | -            | -            | 1097     | -            | -        |            |
| Stage 1                    | 297<br>586 | 325<br>551        | -        | 627<br>291 | 602       | -       | -            | -            | -            | -        | -            | -        |            |
| Stage 2 Platoon blocked, % | 200        | 551               | -        | 291        | 321       | -       | -            | -            | -            | -        | -            | -        |            |
| Mov Cap-1 Maneuver         | 97         | 120               | 318      | ~ 97       | 133       | 670     | 720          | -            | -            | 1097     | -            | <u>-</u> |            |
| Mov Cap-1 Maneuver         | 97         | 120               | 310      | ~ 97       | 133       | 070     | 120          | -            | -            | 1037     | -            | -        |            |
| Stage 1                    | 293        | 311               | -        | 618        | 593       | -       | <del>-</del> | <del>-</del> | <del>-</del> | -        | <del>-</del> | -        |            |
| Stage 2                    | 557        | 543               | -        | 250        | 307       |         | _            | _            | _            |          | _            | _        |            |
| Olaye Z                    | 551        | J <del>-1</del> J |          | 200        | 301       |         | _            |              | _            | _        | _            | _        |            |
|                            |            |                   |          |            |           |         |              |              |              |          |              |          |            |
| Approach                   | EB         |                   |          | WB         |           |         | NB           |              |              | SB       |              |          |            |
| HCM Control Delay, s       | 70.8       |                   | \$       | 420.7      |           |         | 0.2          |              |              | 0.2      |              |          |            |
| HCM LOS                    | F          |                   |          | F          |           |         |              |              |              |          |              |          |            |
|                            |            |                   |          |            |           |         |              |              |              |          |              |          |            |
| Minor Lane/Major Mvm       | nt         | NBL               | NBT      | NBR        | EBLn1V    | VBLn1   | SBL          | SBT          | SBR          |          |              |          |            |
| Capacity (veh/h)           |            | 720               | -        | -          | 125       | 104     | 1097         | -            | -            |          |              |          |            |
| HCM Lane V/C Ratio         |            | 0.015             | -        | _          | 0.609     |         | 0.02         | -            | _            |          |              |          |            |
| HCM Control Delay (s)      |            | 10.1              | -        | -          |           | 420.7   | 8.3          | 0            | -            |          |              |          |            |
| HCM Lane LOS               |            | В                 | -        | -          | F         | F       | А            | A            | -            |          |              |          |            |
| HCM 95th %tile Q(veh)      | )          | 0                 | -        | -          | 3.1       | 13.8    | 0.1          | -            | -            |          |              |          |            |
| Notes                      |            |                   |          |            |           |         |              |              |              |          |              |          |            |
|                            | oooit.     | ¢. D.             | alov ove | 20042      | 000       | L. Core | nutotic:     | Not D        | ofined       | *. AII   | majar        | (aluma i | in plataan |
| ~: Volume exceeds cap      | pacity     | φ: D6             | elay exc | eeds 3     | UUS       | +: Com  | putation     | ו אטנ ט      | ennea        | : All    | major \      | voiume i | in platoon |

## HCM 6th Signalized Intersection Summary 8: Old Redwood Hwy & Mark West Commons Cir/Wikiup Dr

|                              | ۶    | <b>→</b> | •    | •    | •    | •                                       | 4           | <b>†</b>  | /    | <b>/</b> | <b>↓</b>                                | ✓    |
|------------------------------|------|----------|------|------|------|-----------------------------------------|-------------|-----------|------|----------|-----------------------------------------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT  | WBR                                     | NBL         | NBT       | NBR  | SBL      | SBT                                     | SBR  |
| Lane Configurations          |      | 4        |      |      | र्स  | 7                                       | ሻ           | <b>↑</b>  | 7    | ሻ        |                                         | 7    |
| Traffic Volume (veh/h)       | 20   | 10       | 20   | 179  | 10   | 47                                      | 10          | 351       | 124  | 154      | 796                                     | 10   |
| Future Volume (veh/h)        | 20   | 10       | 20   | 179  | 10   | 47                                      | 10          | 351       | 124  | 154      | 796                                     | 10   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0    | 0                                       | 0           | 0         | 0    | 0        | 0                                       | 0    |
| Ped-Bike Adj(A_pbT)          | 0.99 |          | 0.99 | 0.99 |      | 0.99                                    | 1.00        |           | 0.99 | 1.00     |                                         | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00                                    | 1.00        | 1.00      | 1.00 | 1.00     | 1.00                                    | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No   |                                         |             | No        |      |          | No                                      |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870 | 1870                                    | 1870        | 1870      | 1870 | 1870     | 1870                                    | 1870 |
| Adj Flow Rate, veh/h         | 22   | 11       | 5    | 195  | 11   | 12                                      | 11          | 382       | 53   | 167      | 865                                     | 6    |
| Peak Hour Factor             | 0.92 | 0.92     | 0.92 | 0.92 | 0.92 | 0.92                                    | 0.92        | 0.92      | 0.92 | 0.92     | 0.92                                    | 0.92 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2    | 2                                       | 2           | 2         | 2    | 2        | 2                                       | 2    |
| Cap, veh/h                   | 155  | 67       | 17   | 388  | 14   | 323                                     | 20          | 734       | 618  | 212      | 935                                     | 789  |
| Arrive On Green              | 0.21 | 0.21     | 0.21 | 0.21 | 0.21 | 0.21                                    | 0.01        | 0.39      | 0.39 | 0.12     | 0.50                                    | 0.50 |
| Sat Flow, veh/h              | 225  | 323      | 83   | 1233 | 70   | 1566                                    | 1781        | 1870      | 1575 | 1781     | 1870                                    | 1577 |
| Grp Volume(v), veh/h         | 38   | 0        | 0    | 206  | 0    | 12                                      | 11          | 382       | 53   | 167      | 865                                     | 6    |
| Grp Sat Flow(s),veh/h/ln     | 632  | 0        | 0    | 1303 | 0    | 1566                                    | 1781        | 1870      | 1575 | 1781     | 1870                                    | 1577 |
| Q Serve(g_s), s              | 0.2  | 0.0      | 0.0  | 0.0  | 0.0  | 0.3                                     | 0.3         | 8.2       | 1.1  | 4.8      | 22.6                                    | 0.1  |
| Cycle Q Clear(g_c), s        | 8.2  | 0.0      | 0.0  | 8.1  | 0.0  | 0.3                                     | 0.3         | 8.2       | 1.1  | 4.8      | 22.6                                    | 0.1  |
| Prop In Lane                 | 0.58 |          | 0.13 | 0.95 |      | 1.00                                    | 1.00        |           | 1.00 | 1.00     |                                         | 1.00 |
| Lane Grp Cap(c), veh/h       | 239  | 0        | 0    | 403  | 0    | 323                                     | 20          | 734       | 618  | 212      | 935                                     | 789  |
| V/C Ratio(X)                 | 0.16 | 0.00     | 0.00 | 0.51 | 0.00 | 0.04                                    | 0.55        | 0.52      | 0.09 | 0.79     | 0.92                                    | 0.01 |
| Avail Cap(c_a), veh/h        | 272  | 0        | 0    | 782  | 0    | 746                                     | 407         | 1069      | 901  | 407      | 1069                                    | 902  |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00 | 1.00                                    | 1.00        | 1.00      | 1.00 | 1.00     | 1.00                                    | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00 | 1.00                                    | 1.00        | 1.00      | 1.00 | 1.00     | 1.00                                    | 1.00 |
| Uniform Delay (d), s/veh     | 17.3 | 0.0      | 0.0  | 19.7 | 0.0  | 16.6                                    | 25.8        | 12.2      | 10.0 | 22.5     | 12.2                                    | 6.6  |
| Incr Delay (d2), s/veh       | 0.1  | 0.0      | 0.0  | 0.4  | 0.0  | 0.0                                     | 8.3         | 0.2       | 0.0  | 2.5      | 11.5                                    | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0  | 0.0                                     | 0.0         | 0.0       | 0.0  | 0.0      | 0.0                                     | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.4  | 0.0      | 0.0  | 2.2  | 0.0  | 0.1                                     | 0.2         | 2.8       | 0.3  | 1.9      | 9.7                                     | 0.0  |
| Unsig. Movement Delay, s/veh |      | 0.0      | 0.0  |      | 0.0  | • • • • • • • • • • • • • • • • • • • • | V. <u>–</u> |           | 0.0  |          | • • • • • • • • • • • • • • • • • • • • | 0.0  |
| LnGrp Delay(d),s/veh         | 17.4 | 0.0      | 0.0  | 20.1 | 0.0  | 16.7                                    | 34.1        | 12.4      | 10.0 | 24.9     | 23.7                                    | 6.6  |
| LnGrp LOS                    | В    | A        | A    | C    | A    | В                                       | C           | В         | В    | C        | C                                       | A    |
| Approach Vol, veh/h          |      | 38       |      |      | 218  |                                         |             | 446       |      |          | 1038                                    |      |
| Approach Delay, s/veh        |      | 17.4     |      |      | 19.9 |                                         |             | 12.6      |      |          | 23.8                                    |      |
| Approach LOS                 |      | В        |      |      | 19.9 |                                         |             | 12.0<br>B |      |          | 23.0<br>C                               |      |
|                              |      |          |      |      | Ь    |                                         |             |           |      |          | C                                       |      |
| Timer - Assigned Phs         |      | 2        | 3    | 4    |      | 6                                       | 7           | 8         |      |          |                                         |      |
| Phs Duration (G+Y+Rc), s     |      | 15.4     | 5.7  | 31.3 |      | 15.4                                    | 11.3        | 25.7      |      |          |                                         |      |
| Change Period (Y+Rc), s      |      | 4.6      | 5.1  | 5.1  |      | 4.6                                     | 5.1         | 5.1       |      |          |                                         |      |
| Max Green Setting (Gmax), s  |      | 12.0     | 12.0 | 30.0 |      | 25.0                                    | 12.0        | 30.0      |      |          |                                         |      |
| Max Q Clear Time (g_c+l1), s |      | 10.2     | 2.3  | 24.6 |      | 10.1                                    | 6.8         | 10.2      |      |          |                                         |      |
| Green Ext Time (p_c), s      |      | 0.0      | 0.0  | 1.7  |      | 0.7                                     | 0.1         | 1.1       |      |          |                                         |      |
| Intersection Summary         |      |          |      |      |      |                                         |             |           |      |          |                                         |      |
| HCM 6th Ctrl Delay           |      |          | 20.3 |      |      |                                         |             |           |      |          |                                         |      |
| HCM 6th LOS                  |      |          | С    |      |      |                                         |             |           |      |          |                                         |      |
| Notes                        |      |          |      |      |      |                                         |             |           |      |          |                                         |      |

| Intersection                    |            |              |          |               |         |              |       |
|---------------------------------|------------|--------------|----------|---------------|---------|--------------|-------|
| Int Delay, s/veh                | 15         |              |          |               |         |              |       |
| ·                               |            | CDT.         | MPT      | WEE           | ODI     | ODD          |       |
| Movement                        | EBL        | EBT          | WBT      | WBR           | SBL     | SBR          |       |
| Lane Configurations             | 0.5        | 4            | 145      | 450           | 740     | 7            |       |
| Traffic Vol, veh/h              | 65<br>65   | 255          | 145      | 156           | 342     | 23           |       |
| Future Vol, veh/h               | 65         | 255          | 145      | 156           | 342     | 23           |       |
| Conflicting Peds, #/hr          | 0          | 0            | 0        | 0             | O Ctop  | 0<br>Cton    |       |
| Sign Control<br>RT Channelized  | Free<br>-  | Free<br>None | Free     | Free<br>Yield | Stop    | Stop<br>None |       |
|                                 |            |              | -        | 150           | 90      |              |       |
| Storage Length                  | -          | -            | -        |               | 90      | 0            |       |
| Veh in Median Storage           |            | 0            | 0        | -             |         | -            |       |
| Grade, %                        | 92         | 92           | 92       | 92            | 92      | 92           |       |
| Peak Hour Factor                | 92         | 92           |          |               | 92      | 92           |       |
| Heavy Vehicles, %               | 71         |              | 2<br>158 | 170           | 372     | 25           |       |
| Mvmt Flow                       | <i>I</i> 1 | 277          | 100      | 170           | 3/2     | 25           |       |
|                                 |            |              |          |               |         |              |       |
| Major/Minor                     | Major1     | N            | Major2   |               | Minor2  |              |       |
| Conflicting Flow All            | 158        | 0            | -        | 0             | 577     | 158          |       |
| Stage 1                         | -          | -            | -        | -             | 158     | -            |       |
| Stage 2                         | -          | -            | -        | -             | 419     | -            |       |
| Critical Hdwy                   | 4.12       | -            | -        | -             | 6.42    | 6.22         |       |
| Critical Hdwy Stg 1             | -          | -            | -        | -             | 5.42    | -            |       |
| Critical Hdwy Stg 2             | -          | -            | -        | -             | 5.42    | -            |       |
| Follow-up Hdwy                  | 2.218      | -            | -        | -             | 3.518   | 3.318        |       |
| Pot Cap-1 Maneuver              | 1422       | -            | -        | -             | 478     | 887          |       |
| Stage 1                         | -          | -            | -        | -             | 871     | -            |       |
| Stage 2                         | -          | -            | -        | -             | 664     | -            |       |
| Platoon blocked, %              |            | -            | -        | -             |         |              |       |
| Mov Cap-1 Maneuver              | 1422       | -            | -        | -             | 450     | 887          |       |
| Mov Cap-2 Maneuver              | -          | -            | -        | -             | 450     | -            |       |
| Stage 1                         | -          | -            | -        | -             | 820     | -            |       |
| Stage 2                         | -          | -            | -        | -             | 664     | -            |       |
|                                 |            |              |          |               |         |              |       |
| Approach                        | EB         |              | WB       |               | SB      |              |       |
|                                 | 1.6        |              | 0        |               | 39      |              |       |
| HCM Control Delay, s<br>HCM LOS | 1.0        |              | U        |               | 39<br>E |              |       |
| I IOWI LOS                      |            |              |          |               |         |              |       |
|                                 |            |              |          |               |         |              |       |
| Minor Lane/Major Mvn            | nt         | EBL          | EBT      | WBT           | WBR :   | SBLn1        | SBLn2 |
| Capacity (veh/h)                |            | 1422         | -        | -             | -       | 450          | 887   |
| HCM Lane V/C Ratio              |            | 0.05         | -        | -             | -       | 0.826        |       |
| HCM Control Delay (s)           |            | 7.7          | 0        | -             | -       | 41           | 9.2   |
| HCM Lane LOS                    |            | Α            | Α        | -             | -       | Е            | Α     |
| HCM 95th %tile Q(veh            | )          | 0.2          | -        | -             | -       | 7.9          | 0.1   |
|                                 |            |              |          |               |         |              |       |

|                                   | ۶         | <b>→</b> | *            | •          | <b>←</b> | 4        | 1          | <b>†</b>    | ~         | <b>/</b>  | <b>†</b> | 1          |
|-----------------------------------|-----------|----------|--------------|------------|----------|----------|------------|-------------|-----------|-----------|----------|------------|
| Movement                          | EBL       | EBT      | EBR          | WBL        | WBT      | WBR      | NBL        | NBT         | NBR       | SBL       | SBT      | SBR        |
| Lane Configurations               |           | र्स      | 7            |            | 4        |          | ሻ          | <b>₽</b>    |           | ሻ         | ₽        |            |
| Traffic Volume (veh/h)            | 30        | 51       | 144          | 90         | 41       | 10       | 73         | 290         | 110       | 11        | 375      | 20         |
| Future Volume (veh/h)             | 30        | 51       | 144          | 90         | 41       | 10       | 73         | 290         | 110       | 11        | 375      | 20         |
| Initial Q (Qb), veh               | 0         | 0        | 0            | 0          | 0        | 0        | 0          | 0           | 0         | 0         | 0        | 0          |
| Ped-Bike Adj(A_pbT)               | 0.99      |          | 0.99         | 0.99       |          | 0.99     | 1.00       |             | 0.99      | 1.00      |          | 0.99       |
| Parking Bus, Adj                  | 1.00      | 1.00     | 1.00         | 1.00       | 1.00     | 1.00     | 1.00       | 1.00        | 1.00      | 1.00      | 1.00     | 1.00       |
| Work Zone On Approach             |           | No       |              |            | No       |          |            | No          |           |           | No       |            |
| Adj Sat Flow, veh/h/ln            | 1870      | 1870     | 1870         | 1870       | 1870     | 1870     | 1870       | 1870        | 1870      | 1870      | 1870     | 1870       |
| Adj Flow Rate, veh/h              | 33        | 55       | 37           | 98         | 45       | 9        | 79         | 315         | 113       | 12        | 408      | 21         |
| Peak Hour Factor                  | 0.92      | 0.92     | 0.92         | 0.92       | 0.92     | 0.92     | 0.92       | 0.92        | 0.92      | 0.92      | 0.92     | 0.92       |
| Percent Heavy Veh, %              | 2         | 2        | 2            | 2          | 2        | 2        | 2          | 2           | 2         | 2         | 2        | 2          |
| Cap, veh/h                        | 199       | 283      | 347          | 288        | 116      | 18       | 284        | 558         | 200       | 66        | 533      | 27         |
| Arrive On Green                   | 0.22      | 0.22     | 0.22         | 0.22       | 0.22     | 0.22     | 0.16       | 0.43        | 0.43      | 0.04      | 0.30     | 0.30       |
| Sat Flow, veh/h                   | 455       | 1279     | 1567         | 767        | 524      | 81       | 1781       | 1312        | 471       | 1781      | 1762     | 91         |
| Grp Volume(v), veh/h              | 88        | 0        | 37           | 152        | 0        | 0        | 79         | 0           | 428       | 12        | 0        | 429        |
| Grp Sat Flow(s),veh/h/ln          | 1734      | 0        | 1567         | 1372       | 0        | 0        | 1781       | 0           | 1782      | 1781      | 0        | 1853       |
| Q Serve(g_s), s                   | 0.0       | 0.0      | 0.9          | 3.3        | 0.0      | 0.0      | 2.0        | 0.0         | 9.1       | 0.3       | 0.0      | 10.5       |
| Cycle Q Clear(g_c), s             | 1.9       | 0.0      | 0.9          | 5.2        | 0.0      | 0.0      | 2.0        | 0.0         | 9.1       | 0.3       | 0.0      | 10.5       |
| Prop In Lane                      | 0.37      |          | 1.00         | 0.64       |          | 0.06     | 1.00       |             | 0.26      | 1.00      |          | 0.05       |
| Lane Grp Cap(c), veh/h            | 482       | 0        | 347          | 422        | 0        | 0        | 284        | 0           | 758       | 66        | 0        | 560        |
| V/C Ratio(X)                      | 0.18      | 0.00     | 0.11         | 0.36       | 0.00     | 0.00     | 0.28       | 0.00        | 0.57      | 0.18      | 0.00     | 0.77       |
| Avail Cap(c_a), veh/h             | 1744      | 0        | 1561         | 562        | 0        | 0        | 568        | 0           | 1776      | 1775      | 0        | 923        |
| HCM Platoon Ratio                 | 1.00      | 1.00     | 1.00         | 1.00       | 1.00     | 1.00     | 1.00       | 1.00        | 1.00      | 1.00      | 1.00     | 1.00       |
| Upstream Filter(I)                | 1.00      | 0.00     | 1.00         | 1.00       | 0.00     | 0.00     | 1.00       | 0.00        | 1.00      | 1.00      | 0.00     | 1.00       |
| Uniform Delay (d), s/veh          | 16.0      | 0.0      | 15.6         | 17.3       | 0.0      | 0.0      | 18.5       | 0.0         | 10.9      | 23.4      | 0.0      | 15.9       |
| Incr Delay (d2), s/veh            | 0.2       | 0.0      | 0.1          | 0.5        | 0.0      | 0.0      | 0.5        | 0.0         | 0.7       | 1.3       | 0.0      | 2.2        |
| Initial Q Delay(d3),s/veh         | 0.0       | 0.0      | 0.0          | 0.0<br>1.4 | 0.0      | 0.0      | 0.0<br>0.7 | 0.0         | 0.0       | 0.0       | 0.0      | 0.0<br>3.8 |
| %ile BackOfQ(50%),veh/ln          |           | 0.0      | 0.3          | 1.4        | 0.0      | 0.0      | 0.7        | 0.0         | 2.6       | 0.1       | 0.0      | 3.0        |
| Unsig. Movement Delay, s/veh      | 16.1      | 0.0      | 15.7         | 17.8       | 0.0      | 0.0      | 19.1       | 0.0         | 11.6      | 24.8      | 0.0      | 18.1       |
| LnGrp Delay(d),s/veh<br>LnGrp LOS | 10.1<br>B | 0.0<br>A | 15. <i>1</i> | 17.0<br>B  | 0.0<br>A | 0.0<br>A | 19.1<br>B  | 0.0<br>A    | 11.0<br>B | 24.0<br>C | 0.0<br>A | 10.1<br>B  |
|                                   | D         | 125      | D            | D          | 152      | A        | В          |             | D         | U         | 441      | <u>D</u>   |
| Approach Vol, veh/h               |           |          |              |            | 17.8     |          |            | 507<br>12.7 |           |           | 18.3     |            |
| Approach LOS                      |           | 16.0     |              |            | _        |          |            |             |           |           |          |            |
| Approach LOS                      |           | В        |              |            | В        |          |            | В           |           |           | В        |            |
| Timer - Assigned Phs              | 1         | 2        |              | 4          | 5        | 6        |            | 8           |           |           |          |            |
| Phs Duration (G+Y+Rc), s          | 12.7      | 21.0     |              | 16.5       | 6.5      | 27.1     |            | 16.5        |           |           |          |            |
| Change Period (Y+Rc), s           | * 4.7     | 5.8      |              | 5.4        | * 4.7    | 5.8      |            | 5.4         |           |           |          |            |
| Max Green Setting (Gmax), s       | * 16      | 25.0     |              | 16.0       | * 50     | 50.0     |            | 50.0        |           |           |          |            |
| Max Q Clear Time (g_c+I1), s      | 4.0       | 12.5     |              | 7.2        | 2.3      | 11.1     |            | 3.9         |           |           |          |            |
| Green Ext Time (p_c), s           | 0.1       | 1.9      |              | 0.4        | 0.0      | 2.7      |            | 0.6         |           |           |          |            |
| Intersection Summary              |           |          |              |            |          |          |            |             |           |           |          |            |
| HCM 6th Ctrl Delay                |           |          | 15.7         |            |          |          |            |             |           |           |          |            |
| HCM 6th LOS                       |           |          | В            |            |          |          |            |             |           |           |          |            |

#### IOW OUT LO

User approved pedestrian interval to be less than phase max green.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

WBL

10

10

0

Free

70

92

2

11

WBT

Þ

435

435

Free

0

0

0

92

2

473

**WBR** 

329

329

Free

None

92

2

358

NBL

10

10

Stop

92

2

11

NBT

**4** 10

10

Stop

0

0

92

2

11

NBR

10

10

Stop

None

92

2

11

- 2.994 0.167

F

33.4

14.2

В

\*: All major volume in platoon

0.6

-\$ 976.4

SBL

315

315

Stop

92

2

342

SBT

4

10

10

Stop

0

0

92

2

11

**SBR** 

7

72

72

Stop

None

60

92

2

78

| HCM 6th TWS0           | 2      |              |      |
|------------------------|--------|--------------|------|
| 11: Private Dwy        | y/Moo  | rland        | l Av |
|                        |        |              |      |
|                        |        |              |      |
| Intersection           |        |              |      |
| Int Delay, s/veh       | 185.9  |              |      |
| Movement               | EBL    | EBT          | EBI  |
| Lane Configurations    | J.     | <del>(</del> |      |
| Traffic Vol, veh/h     | 52     | 459          | 1    |
| Future Vol, veh/h      | 52     | 459          | 1    |
| Conflicting Peds, #/hr | 0      | 0            |      |
| Sign Control           | Free   | Free         | Fre  |
| RT Channelized         | -      | -            | Non  |
| Storage Length         | 100    | -            |      |
| Veh in Median Storage  | e,# -  | 0            |      |
| Grade, %               | -      | 0            |      |
| Peak Hour Factor       | 92     | 92           | 9    |
| Heavy Vehicles, %      | 2      | 2            |      |
| Mvmt Flow              | 57     | 499          | 1    |
|                        |        |              |      |
| Major/Minor            | Major1 |              |      |
| Conflicting Flow All   | 831    | 0            |      |
| Stage 1                | -      | -            |      |

| Major/Minor I        | Major1 |       | I   | Major2 |     |      | Minor1 |       | I     | Minor2 |       |      |  |
|----------------------|--------|-------|-----|--------|-----|------|--------|-------|-------|--------|-------|------|--|
| Conflicting Flow All | 831    | 0     | 0   | 510    | 0   | 0    | 1338   | 1472  | 505   | 1304   | 1298  | 652  |  |
| Stage 1              | -      | -     | -   | -      | -   | -    | 619    | 619   | -     | 674    | 674   | -    |  |
| Stage 2              | -      | -     | -   | -      | -   | -    | 719    | 853   | -     | 630    | 624   | -    |  |
| Critical Hdwy        | 4.12   | -     | -   | 4.12   | -   | -    | 7.12   | 6.52  | 6.22  | 7.12   | 6.52  | 6.22 |  |
| Critical Hdwy Stg 1  | -      | -     | -   | -      | -   | -    | 6.12   | 5.52  | -     | 6.12   | 5.52  | -    |  |
| Critical Hdwy Stg 2  | -      | -     | -   | -      | -   | -    | 6.12   | 5.52  | -     | 6.12   | 5.52  | -    |  |
| Follow-up Hdwy       | 2.218  | -     | -   | 2.218  | -   | -    | 3.518  | 4.018 | 3.318 | 3.518  | 4.018 |      |  |
| Pot Cap-1 Maneuver   | 801    | -     | -   | 1055   | -   | -    | 130    | 127   | 567   | ~ 137  | 162   | 468  |  |
| Stage 1              | -      | -     | -   | -      | -   | -    | 476    | 480   | -     | 444    | 454   | -    |  |
| Stage 2              | -      | -     | -   | -      | -   | -    | 420    | 376   | -     | 470    | 478   | -    |  |
| Platoon blocked, %   |        | -     | -   |        | -   | -    |        |       |       |        |       |      |  |
| Mov Cap-1 Maneuver   | 801    | -     | -   | 1055   | -   | -    | 96     | 117   | 567   | ~ 117  | 149   | 468  |  |
| Mov Cap-2 Maneuver   | -      | -     | -   | -      | -   | -    | 96     | 117   | -     | ~ 117  | 149   | -    |  |
| Stage 1              | -      | -     | -   | -      | -   | -    | 442    | 446   | -     | 412    | 449   | -    |  |
| Stage 2              | -      | -     | -   | -      | -   | -    | 338    | 372   | -     | 418    | 444   | -    |  |
|                      |        |       |     |        |     |      |        |       |       |        |       |      |  |
| Approach             | EB     |       |     | WB     |     |      | NB     |       |       | SB     |       |      |  |
| HCM Control Delay, s | 1      |       |     | 0.1    |     |      | 36.9   |       | \$    | 801.9  |       |      |  |
| HCM LOS              |        |       |     |        |     |      | Е      |       |       | F      |       |      |  |
|                      |        |       |     |        |     |      |        |       |       |        |       |      |  |
| Minor Lane/Major Mvm | nt     | NBLn1 | EBL | EBT    | EBR | WBL  | WBT    | WBR   | SBLn1 | SBLn2  |       |      |  |
| Capacity (veh/h)     |        | 145   | 801 | _      | -   | 1055 | -      | -     | 118   | 468    |       |      |  |

0.01

8.4

Α

0

+: Computation Not Defined

HCM Lane V/C Ratio

**HCM Lane LOS** 

HCM Control Delay (s)

HCM 95th %tile Q(veh)

~: Volume exceeds capacity

0.225 0.071

9.8

Α

\$: Delay exceeds 300s

0.2

36.9

Ε

8.0

|                                          | ۶        | <b>→</b>    | •           | •           | <b>←</b>    | 4         | 4           | <b>†</b> | ~           | <b>/</b> | <b>+</b>  | 4    |
|------------------------------------------|----------|-------------|-------------|-------------|-------------|-----------|-------------|----------|-------------|----------|-----------|------|
| Movement                                 | EBL      | EBT         | EBR         | WBL         | WBT         | WBR       | NBL         | NBT      | NBR         | SBL      | SBT       | SBR  |
| Lane Configurations                      |          | र्स         | 7           | ሻ           | f)          |           | 7           | <b>₽</b> | 7           |          | 4         |      |
| Traffic Volume (veh/h)                   | 0        | 430         | 354         | 350         | 247         | 0         | 527         | 0        | 177         | 0        | 0         | 0    |
| Future Volume (veh/h)                    | 0        | 430         | 354         | 350         | 247         | 0         | 527         | 0        | 177         | 0        | 0         | 0    |
| Initial Q (Qb), veh                      | 0        | 0           | 0           | 0           | 0           | 0         | 0           | 0        | 0           | 0        | 0         | 0    |
| Ped-Bike Adj(A_pbT)                      | 1.00     | 4.00        | 1.00        | 1.00        | 4.00        | 1.00      | 1.00        | 4.00     | 1.00        | 1.00     | 1.00      | 1.00 |
| Parking Bus, Adj                         | 1.00     | 1.00        | 1.00        | 1.00        | 1.00        | 1.00      | 1.00        | 1.00     | 1.00        | 1.00     | 1.00      | 1.00 |
| Work Zone On Approach                    | 4070     | No          | 4070        | 4070        | No          | 4070      | 4070        | No       | 4070        | 4070     | No        | 4070 |
| Adj Sat Flow, veh/h/ln                   | 1870     | 1870        | 1870<br>210 | 1870<br>380 | 1870<br>268 | 1870      | 1870        | 1870     | 1870<br>128 | 1870     | 1870<br>0 | 1870 |
| Adj Flow Rate, veh/h<br>Peak Hour Factor | 0.92     | 467<br>0.92 | 0.92        | 0.92        | 0.92        | 0<br>0.92 | 573<br>0.92 | 0.92     | 0.92        | 0.92     | 0.92      | 0.92 |
| Percent Heavy Veh, %                     | 0.92     | 0.92        | 0.92        | 0.92        | 0.92        | 0.92      | 0.92        | 0.92     | 0.92        | 0.92     | 0.92      | 0.92 |
| Cap, veh/h                               | 0        | 509         | 431         | 463         | 486         | 0         | 608         | 0        | 1082        | 0        | 3         | 0    |
| Arrive On Green                          | 0.00     | 0.27        | 0.27        | 0.26        | 0.26        | 0.00      | 0.34        | 0.00     | 0.34        | 0.00     | 0.00      | 0.00 |
| Sat Flow, veh/h                          | 0.00     | 1870        | 1585        | 1781        | 1870        | 0.00      | 1781        | 0.00     | 3170        | 0.00     | 1870      | 0.00 |
| Grp Volume(v), veh/h                     | 0        | 467         | 210         | 380         | 268         | 0         | 573         | 0        | 128         | 0        | 0         | 0    |
| Grp Sat Flow(s), veh/h/ln                | 0        | 1870        | 1585        | 1781        | 1870        | 0         | 1781        | 0        | 1585        | 0        | 1870      | 0    |
| Q Serve(g_s), s                          | 0.0      | 17.6        | 8.1         | 14.6        | 9.0         | 0.0       | 22.7        | 0.0      | 2.0         | 0.0      | 0.0       | 0.0  |
| Cycle Q Clear(g_c), s                    | 0.0      | 17.6        | 8.1         | 14.6        | 9.0         | 0.0       | 22.7        | 0.0      | 2.0         | 0.0      | 0.0       | 0.0  |
| Prop In Lane                             | 0.00     |             | 1.00        | 1.00        |             | 0.00      | 1.00        |          | 1.00        | 0.00     |           | 0.00 |
| Lane Grp Cap(c), veh/h                   | 0        | 509         | 431         | 463         | 486         | 0         | 608         | 0        | 1082        | 0        | 3         | 0    |
| V/C Ratio(X)                             | 0.00     | 0.92        | 0.49        | 0.82        | 0.55        | 0.00      | 0.94        | 0.00     | 0.12        | 0.00     | 0.00      | 0.00 |
| Avail Cap(c_a), veh/h                    | 0        | 515         | 436         | 735         | 772         | 0         | 613         | 0        | 1091        | 0        | 206       | 0    |
| HCM Platoon Ratio                        | 1.00     | 1.00        | 1.00        | 1.00        | 1.00        | 1.00      | 1.00        | 1.00     | 1.00        | 1.00     | 1.00      | 1.00 |
| Upstream Filter(I)                       | 0.00     | 1.00        | 1.00        | 1.00        | 1.00        | 0.00      | 1.00        | 0.00     | 1.00        | 0.00     | 0.00      | 0.00 |
| Uniform Delay (d), s/veh                 | 0.0      | 25.7        | 22.2        | 25.3        | 23.2        | 0.0       | 23.2        | 0.0      | 16.4        | 0.0      | 0.0       | 0.0  |
| Incr Delay (d2), s/veh                   | 0.0      | 21.4        | 0.9         | 4.1         | 1.0         | 0.0       | 23.0        | 0.0      | 0.0         | 0.0      | 0.0       | 0.0  |
| Initial Q Delay(d3),s/veh                | 0.0      | 0.0         | 0.0         | 0.0         | 0.0         | 0.0       | 0.0         | 0.0      | 0.0         | 0.0      | 0.0       | 0.0  |
| %ile BackOfQ(50%),veh/ln                 | 0.0      | 10.2        | 2.9         | 6.2         | 3.8         | 0.0       | 12.7        | 0.0      | 0.7         | 0.0      | 0.0       | 0.0  |
| Unsig. Movement Delay, s/veh             |          |             |             |             |             |           |             |          |             |          |           |      |
| LnGrp Delay(d),s/veh                     | 0.0      | 47.1        | 23.0        | 29.4        | 24.2        | 0.0       | 46.3        | 0.0      | 16.5        | 0.0      | 0.0       | 0.0  |
| LnGrp LOS                                | <u> </u> | D           | С           | С           | С           | Α         | D           | Α        | В           | A        | Α         | A    |
| Approach Vol, veh/h                      |          | 677         |             |             | 648         |           |             | 701      |             |          | 0         |      |
| Approach Delay, s/veh                    |          | 39.6        |             |             | 27.2        |           |             | 40.8     |             |          | 0.0       |      |
| Approach LOS                             |          | D           |             |             | С           |           |             | D        |             |          |           |      |
| Timer - Assigned Phs                     |          | 2           |             | 4           |             | 6         |             | 8        |             |          |           |      |
| Phs Duration (G+Y+Rc), s                 |          | 0.0         |             | 23.0        |             | 27.8      |             | 21.9     |             |          |           |      |
| Change Period (Y+Rc), s                  |          | 3.0         |             | 3.2         |             | 3.0       |             | 3.0      |             |          |           |      |
| Max Green Setting (Gmax), s              |          | 8.0         |             | 20.0        |             | 25.0      |             | 30.0     |             |          |           |      |
| Max Q Clear Time (g_c+l1), s             |          | 0.0         |             | 19.6        |             | 24.7      |             | 16.6     |             |          |           |      |
| Green Ext Time (p_c), s                  |          | 0.0         |             | 0.2         |             | 0.1       |             | 2.3      |             |          |           |      |
| Intersection Summary                     |          |             |             |             |             |           |             |          |             |          |           |      |
| HCM 6th Ctrl Delay                       |          |             | 36.1        |             |             |           |             |          |             |          |           |      |
| HCM 6th LOS                              |          |             | D           |             |             |           |             |          |             |          |           |      |

Notes

User approved pedestrian interval to be less than phase max green.

User approved volume balancing among the lanes for turning movement.

|                           | -        | •    | •    | •    | ^    | /    |      |   |
|---------------------------|----------|------|------|------|------|------|------|---|
| Movement                  | EBT      | EBR  | WBL  | WBT  | NBL  | NBR  |      |   |
| Lane Configurations       | <b>^</b> | 7    | ች    | 414  | ች    | 77   |      | _ |
| Traffic Volume (veh/h)    | 216      | 250  | 444  | 296  | 237  | 487  |      |   |
| Future Volume (veh/h)     | 216      | 250  | 444  | 296  | 237  | 487  |      |   |
| Initial Q (Qb), veh       | 0        | 0    | 0    | 0    | 0    | 0    |      |   |
| Ped-Bike Adj(A_pbT)       |          | 1.00 | 1.00 |      | 1.00 | 1.00 |      |   |
| Parking Bus, Adj          | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |   |
| Work Zone On Approac      |          |      |      | No   | No   |      |      |   |
| Adj Sat Flow, veh/h/ln    | 1870     | 1870 | 1870 | 1870 | 1870 | 1870 |      |   |
| Adj Flow Rate, veh/h      | 235      | 57   | 483  | 322  | 258  | 295  |      |   |
| Peak Hour Factor          | 0.92     | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |      |   |
| Percent Heavy Veh, %      | 2        | 2    | 2    | 2    | 2    | 2    |      |   |
| Cap, veh/h                | 549      | 245  | 1026 | 539  | 413  | 1450 |      |   |
| Arrive On Green           | 0.15     | 0.15 | 0.29 | 0.29 | 0.23 | 0.23 |      |   |
| Sat Flow, veh/h           | 3647     | 1585 | 3563 | 1870 | 1781 | 2790 |      |   |
| Grp Volume(v), veh/h      | 235      | 57   | 483  | 322  | 258  | 295  |      |   |
| Grp Sat Flow(s), veh/h/h  |          | 1585 | 1781 | 1870 | 1781 | 1395 |      |   |
| Q Serve(g_s), s           | 1.9      | 1.0  | 3.6  | 4.8  | 4.2  | 1.8  |      |   |
| Cycle Q Clear(g_c), s     | 1.9      | 1.0  | 3.6  | 4.8  | 4.2  | 1.8  |      |   |
| Prop In Lane              |          | 1.00 | 1.00 |      | 1.00 | 1.00 |      |   |
| Lane Grp Cap(c), veh/h    | 549      | 245  | 1026 | 539  | 413  | 1450 |      |   |
| V/C Ratio(X)              | 0.43     | 0.23 | 0.47 | 0.60 | 0.63 | 0.20 |      |   |
| Avail Cap(c_a), veh/h     | 2206     | 984  | 1659 | 871  | 774  | 2016 |      |   |
| HCM Platoon Ratio         | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |   |
| Upstream Filter(I)        | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |      |   |
| Uniform Delay (d), s/ve   |          | 11.9 | 9.4  | 9.9  | 11.1 | 4.2  |      |   |
| Incr Delay (d2), s/veh    | 0.5      | 0.5  | 0.3  | 1.1  | 1.6  | 0.1  |      |   |
| Initial Q Delay(d3),s/vel |          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |      |   |
| %ile BackOfQ(50%),vel     |          | 0.3  | 1.0  | 1.5  | 1.4  | 0.7  |      |   |
| Unsig. Movement Delay     |          |      |      |      |      |      |      |   |
| LnGrp Delay(d),s/veh      | 12.9     | 12.4 | 9.8  | 10.9 | 12.7 | 4.2  |      |   |
| LnGrp LOS                 | В        | В    | A    | В    | В    | A    |      |   |
| Approach Vol, veh/h       | 292      |      |      | 805  | 553  |      |      |   |
| Approach Delay, s/veh     |          |      |      | 10.2 | 8.2  |      |      |   |
| Approach LOS              | В        |      |      | В    | Α    |      |      |   |
| ••                        |          |      |      |      | , ,  |      |      |   |
| Timer - Assigned Phs      |          | 2    |      |      |      | 6    | 8    |   |
| Phs Duration (G+Y+Rc)     |          | 8.5  |      |      |      | 12.8 | 11.0 |   |
| Change Period (Y+Rc),     |          | 3.5  |      |      |      | 3.5  | 3.5  |   |
| Max Green Setting (Gm     | , ,      | 20.0 |      |      |      | 15.0 | 14.0 |   |
| Max Q Clear Time (g_c     |          | 3.9  |      |      |      | 6.8  | 6.2  |   |
| Green Ext Time (p_c), s   | 3        | 1.4  |      |      |      | 2.5  | 1.3  |   |
| Intersection Summary      |          |      |      |      |      |      |      |   |
| HCM 6th Ctrl Delay        |          |      | 10.0 |      |      |      |      |   |
| HCM 6th LOS               |          |      | Α    |      |      |      |      |   |
| Notes                     |          |      |      |      |      |      |      |   |

| ٦                                                 | <b>→</b>    | •          | •          | <b>←</b>   | •    | 4           | †           | <b>/</b>   | <b>/</b>   | ļ           | 4          |  |
|---------------------------------------------------|-------------|------------|------------|------------|------|-------------|-------------|------------|------------|-------------|------------|--|
| Movement EBL                                      | EBT         | EBR        | WBL        | WBT        | WBR  | NBL         | NBT         | NBR        | SBL        | SBT         | SBR        |  |
| Lane Configurations                               | 4           | 7          |            | f)         |      |             | <b>^</b>    | 7          |            | <b>^</b>    | 7          |  |
| Traffic Volume (veh/h) 330                        | 100         | 273        | 20         | 30         | 30   | 369         | 671         | 40         | 50         | 335         | 341        |  |
| Future Volume (veh/h) 330                         | 100         | 273        | 20         | 30         | 30   | 369         | 671         | 40         | 50         | 335         | 341        |  |
| Initial Q (Qb), veh 0                             | 0           | 0          | 0          | 0          | 0    | 0           | 0           | 0          | 0          | 0           | 0          |  |
| Ped-Bike Adj(A_pbT) 1.00                          | 4.00        | 0.99       | 1.00       | 4.00       | 1.00 | 1.00        | 4.00        | 0.99       | 1.00       | 4.00        | 0.99       |  |
| Parking Bus, Adj 1.00                             | 1.00        | 1.00       | 1.00       | 1.00       | 1.00 | 1.00        | 1.00        | 1.00       | 1.00       | 1.00        | 1.00       |  |
| Work Zone On Approach                             | No          | 4070       | 4070       | No         | 4070 | 4070        | No          | 4070       | 4070       | No          | 4070       |  |
| Adj Sat Flow, veh/h/ln 1870                       | 1870        | 1870       | 1870<br>22 | 1870       | 1870 | 1870        | 1870        | 1870       | 1870       | 1870        | 1870       |  |
| Adj Flow Rate, veh/h 234<br>Peak Hour Factor 0.92 | 284<br>0.92 | 61<br>0.92 | 0.92       | 33<br>0.92 | 0.92 | 401<br>0.92 | 729<br>0.92 | 18<br>0.92 | 54<br>0.92 | 364<br>0.92 | 80<br>0.92 |  |
| Percent Heavy Veh, % 2                            | 0.92        | 0.92       | 0.92       | 0.92       | 0.92 | 0.92        | 0.92        | 0.92       | 0.92       | 0.92        | 2          |  |
| Cap, veh/h 349                                    | 367         | 308        | 73         | 74         | 2    | 451         | 1290        | 571        | 71         | 551         | 243        |  |
| Arrive On Green 0.20                              | 0.20        | 0.20       | 0.04       | 0.04       | 0.04 | 0.25        | 0.36        | 0.36       | 0.04       | 0.16        | 0.16       |  |
| Sat Flow, veh/h 1781                              | 1870        | 1573       | 1781       | 1806       | 55   | 1781        | 3554        | 1574       | 1781       | 3554        | 1570       |  |
| Grp Volume(v), veh/h 234                          | 284         | 61         | 22         | 0          | 34   | 401         | 729         | 18         | 54         | 364         | 80         |  |
| Grp Sat Flow(s), veh/h/ln1781                     | 1870        | 1573       | 1781       | 0          | 1861 | 1781        | 1777        | 1574       | 1781       | 1777        | 1570       |  |
| Q Serve(g_s), s 7.1                               | 8.4         | 1.9        | 0.7        | 0.0        | 1.0  | 12.7        | 9.6         | 0.4        | 1.8        | 5.6         | 2.6        |  |
| Cycle Q Clear(g_c), s 7.1                         | 8.4         | 1.9        | 0.7        | 0.0        | 1.0  | 12.7        | 9.6         | 0.4        | 1.8        | 5.6         | 2.6        |  |
| Prop In Lane 1.00                                 |             | 1.00       | 1.00       |            | 0.03 | 1.00        |             | 1.00       | 1.00       |             | 1.00       |  |
| Lane Grp Cap(c), veh/h 349                        | 367         | 308        | 73         | 0          | 76   | 451         | 1290        | 571        | 71         | 551         | 243        |  |
| V/C Ratio(X) 0.67                                 | 0.77        | 0.20       | 0.30       | 0.00       | 0.45 | 0.89        | 0.57        | 0.03       | 0.76       | 0.66        | 0.33       |  |
| Avail Cap(c_a), veh/h 550                         | 577         | 485        | 305        | 0          | 319  | 519         | 1462        | 648        | 305        | 975         | 431        |  |
| HCM Platoon Ratio 1.00                            | 1.00        | 1.00       | 1.00       | 1.00       | 1.00 | 1.00        | 1.00        | 1.00       | 1.00       | 1.00        | 1.00       |  |
| Upstream Filter(I) 1.00                           | 1.00        | 1.00       | 1.00       | 0.00       | 1.00 | 1.00        | 1.00        | 1.00       | 1.00       | 1.00        | 1.00       |  |
| Uniform Delay (d), s/veh 21.7                     | 22.2        | 19.6       | 27.2       | 0.0        | 27.3 | 21.0        | 14.9        | 12.0       | 27.7       | 23.2        | 21.9       |  |
| Incr Delay (d2), s/veh 0.8                        | 1.3         | 0.1        | 0.9        | 0.0        | 1.5  | 14.5        | 0.1         | 0.0        | 6.0        | 0.5         | 0.3        |  |
| Initial Q Delay(d3),s/veh 0.0                     | 0.0         | 0.0        | 0.0        | 0.0        | 0.0  | 0.0         | 0.0         | 0.0        | 0.0        | 0.0         | 0.0        |  |
| %ile BackOfQ(50%),veh/lr2.8                       | 3.5         | 0.6        | 0.3        | 0.0        | 0.5  | 6.5         | 3.3         | 0.1        | 0.8        | 2.1         | 0.9        |  |
| Unsig. Movement Delay, s/veh                      |             | 40.7       | 00.0       | 0.0        | 00.0 | 25.5        | 45.0        | 40.0       | 22.7       | 00.7        | 00.0       |  |
| LnGrp Delay(d),s/veh 22.5                         | 23.6        | 19.7       | 28.0       | 0.0        | 28.8 | 35.5        | 15.0        | 12.0       | 33.7       | 23.7        | 22.2       |  |
| LnGrp LOS C                                       | C           | В          | С          | A          | С    | D           | B           | В          | С          | C 400       | С          |  |
| Approach Vol, veh/h                               | 579         |            |            | 56         |      |             | 1148        |            |            | 498         |            |  |
| Approach LOS                                      | 22.7<br>C   |            |            | 28.5<br>C  |      |             | 22.1<br>C   |            |            | 24.5        |            |  |
| Approach LOS                                      | U           |            |            | C          |      |             | U           |            |            | С           |            |  |
| Timer - Assigned Phs                              | 2           | 3          | 4          |            | 6    | 7           | 8           |            |            |             |            |  |
| Phs Duration (G+Y+Rc), s                          | 16.5        | 19.9       | 14.4       |            | 7.5  | 7.7         | 26.6        |            |            |             |            |  |
| Change Period (Y+Rc), s                           | 5.1         | 5.1        | 5.4        |            | 5.1  | 5.4         | * 5.4       |            |            |             |            |  |
| Max Green Setting (Gmax), s                       | 18.0        | 17.0       | 16.0       |            | 10.0 | 10.0        | * 24        |            |            |             |            |  |
| Max Q Clear Time (g_c+l1), s                      | 10.4        | 14.7       | 7.6        |            | 3.0  | 3.8         | 11.6        |            |            |             |            |  |
| Green Ext Time (p_c), s                           | 0.8         | 0.1        | 0.8        |            | 0.0  | 0.0         | 2.2         |            |            |             |            |  |
| Intersection Summary                              |             |            |            |            |      |             |             |            |            |             |            |  |
| HCM 6th Ctrl Delay                                |             | 23.0       |            |            |      |             |             |            |            |             |            |  |
| HCM 6th LOS                                       |             | С          |            |            |      |             |             |            |            |             |            |  |

Notes

User approved pedestrian interval to be less than phase max green.

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection                 |    |  |  |  |  |
|------------------------------|----|--|--|--|--|
| Intersection Delay, s/veh11. | .4 |  |  |  |  |
| Intersection LOS             | В  |  |  |  |  |

| Movement                | EBL    | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|-------------------------|--------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations     |        | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h      | 40     | 10   | 241  | 10   | 10   | 10   | 122  | 112  | 10   | 10   | 191  | 40   |  |
| Future Vol, veh/h       | 40     | 10   | 241  | 10   | 10   | 10   | 122  | 112  | 10   | 10   | 191  | 40   |  |
| Peak Hour Factor        | 0.92   | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Heavy Vehicles, %       | 2      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow               | 43     | 11   | 262  | 11   | 11   | 11   | 133  | 122  | 11   | 11   | 208  | 43   |  |
| Number of Lanes         | 0      | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                | EB     |      |      | WB   |      |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach       | WB     |      |      | EB   |      |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes          | 1      |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach L  | eft SB |      |      | NB   |      |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left  | 1      |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach R  | RighNB |      |      | SB   |      |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right | t 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay       | 11.6   |      |      | 9.1  |      |      | 11.7 |      |      | 11.3 |      |      |  |
| HCM LOS                 | В      |      |      | Α    |      |      | В    |      |      | В    |      |      |  |

| Lane                   | NBLn1 | EBLn1\ | NBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 50%   | 14%    | 33%   | 4%    |
| Vol Thru, %            | 46%   | 3%     | 33%   | 79%   |
| Vol Right, %           | 4%    | 83%    | 33%   | 17%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 244   | 291    | 30    | 241   |
| LT Vol                 | 122   | 40     | 10    | 10    |
| Through Vol            | 112   | 10     | 10    | 191   |
| RT Vol                 | 10    | 241    | 10    | 40    |
| Lane Flow Rate         | 265   | 316    | 33    | 262   |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.391 | 0.433  | 0.052 | 0.375 |
| Departure Headway (Hd) | 5.31  | 4.927  | 5.718 | 5.158 |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Сар                    | 676   | 737    | 625   | 697   |
| Service Time           | 3.346 | 2.927  | 3.765 | 3.194 |
| HCM Lane V/C Ratio     | 0.392 | 0.429  | 0.053 | 0.376 |
| HCM Control Delay      | 11.7  | 11.6   | 9.1   | 11.3  |
| HCM Lane LOS           | В     | В      | Α     | В     |
| HCM 95th-tile Q        | 1.9   | 2.2    | 0.2   | 1.7   |

| Intersection           |        |       |      |        |          |       |        |       |          |        |       |       |
|------------------------|--------|-------|------|--------|----------|-------|--------|-------|----------|--------|-------|-------|
| Int Delay, s/veh       | 15.3   |       |      |        |          |       |        |       |          |        |       |       |
| Movement               | EBL    | EBT   | EBR  | WBL    | WBT      | WBR   | NBL    | NBT   | NBR      | SBL    | SBT   | SBR   |
| Lane Configurations    | ች      | î,    |      |        | 4        |       |        | 4     |          |        | 44    |       |
| Traffic Vol, veh/h     | 42     | 270   | 10   | 90     | 260      | 52    | 20     | 20    | 20       | 127    | 20    | 47    |
| Future Vol, veh/h      | 42     | 270   | 10   | 90     | 260      | 52    | 20     | 20    | 20       | 127    | 20    | 47    |
| Conflicting Peds, #/hr | 0      | 0     | 0    | 0      | 0        | 0     | 0      | 0     | 0        | 0      | 0     | 0     |
| Sign Control           | Free   | Free  | Free | Free   | Free     | Free  | Stop   | Stop  | Stop     | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -     | None | _      | -        | None  | -      | -     | None     | -      | -     | None  |
| Storage Length         | 100    | -     | -    | -      | -        | -     | -      | -     | -        | -      | -     | -     |
| Veh in Median Storage  |        | 0     | -    | -      | 0        | -     | -      | 0     | -        | -      | 0     | -     |
| Grade, %               | -      | 0     | -    | -      | 0        | -     | -      | 0     | -        | -      | 0     | -     |
| Peak Hour Factor       | 92     | 92    | 92   | 92     | 92       | 92    | 92     | 92    | 92       | 92     | 92    | 92    |
| Heavy Vehicles, %      | 2      | 2     | 2    | 2      | 2        | 2     | 2      | 2     | 2        | 2      | 2     | 2     |
| Mvmt Flow              | 46     | 293   | 11   | 98     | 283      | 57    | 22     | 22    | 22       | 138    | 22    | 51    |
|                        |        |       |      |        |          |       |        |       |          |        |       |       |
| Major/Minor I          | Major1 |       | 1    | Major2 |          | 1     | Minor1 |       |          | Minor2 |       |       |
| Conflicting Flow All   | 340    | 0     | 0    | 304    | 0        | 0     | 935    | 927   | 299      | 921    | 904   | 312   |
| Stage 1                | -      | -     | -    | -      | -        | -     | 391    | 391   | -        | 508    | 508   | -     |
| Stage 2                | _      | _     | _    | _      | <u>-</u> | _     | 544    | 536   | <u>-</u> | 413    | 396   | _     |
| Critical Hdwy          | 4.12   | _     | _    | 4.12   | _        | _     | 7.12   | 6.52  | 6.22     | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -      | _     | _    | -      | _        | _     | 6.12   | 5.52  | -        | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -      | _     | _    | _      | _        | _     | 6.12   | 5.52  | _        | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218  | _     | _    | 2.218  | _        | _     | 3.518  | 4.018 | 3.318    | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1219   | _     | -    | 1257   | _        | -     | 246    | 268   | 741      | 251    | 277   | 728   |
| Stage 1                | _      | -     | -    | -      | -        | -     | 633    | 607   | -        | 547    | 539   | -     |
| Stage 2                | _      | _     | -    | -      | _        | _     | 523    | 523   | -        | 616    | 604   | -     |
| Platoon blocked, %     |        | -     | -    |        | -        | -     |        |       |          |        |       |       |
| Mov Cap-1 Maneuver     | 1219   | -     | -    | 1257   | -        | -     | 192    | 233   | 741      | 204    | 241   | 728   |
| Mov Cap-2 Maneuver     | -      | -     | -    | -      | -        | -     | 192    | 233   | -        | 204    | 241   | -     |
| Stage 1                | -      | -     | -    | -      | -        | -     | 609    | 584   | -        | 526    | 487   | -     |
| Stage 2                | -      | -     | -    | -      | -        | -     | 420    | 472   | -        | 554    | 581   | -     |
| Ŭ                      |        |       |      |        |          |       |        |       |          |        |       |       |
| Approach               | EB     |       |      | WB     |          |       | NB     |       |          | SB     |       |       |
| HCM Control Delay, s   | 1.1    |       |      | 1.8    |          |       | 22     |       |          | 64.6   |       |       |
| HCM LOS                |        |       |      |        |          |       | C      |       |          | F      |       |       |
|                        |        |       |      |        |          |       |        |       |          |        |       |       |
| Minor Lane/Major Mvm   | nt 1   | NBLn1 | EBL  | EBT    | EBR      | WBL   | WBT    | WBR   | SBLn1    |        |       |       |
| Capacity (veh/h)       |        | 277   | 1219 |        |          | 1257  | _      | _     | 252      |        |       |       |
| HCM Lane V/C Ratio     |        | 0.235 |      | _      |          | 0.078 | _      | _     | 0.837    |        |       |       |
| HCM Control Delay (s)  |        | 22    | 8.1  | _      | _        | 8.1   | 0      | _     | 64.6     |        |       |       |
| HCM Lane LOS           |        | C     | Α    | _      | _        | Α     | A      | _     | F        |        |       |       |
| HCM 95th %tile Q(veh   | )      | 0.9   | 0.1  | _      | _        | 0.3   | -      | _     | 6.7      |        |       |       |
|                        | ,      | 3.0   | J. 1 |        |          | 3.0   |        |       | 5.1      |        |       |       |

|                                   | ۶            | <b>→</b>    | •        | •          | <b>←</b> | 4        | 1          | <b>†</b> | ~        | <b>/</b>   | <b>†</b> | ✓          |
|-----------------------------------|--------------|-------------|----------|------------|----------|----------|------------|----------|----------|------------|----------|------------|
| Movement                          | EBL          | EBT         | EBR      | WBL        | WBT      | WBR      | NBL        | NBT      | NBR      | SBL        | SBT      | SBR        |
| Lane Configurations               |              | 4           |          |            | 4        |          |            | 4        |          | ሻ          | ₽        |            |
| Traffic Volume (veh/h)            | 44           | 194         | 70       | 10         | 92       | 300      | 40         | 203      | 10       | 370        | 494      | 51         |
| Future Volume (veh/h)             | 44           | 194         | 70       | 10         | 92       | 300      | 40         | 203      | 10       | 370        | 494      | 51         |
| Initial Q (Qb), veh               | 0            | 0           | 0        | 0          | 0        | 0        | 0          | 0        | 0        | 0          | 0        | 0          |
| Ped-Bike Adj(A_pbT)               | 0.99         |             | 0.99     | 1.00       |          | 0.99     | 1.00       |          | 1.00     | 1.00       |          | 0.99       |
| Parking Bus, Adj                  | 1.00         | 1.00        | 1.00     | 1.00       | 1.00     | 1.00     | 1.00       | 1.00     | 1.00     | 1.00       | 1.00     | 1.00       |
| Work Zone On Approach             |              | No          |          |            | No       |          |            | No       |          |            | No       |            |
| Adj Sat Flow, veh/h/ln            | 1870         | 1870        | 1870     | 1870       | 1870     | 1870     | 1870       | 1870     | 1870     | 1870       | 1870     | 1870       |
| Adj Flow Rate, veh/h              | 48           | 211         | 60       | 11         | 100      | 162      | 43         | 221      | 9        | 402        | 537      | 51         |
| Peak Hour Factor                  | 0.92         | 0.92        | 0.92     | 0.92       | 0.92     | 0.92     | 0.92       | 0.92     | 0.92     | 0.92       | 0.92     | 0.92       |
| Percent Heavy Veh, %              | 2            | 2           | 2        | 2          | 2        | 2        | 2          | 2        | 2        | 2          | 2        | 2          |
| Cap, veh/h                        | 122          | 293         | 77       | 80         | 153      | 233      | 56         | 289      | 12       | 481        | 454      | 43         |
| Arrive On Green                   | 0.23         | 0.23        | 0.23     | 0.23       | 0.23     | 0.23     | 0.19       | 0.19     | 0.19     | 0.27       | 0.27     | 0.27       |
| Sat Flow, veh/h                   | 172          | 1257        | 331      | 28         | 658      | 1001     | 291        | 1493     | 61       | 1781       | 1680     | 160        |
| Grp Volume(v), veh/h              | 319          | 0           | 0        | 273        | 0        | 0        | 273        | 0        | 0        | 402        | 0        | 588        |
| Grp Sat Flow(s),veh/h/ln          | 1760         | 0           | 0        | 1686       | 0        | 0        | 1845       | 0        | 0        | 1781       | 0        | 1840       |
| Q Serve(g_s), s                   | 0.8          | 0.0         | 0.0      | 0.0        | 0.0      | 0.0      | 7.1        | 0.0      | 0.0      | 10.8       | 0.0      | 13.7       |
| Cycle Q Clear(g_c), s             | 8.3          | 0.0         | 0.0      | 7.5        | 0.0      | 0.0      | 7.1        | 0.0      | 0.0      | 10.8       | 0.0      | 13.7       |
| Prop In Lane                      | 0.15         |             | 0.19     | 0.04       |          | 0.59     | 0.16       |          | 0.03     | 1.00       |          | 0.09       |
| Lane Grp Cap(c), veh/h            | 492          | 0           | 0        | 467        | 0        | 0        | 357        | 0        | 0        | 481        | 0        | 497        |
| V/C Ratio(X)                      | 0.65         | 0.00        | 0.00     | 0.58       | 0.00     | 0.00     | 0.76       | 0.00     | 0.00     | 0.84       | 0.00     | 1.18       |
| Avail Cap(c_a), veh/h             | 886          | 0           | 0        | 1011       | 0        | 0        | 691        | 0        | 0        | 481        | 0        | 497        |
| HCM Platoon Ratio                 | 1.00         | 1.00        | 1.00     | 1.00       | 1.00     | 1.00     | 1.00       | 1.00     | 1.00     | 1.00       | 1.00     | 1.00       |
| Upstream Filter(I)                | 1.00         | 0.00        | 0.00     | 1.00       | 0.00     | 0.00     | 1.00       | 0.00     | 0.00     | 1.00       | 0.00     | 1.00       |
| Uniform Delay (d), s/veh          | 18.1         | 0.0         | 0.0      | 17.8       | 0.0      | 0.0      | 19.4       | 0.0      | 0.0      | 17.5       | 0.0      | 18.5       |
| Incr Delay (d2), s/veh            | 0.5          | 0.0         | 0.0      | 0.4        | 0.0      | 0.0      | 2.6        | 0.0      | 0.0      | 11.5       | 0.0      | 101.8      |
| Initial Q Delay(d3),s/veh         | 0.0<br>3.1   | 0.0         | 0.0      | 0.0<br>2.5 | 0.0      | 0.0      | 0.0<br>3.0 | 0.0      | 0.0      | 0.0<br>5.3 | 0.0      | 0.0        |
| %ile BackOfQ(50%),veh/ln          |              | 0.0         | 0.0      | 2.5        | 0.0      | 0.0      | 3.0        | 0.0      | 0.0      | 5.3        | 0.0      | 18.9       |
| Unsig. Movement Delay, s/veh      | 18.7         | 0.0         | 0.0      | 18.3       | 0.0      | 0.0      | 21.9       | 0.0      | 0.0      | 29.0       | 0.0      | 120.3      |
| LnGrp Delay(d),s/veh<br>LnGrp LOS | 10. <i>1</i> | 0.0<br>A    | 0.0<br>A | 10.3<br>B  | 0.0<br>A | 0.0<br>A | 21.9<br>C  | 0.0<br>A | 0.0<br>A | 29.0<br>C  | 0.0<br>A | 120.3<br>F |
|                                   | Ь            |             | A        | D          | 273      | A        | U          | 273      | A        | U          | 990      |            |
| Approach Vol, veh/h               |              | 319<br>18.7 |          |            | 18.3     |          |            | 21.9     |          |            | 83.2     |            |
| Approach LOS                      |              | _           |          |            | _        |          |            | _        |          |            | _        |            |
| Approach LOS                      |              | В           |          |            | В        |          |            | С        |          |            | F        |            |
| Timer - Assigned Phs              |              | 2           |          | 4          |          | 6        |            | 8        |          |            |          |            |
| Phs Duration (G+Y+Rc), s          |              | 14.4        |          | 17.2       |          | 19.1     |            | 17.2     |          |            |          |            |
| Change Period (Y+Rc), s           |              | 4.6         |          | * 5.4      |          | 5.4      |            | 5.4      |          |            |          |            |
| Max Green Setting (Gmax), s       |              | 19.0        |          | * 24       |          | 13.7     |            | 28.7     |          |            |          |            |
| Max Q Clear Time (g_c+I1), s      |              | 9.1         |          | 10.3       |          | 15.7     |            | 9.5      |          |            |          |            |
| Green Ext Time (p_c), s           |              | 0.9         |          | 0.6        |          | 0.0      |            | 0.5      |          |            |          |            |
| Intersection Summary              |              |             |          |            |          |          |            |          |          |            |          |            |
| HCM 6th Ctrl Delay                |              |             | 53.5     |            |          |          |            |          |          |            |          |            |
| HCM 6th LOS                       |              |             | D        |            |          |          |            |          |          |            |          |            |

Notes

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|                           | •      | •    | <b>†</b> | /    | -    | ţ         |
|---------------------------|--------|------|----------|------|------|-----------|
| Movement                  | WBL    | WBR  | NBT      | NBR  | SBL  | SBT       |
| Lane Configurations       | *      | 7    | <b>†</b> | 7    | *    | <b>†</b>  |
| Traffic Volume (veh/h)    | 520    | 23   | 208      | 255  | 33   | 546       |
| Future Volume (veh/h)     | 520    | 23   | 208      | 255  | 33   | 546       |
| Initial Q (Qb), veh       | 0      | 0    | 0        | 0    | 0    | 0         |
| Ped-Bike Adj(A_pbT)       | 1.00   | 1.00 | v        | 1.00 | 1.00 | •         |
| Parking Bus, Adj          | 1.00   | 1.00 | 1.00     | 1.00 | 1.00 | 1.00      |
| Work Zone On Approac      |        | 1.00 | No       | 1.00 | 1.00 | No        |
|                           | 1870   | 1870 | 1870     | 1870 | 1870 | 1870      |
| Adj Flow Rate, veh/h      | 565    | 1070 | 226      | 277  | 36   | 593       |
| Peak Hour Factor          | 0.92   | 0.92 | 0.92     | 0.92 | 0.92 | 0.92      |
| Percent Heavy Veh, %      | 2      | 2    | 2        | 2    | 2    | 2         |
| -                         | 628    |      | 416      | 352  |      | 744       |
| Cap, veh/h                |        | 559  |          |      | 58   |           |
| Arrive On Green           | 0.35   | 0.35 | 0.22     | 0.22 | 0.03 | 0.40      |
| Sat Flow, veh/h           | 1781   | 1585 | 1870     | 1585 | 1781 | 1870      |
| Grp Volume(v), veh/h      | 565    | 10   | 226      | 277  | 36   | 593       |
| Grp Sat Flow(s), veh/h/lr |        | 1585 | 1870     | 1585 | 1781 | 1870      |
| Q Serve(g_s), s           | 13.0   | 0.2  | 4.6      | 7.1  | 0.9  | 12.1      |
| Cycle Q Clear(g_c), s     | 13.0   | 0.2  | 4.6      | 7.1  | 0.9  | 12.1      |
| Prop In Lane              | 1.00   | 1.00 |          | 1.00 | 1.00 |           |
| Lane Grp Cap(c), veh/h    | 628    | 559  | 416      | 352  | 58   | 744       |
| V/C Ratio(X)              | 0.90   | 0.02 | 0.54     | 0.79 | 0.62 | 0.80      |
| Avail Cap(c_a), veh/h     | 1234   | 1098 | 1296     | 1098 | 494  | 1296      |
| HCM Platoon Ratio         | 1.00   | 1.00 | 1.00     | 1.00 | 1.00 | 1.00      |
| Upstream Filter(I)        | 1.00   | 1.00 | 1.00     | 1.00 | 1.00 | 1.00      |
| Uniform Delay (d), s/vel  |        | 9.1  | 14.9     | 15.9 | 20.7 | 11.5      |
| Incr Delay (d2), s/veh    | 2.0    | 0.0  | 0.4      | 1.5  | 4.0  | 0.8       |
| Initial Q Delay(d3),s/veh |        | 0.0  | 0.0      | 0.0  | 0.0  | 0.0       |
| %ile BackOfQ(50%),vel     |        | 0.1  | 1.6      | 2.2  | 0.4  | 3.5       |
| Unsig. Movement Delay     |        |      | 1.0      | 2.2  | 0.4  | 0.0       |
| LnGrp Delay(d),s/veh      | 15.2   | 9.1  | 15.3     | 17.4 | 24.7 | 12.2      |
| LnGrp LOS                 | В      | Α    | В        | В    | C C  | 12.2<br>B |
|                           | 575    |      |          |      |      | 629       |
| Approach Vol, veh/h       |        |      | 503      |      |      |           |
| Approach Delay, s/veh     | 15.1   |      | 16.4     |      |      | 13.0      |
| Approach LOS              | В      |      | В        |      |      | В         |
| Timer - Assigned Phs      | 1      | 2    |          | 4    |      | 6         |
| Phs Duration (G+Y+Rc)     | , s7.6 | 15.8 |          | 19.9 |      | 23.4      |
| Change Period (Y+Rc),     | s 6.2  | 6.2  |          | 4.6  |      | 6.2       |
| Max Green Setting (Gm     |        | 30.0 |          | 30.0 |      | 30.0      |
| Max Q Clear Time (g c     |        | 9.1  |          | 15.0 |      | 14.1      |
| Green Ext Time (p c), s   | , .    | 0.5  |          | 0.3  |      | 1.1       |
| u = 7:                    | 0.0    | 0.0  |          | 0.0  |      | - '''     |
| Intersection Summary      |        |      |          |      |      |           |
| HCM 6th Ctrl Delay        |        |      | 14.7     |      |      |           |
| HCM 6th LOS               |        |      | В        |      |      |           |
| Notes                     |        |      |          |      |      |           |

| Intersection                  |        |                 |       |        |          |       |        |      |          |        |       |        |
|-------------------------------|--------|-----------------|-------|--------|----------|-------|--------|------|----------|--------|-------|--------|
| Intersection Int Delay, s/veh | 2.8    |                 |       |        |          |       |        |      |          |        |       |        |
|                               |        |                 |       |        |          |       |        |      |          |        |       |        |
| Movement                      | EBL    | EBT             | EBR   | WBL    | WBT      | WBR   | NBL    | NBT  | NBR      | SBL    | SBT   | SBR    |
| Lane Configurations           | - ሻ    | <b>₽</b>        |       |        | ₽        |       |        | 4    |          |        | 4     |        |
| Traffic Vol, veh/h            | 20     | 505             | 5     | 15     | 375      | 25    | 5      | 10   | 25       | 45     | 5     | 20     |
| Future Vol, veh/h             | 20     | 505             | 5     | 15     | 375      | 25    | 5      | 10   | 25       | 45     | 5     | 20     |
| Conflicting Peds, #/hr        | 0      | 0               | 0     | 0      | 0        | 0     | 0      | 0    | 0        | 0      | 0     | 0      |
| Sign Control                  | Free   | Free            | Free  | Free   | Free     | Free  | Stop   | Stop | Stop     | Stop   | Stop  | Stop   |
| RT Channelized                | -      | -               | None  | -      | -        | None  | -      | -    | None     | -      | -     | None   |
| Storage Length                | 90     | -               | -     | 90     | -        | -     | -      | -    | -        | -      | -     | -      |
| Veh in Median Storage         | , # -  | 0               | -     | -      | 0        | -     | -      | 0    | -        | -      | 0     | -      |
| Grade, %                      | -      | 0               | -     | -      | 0        | -     | -      | 0    | -        | -      | 0     | -      |
| Peak Hour Factor              | 92     | 92              | 92    | 92     | 92       | 92    | 92     | 92   | 92       | 92     | 92    | 92     |
| Heavy Vehicles, %             | 2      | 2               | 2     | 2      | 2        | 2     | 2      | 2    | 2        | 2      | 2     | 2      |
| Mvmt Flow                     | 22     | 549             | 5     | 16     | 408      | 27    | 5      | 11   | 27       | 49     | 5     | 22     |
|                               |        |                 |       |        |          |       |        |      |          |        |       |        |
| Major/Minor I                 | Major1 |                 | _     | Major2 |          |       | Minor1 |      |          | Minor2 |       |        |
| Conflicting Flow All          | 435    | 0               | 0     | 554    | 0        | 0     | 1063   | 1063 | 552      | 1069   | 1052  | 422    |
| Stage 1                       | -      | -               | -     | -<br>- | -        | -     | 596    | 596  | -        | 454    | 454   | -      |
| Stage 2                       | _      | _               | _     | _      | <u> </u> | _     | 467    | 467  | _        | 615    | 598   | _      |
| Critical Hdwy                 | 4.12   | _               |       | 4.12   | _        | _     | 7.12   | 6.52 | 6.22     | 7.12   | 6.52  | 6.22   |
| Critical Hdwy Stg 1           | - 1.12 | _               | _     | T. 12  | <u>-</u> | _     | 6.12   | 5.52 | 0.22     | 6.12   | 5.52  | - 0.22 |
| Critical Hdwy Stg 2           | _      | _               | _     | _      | _        | _     | 6.12   | 5.52 | _        | 6.12   | 5.52  | _      |
| Follow-up Hdwy                | 2.218  | <u>-</u>        | _     | 2.218  | <u>-</u> | _     | 3.518  |      | 3.318    | 3.518  | 4.018 |        |
| Pot Cap-1 Maneuver            | 1125   | _               | _     | 1016   | _        | _     | 201    | 223  | 533      | 199    | 227   | 632    |
| Stage 1                       | -      | <u>-</u>        | _     | -      | <u>-</u> | _     | 490    | 492  | -        | 586    | 569   | - 002  |
| Stage 2                       | _      | _               | _     | _      | _        | _     | 576    | 562  | _        | 479    | 491   | _      |
| Platoon blocked, %            |        | <u>-</u>        | _     |        | <u>-</u> | _     | 510    | JUL  |          | 113    | 101   |        |
| Mov Cap-1 Maneuver            | 1125   | _               |       | 1016   | _        | _     | 185    | 215  | 533      | 177    | 219   | 632    |
| Mov Cap-1 Maneuver            | -      | _               | _     | -      | _        | _     | 185    | 215  | -        | 177    | 219   | - 002  |
| Stage 1                       | _      | _               |       | _      |          | _     | 480    | 482  | _        | 574    | 560   | _      |
| Stage 2                       | _      | _               | _     | _      | _        | _     | 542    | 553  | <u> </u> | 436    | 481   | _      |
| Olugo Z                       |        |                 |       |        |          |       | U7Z    | 555  | _        | -100   | -t0 I |        |
|                               |        |                 |       | 14/5   |          |       |        |      |          | 0.5    |       |        |
| Approach                      | EB     |                 |       | WB     |          |       | NB     |      |          | SB     |       |        |
| HCM Control Delay, s          | 0.3    |                 |       | 0.3    |          |       | 17.5   |      |          | 28.7   |       |        |
| HCM LOS                       |        |                 |       |        |          |       | С      |      |          | D      |       |        |
|                               |        |                 |       |        |          |       |        |      |          |        |       |        |
| Minor Lane/Major Mvm          | it 1   | NBLn1           | EBL   | EBT    | EBR      | WBL   | WBT    | WBR  | SBLn1    |        |       |        |
| Capacity (veh/h)              |        |                 | 1125  | _      | _        | 1016  | _      | _    | 227      |        |       |        |
| HCM Lane V/C Ratio            |        | 0.131           | 0.019 | _      |          | 0.016 | _      |      | 0.335    |        |       |        |
| HCM Control Delay (s)         |        | 17.5            | 8.3   | _      | _        | 8.6   | _      | _    | 28.7     |        |       |        |
| HCM Lane LOS                  |        | C               | A     | _      | _        | A     | _      | _    | D        |        |       |        |
| HCM 95th %tile Q(veh)         |        | 0.4             | 0.1   | _      | _        | 0     | _      | _    | 1.4      |        |       |        |
| HOW JOHN JUHE WIVEH           |        | U. <del>T</del> | 0.1   | _      |          | U     |        | _    | 1.7      |        |       |        |

|                              | ۶         | <b>→</b> | •         | •         | <b>←</b> | •         | •         | <b>†</b>   | /         | <b>&gt;</b> | ļ          | 4    |
|------------------------------|-----------|----------|-----------|-----------|----------|-----------|-----------|------------|-----------|-------------|------------|------|
| Movement                     | EBL       | EBT      | EBR       | WBL       | WBT      | WBR       | NBL       | NBT        | NBR       | SBL         | SBT        | SBR  |
| Lane Configurations          | ሻ         | ĵ»       |           | 7         | 1>       |           | *         | <b>ተ</b> ኈ |           | 7           | <b>∱</b> ∱ |      |
| Traffic Volume (veh/h)       | 300       | 350      | 81        | 71        | 250      | 270       | 73        | 358        | 123       | 200         | 232        | 80   |
| Future Volume (veh/h)        | 300       | 350      | 81        | 71        | 250      | 270       | 73        | 358        | 123       | 200         | 232        | 80   |
| Initial Q (Qb), veh          | 0         | 0        | 0         | 0         | 0        | 0         | 0         | 0          | 0         | 0           | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00      |          | 1.00      | 1.00      |          | 1.00      | 1.00      |            | 0.99      | 1.00        |            | 0.99 |
| Parking Bus, Adj             | 1.00      | 1.00     | 1.00      | 1.00      | 1.00     | 1.00      | 1.00      | 1.00       | 1.00      | 1.00        | 1.00       | 1.00 |
| Work Zone On Approach        |           | No       |           |           | No       |           |           | No         |           |             | No         |      |
| Adj Sat Flow, veh/h/ln       | 1870      | 1870     | 1870      | 1870      | 1870     | 1870      | 1870      | 1870       | 1870      | 1870        | 1870       | 1870 |
| Adj Flow Rate, veh/h         | 326       | 380      | 81        | 77        | 272      | 261       | 79        | 389        | 104       | 217         | 252        | 58   |
| Peak Hour Factor             | 0.92      | 0.92     | 0.92      | 0.92      | 0.92     | 0.92      | 0.92      | 0.92       | 0.92      | 0.92        | 0.92       | 0.92 |
| Percent Heavy Veh, %         | 2         | 2        | 2         | 2         | 2        | 2         | 2         | 2          | 2         | 2           | 2          | 2    |
| Cap, veh/h                   | 362       | 618      | 132       | 172       | 268      | 257       | 173       | 499        | 132       | 249         | 641        | 145  |
| Arrive On Green              | 0.20      | 0.41     | 0.41      | 0.10      | 0.31     | 0.31      | 0.10      | 0.18       | 0.18      | 0.14        | 0.22       | 0.22 |
| Sat Flow, veh/h              | 1781      | 1493     | 318       | 1781      | 875      | 840       | 1781      | 2771       | 732       | 1781        | 2873       | 649  |
| Grp Volume(v), veh/h         | 326       | 0        | 461       | 77        | 0        | 533       | 79        | 248        | 245       | 217         | 154        | 156  |
| Grp Sat Flow(s), veh/h/ln    | 1781      | 0        | 1812      | 1781      | 0        | 1714      | 1781      | 1777       | 1726      | 1781        | 1777       | 1745 |
| Q Serve(g_s), s              | 18.0      | 0.0      | 20.2      | 4.1       | 0.0      | 31.0      | 4.2       | 13.4       | 13.7      | 12.1        | 7.5        | 7.7  |
| Cycle Q Clear(g_c), s        | 18.0      | 0.0      | 20.2      | 4.1       | 0.0      | 31.0      | 4.2       | 13.4       | 13.7      | 12.1        | 7.5        | 7.7  |
| Prop In Lane                 | 1.00      | 0.0      | 0.18      | 1.00      | 0.0      | 0.49      | 1.00      | 10.4       | 0.42      | 1.00        | 7.0        | 0.37 |
| Lane Grp Cap(c), veh/h       | 362       | 0        | 749       | 172       | 0        | 526       | 173       | 320        | 311       | 249         | 396        | 389  |
| V/C Ratio(X)                 | 0.90      | 0.00     | 0.62      | 0.45      | 0.00     | 1.01      | 0.46      | 0.77       | 0.79      | 0.87        | 0.39       | 0.40 |
| Avail Cap(c_a), veh/h        | 458       | 0.00     | 749       | 458       | 0.00     | 526       | 194       | 475        | 461       | 282         | 475        | 466  |
| HCM Platoon Ratio            | 1.00      | 1.00     | 1.00      | 1.00      | 1.00     | 1.00      | 1.00      | 1.00       | 1.00      | 1.00        | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00      | 0.00     | 1.00      | 1.00      | 0.00     | 1.00      | 1.00      | 1.00       | 1.00      | 1.00        | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 39.3      | 0.0      | 23.3      | 43.1      | 0.00     | 35.0      | 43.1      | 39.5       | 39.6      | 42.6        | 33.4       | 33.5 |
| Incr Delay (d2), s/veh       | 17.7      | 0.0      | 1.5       | 1.8       | 0.0      | 42.7      | 1.9       | 4.6        | 5.5       | 22.4        | 0.6        | 0.7  |
| Initial Q Delay(d3),s/veh    | 0.0       | 0.0      | 0.0       | 0.0       | 0.0      | 0.0       | 0.0       | 0.0        | 0.0       | 0.0         | 0.0        | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 9.3       | 0.0      | 8.3       | 1.9       | 0.0      | 18.5      | 1.9       | 6.0        | 6.0       | 6.8         | 3.2        | 3.3  |
| Unsig. Movement Delay, s/veh |           | 0.0      | 0.0       | 1.5       | 0.0      | 10.5      | 1.0       | 0.0        | 0.0       | 0.0         | 0.2        | 0.0  |
| LnGrp Delay(d),s/veh         | 57.0      | 0.0      | 24.8      | 45.0      | 0.0      | 77.8      | 45.0      | 44.1       | 45.1      | 65.0        | 34.0       | 34.2 |
| LnGrp LOS                    | 57.0<br>E | Α        | 24.0<br>C | 45.0<br>D | Α        | 77.0<br>F | 45.0<br>D | D          | 43.1<br>D | 03.0<br>E   | C          | C    |
|                              |           |          |           | <u> </u>  |          | <u> </u>  | <u> </u>  |            |           | <u> </u>    | 527        |      |
| Approach Vol, veh/h          |           | 787      |           |           | 610      |           |           | 572        |           |             |            |      |
| Approach LOS                 |           | 38.1     |           |           | 73.6     |           |           | 44.7       |           |             | 46.8       |      |
| Approach LOS                 |           | D        |           |           | Е        |           |           | D          |           |             | D          |      |
| Timer - Assigned Phs         | 1         | 2        | 3         | 4         | 5        | 6         | 7         | 8          |           |             |            |      |
| Phs Duration (G+Y+Rc), s     | 13.8      | 27.5     | 24.5      | 35.2      | 18.1     | 23.2      | 13.7      | 46.0       |           |             |            |      |
| Change Period (Y+Rc), s      | 4.0       | 5.0      | 4.0       | * 4.2     | 4.0      | 5.0       | 4.0       | * 4.2      |           |             |            |      |
| Max Green Setting (Gmax), s  | 11.0      | 27.0     | 26.0      | * 31      | 16.0     | 27.0      | 26.0      | * 31       |           |             |            |      |
| Max Q Clear Time (g c+l1), s | 6.2       | 9.7      | 20.0      | 33.0      | 14.1     | 15.7      | 6.1       | 22.2       |           |             |            |      |
| Green Ext Time (p_c), s      | 0.1       | 1.5      | 0.5       | 0.0       | 0.1      | 2.0       | 0.1       | 1.7        |           |             |            |      |
| Intersection Summary         |           |          |           |           | •        |           |           |            |           |             |            |      |
|                              |           |          | EO 1      |           |          |           |           |            |           |             |            |      |
| HCM 6th Ctrl Delay           |           |          | 50.1      |           |          |           |           |            |           |             |            |      |
| HCM 6th LOS                  |           |          | D         |           |          |           |           |            |           |             |            |      |
| Notes                        |           |          |           |           |          |           |           |            |           |             |            |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection              |     |
|---------------------------|-----|
| Intersection Delay, s/veh | 8.8 |
| Intersection LOS          | Α   |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 40   | 10   | 118  | 10   | 10   | 10   | 146  | 40   | 10   | 10   | 40   | 20   |
| Future Vol, veh/h          | 40   | 10   | 118  | 10   | 10   | 10   | 146  | 40   | 10   | 10   | 40   | 20   |
| Peak Hour Factor           | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 43   | 11   | 128  | 11   | 11   | 11   | 159  | 43   | 11   | 11   | 43   | 22   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 8.5  |      |      | 7.9  |      |      | 9.4  |      |      | 8    |      |      |
| HCM LOS                    | А    |      |      | Α    |      |      | Α    |      |      | А    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 74%   | 24%   | 33%   | 14%   |  |
| Vol Thru, %            | 20%   | 6%    | 33%   | 57%   |  |
| Vol Right, %           | 5%    | 70%   | 33%   | 29%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 196   | 168   | 30    | 70    |  |
| LT Vol                 | 146   | 40    | 10    | 10    |  |
| Through Vol            | 40    | 10    | 10    | 40    |  |
| RT Vol                 | 10    | 118   | 10    | 20    |  |
| Lane Flow Rate         | 213   | 183   | 33    | 76    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.273 | 0.217 | 0.043 | 0.096 |  |
| Departure Headway (Hd) | 4.619 | 4.283 | 4.694 | 4.521 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 778   | 838   | 762   | 791   |  |
| Service Time           | 2.648 | 2.307 | 2.726 | 2.554 |  |
| HCM Lane V/C Ratio     | 0.274 | 0.218 | 0.043 | 0.096 |  |
| HCM Control Delay      | 9.4   | 8.5   | 7.9   | 8     |  |
| HCM Lane LOS           | А     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 1.1   | 0.8   | 0.1   | 0.3   |  |

|                           | ۶    | <b>→</b> | •    | •     | <b>←</b> | •     | 4    | †              | <u> </u> | <b>/</b> | ļ              | 4    |  |
|---------------------------|------|----------|------|-------|----------|-------|------|----------------|----------|----------|----------------|------|--|
| Movement                  | EBL  | EBT      | EBR  | WBL   | WBT      | WBR   | NBL  | NBT            | NBR      | SBL      | SBT            | SBR  |  |
| Lane Configurations       | ሻ    | <b>†</b> |      |       | <b>†</b> | 7     | ሻ    | <del>(</del> î |          | ሻ        | <del>(</del> î |      |  |
| Traffic Volume (veh/h)    | 64   | 360      | 0    | 0     | 430      | 234   | 10   | 36             | 20       | 117      | 0              | 72   |  |
| Future Volume (veh/h)     | 64   | 360      | 0    | 0     | 430      | 234   | 10   | 36             | 20       | 117      | 0              | 72   |  |
| Initial Q (Qb), veh       | 0    | 0        | 0    | 0     | 0        | 0     | 0    | 0              | 0        | 0        | 0              | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00 |          | 1.00 | 1.00  |          | 0.99  | 0.99 |                | 0.99     | 0.99     |                | 0.99 |  |
| Parking Bus, Adj          | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00           | 1.00     | 1.00     | 1.00           | 1.00 |  |
| Work Zone On Approac      |      | No       |      |       | No       |       |      | No             |          |          | No             |      |  |
|                           | 1870 | 1870     | 0    | 0     | 1870     | 1870  | 1870 | 1870           | 1870     | 1870     | 1870           | 1870 |  |
| Adj Flow Rate, veh/h      | 70   | 391      | 0    | 0     | 467      | 119   | 11   | 39             | 5        | 127      | 0              | 17   |  |
| Peak Hour Factor          | 0.92 | 0.92     | 0.92 | 0.92  | 0.92     | 0.92  | 0.92 | 0.92           | 0.92     | 0.92     | 0.92           | 0.92 |  |
| Percent Heavy Veh, %      | 2    | 2        | 0    | 0     | 2        | 2     | 2    | 2              | 2        | 2        | 2              | 2    |  |
| Cap, veh/h                | 475  | 1079     | 0    | 0     | 686      | 578   | 429  | 310            | 40       | 408      | 0              | 299  |  |
| Arrive On Green           | 0.09 | 0.58     | 0.00 | 0.00  | 0.37     | 0.37  | 0.19 | 0.19           | 0.19     | 0.19     | 0.00           | 0.19 |  |
| Sat Flow, veh/h           | 1781 | 1870     | 0    | 0     | 1870     | 1574  | 1379 | 1622           | 208      | 1346     | 0              | 1565 |  |
| Grp Volume(v), veh/h      | 70   | 391      | 0    | 0     | 467      | 119   | 11   | 0              | 44       | 127      | 0              | 17   |  |
| Grp Sat Flow(s), veh/h/lr |      | 1870     | 0    | 0     | 1870     | 1574  | 1379 | 0              | 1830     | 1346     | 0              | 1565 |  |
| Q Serve(g_s), s           | 0.8  | 4.5      | 0.0  | 0.0   | 8.5      | 2.1   | 0.3  | 0.0            | 0.8      | 3.5      | 0.0            | 0.4  |  |
| Cycle Q Clear(g_c), s     | 0.8  | 4.5      | 0.0  | 0.0   | 8.5      | 2.1   | 0.6  | 0.0            | 0.8      | 4.3      | 0.0            | 0.4  |  |
| Prop In Lane              | 1.00 |          | 0.00 | 0.00  |          | 1.00  | 1.00 |                | 0.11     | 1.00     |                | 1.00 |  |
| Lane Grp Cap(c), veh/h    |      | 1079     | 0    | 0     | 686      | 578   | 429  | 0              | 350      | 408      | 0              | 299  |  |
| V/C Ratio(X)              | 0.15 | 0.36     | 0.00 | 0.00  | 0.68     | 0.21  | 0.03 | 0.00           | 0.13     | 0.31     | 0.00           | 0.06 |  |
| Avail Cap(c_a), veh/h     | 614  | 1476     | 0    | 0     | 3321     | 2795  | 777  | 0              | 812      | 748      | 0              | 695  |  |
| HCM Platoon Ratio         | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00           | 1.00     | 1.00     | 1.00           | 1.00 |  |
| Upstream Filter(I)        | 1.00 | 1.00     | 0.00 | 0.00  | 1.00     | 1.00  | 1.00 | 0.00           | 1.00     | 1.00     | 0.00           | 1.00 |  |
| Uniform Delay (d), s/veh  |      | 4.6      | 0.0  | 0.0   | 10.8     | 8.8   | 13.7 | 0.0            | 13.6     | 15.4     | 0.0            | 13.4 |  |
| Incr Delay (d2), s/veh    | 0.1  | 0.2      | 0.0  | 0.0   | 1.2      | 0.2   | 0.0  | 0.0            | 0.2      | 0.4      | 0.0            | 0.1  |  |
| Initial Q Delay(d3),s/veh |      | 0.0      | 0.0  | 0.0   | 0.0      | 0.0   | 0.0  | 0.0            | 0.0      | 0.0      | 0.0            | 0.0  |  |
| %ile BackOfQ(50%),veh     |      | 1.1      | 0.0  | 0.0   | 3.0      | 0.6   | 0.1  | 0.0            | 0.3      | 1.0      | 0.0            | 0.1  |  |
| Unsig. Movement Delay     |      |          |      |       |          |       |      |                |          |          |                |      |  |
| LnGrp Delay(d),s/veh      | 6.7  | 4.8      | 0.0  | 0.0   | 12.0     | 9.0   | 13.7 | 0.0            | 13.7     | 15.8     | 0.0            | 13.5 |  |
| LnGrp LOS                 | A    | Α        | A    | А     | В        | Α     | В    | A              | В        | В        | Α              | В    |  |
| Approach Vol, veh/h       |      | 461      |      |       | 586      |       |      | 55             |          |          | 144            |      |  |
| Approach Delay, s/veh     |      | 5.1      |      |       | 11.4     |       |      | 13.7           |          |          | 15.5           |      |  |
| Approach LOS              |      | Α        |      |       | В        |       |      | В              |          |          | В              |      |  |
| Timer - Assigned Phs      |      | 2        |      | 4     | 5        | 6     |      | 8              |          |          |                |      |  |
| Phs Duration (G+Y+Rc)     | , S  | 28.1     |      | 12.5  | 8.5      | 19.6  |      | 12.5           |          |          |                |      |  |
| Change Period (Y+Rc),     |      | * 4.7    |      | * 4.7 | * 4.7    | * 4.7 |      | * 4.7          |          |          |                |      |  |
| Max Green Setting (Gm     |      | * 32     |      | * 18  | * 7      | * 72  |      | * 18           |          |          |                |      |  |
| Max Q Clear Time (g_c-    |      | 6.5      |      | 6.3   | 2.8      | 10.5  |      | 2.8            |          |          |                |      |  |
| Green Ext Time (p_c), s   |      | 2.6      |      | 0.3   | 0.0      | 4.0   |      | 0.1            |          |          |                |      |  |
| Intersection Summary      |      |          |      |       |          |       |      |                |          |          |                |      |  |
| HCM 6th Ctrl Delay        |      |          | 9.6  |       |          |       |      |                |          |          |                |      |  |
| HCM 6th LOS               |      |          | Α    |       |          |       |      |                |          |          |                |      |  |
|                           |      |          |      |       |          |       |      |                |          |          |                |      |  |

| o: Graveriotein riwy                             | Old I    |            |          |      |       |           |          |           |           |      |      | . , |
|--------------------------------------------------|----------|------------|----------|------|-------|-----------|----------|-----------|-----------|------|------|-----|
| •                                                | <b>→</b> | $\searrow$ | •        | •    | •     | •         | <b>†</b> | /         | -         | ļ    | 4    |     |
| Movement EBL                                     | EBT      | EBR        | WBL      | WBT  | WBR   | NBL       | NBT      | NBR       | SBL       | SBT  | SBR  |     |
| Lane Configurations                              |          | 7          | - 1      | ₽    |       | - 1       | ₽        |           |           | 4    |      |     |
| Traffic Volume (veh/h) 0                         |          | 137        | 60       | 465  | 20    | 169       | 10       | 30        | 20        | 20   | 30   |     |
| Future Volume (veh/h) 0                          | 360      | 137        | 60       | 465  | 20    | 169       | 10       | 30        | 20        | 20   | 30   |     |
| nitial Q (Qb), veh 0                             | 0        | 0          | 0        | 0    | 0     | 0         | 0        | 0         | 0         | 0    | 0    |     |
| Ped-Bike Adj(A_pbT) 1.00                         |          | 0.99       | 1.00     |      | 1.00  | 0.99      |          | 1.00      | 1.00      |      | 0.99 |     |
| Parking Bus, Adj 1.00                            | 1.00     | 1.00       | 1.00     | 1.00 | 1.00  | 1.00      | 1.00     | 1.00      | 1.00      | 1.00 | 1.00 |     |
| Work Zone On Approach                            | No       |            |          | No   |       |           | No       |           |           | No   |      |     |
| Adj Sat Flow, veh/h/ln 0                         | 1870     | 1870       | 1870     | 1870 | 1870  | 1870      | 1870     | 1870      | 1870      | 1870 | 1870 |     |
| Adj Flow Rate, veh/h 0                           | 391      | 94         | 65       | 505  | 20    | 184       | 11       | 8         | 22        | 22   | 8    |     |
| Peak Hour Factor 0.92                            | 0.92     | 0.92       | 0.92     | 0.92 | 0.92  | 0.92      | 0.92     | 0.92      | 0.92      | 0.92 | 0.92 |     |
| Percent Heavy Veh, % 0                           |          | 2          | 2        | 2    | 2     | 2         | 2        | 2         | 2         | 2    | 2    |     |
| Cap, veh/h 0                                     |          | 484        | 504      | 972  | 38    | 488       | 218      | 158       | 234       | 200  | 55   |     |
| Arrive On Green 0.00                             |          | 0.31       | 0.12     | 0.54 | 0.54  | 0.22      | 0.22     | 0.22      | 0.22      | 0.22 | 0.22 |     |
| Sat Flow, veh/h 0                                |          | 1572       | 1781     | 1786 | 71    | 1365      | 1007     | 732       | 478       | 924  | 255  |     |
| Grp Volume(v), veh/h 0                           |          | 94         | 65       | 0    | 525   | 184       | 0        | 19        | 52        | 0    | 0    |     |
| Grp Sat Flow(s), veh/h/ln 0                      |          | 1572       | 1781     | 0    | 1857  | 1365      | 0        | 1739      | 1657      | 0    | 0    |     |
| $2 \text{ Serve}(\underline{g}_s), s \qquad 0.0$ |          | 1.7        | 0.8      | 0.0  | 7.0   | 3.6       | 0.0      | 0.3       | 0.0       | 0.0  | 0.0  |     |
| Cycle Q Clear(g_c), s 0.0                        |          | 1.7        | 0.8      | 0.0  | 7.0   | 4.5       | 0.0      | 0.3       | 0.9       | 0.0  | 0.0  |     |
| Prop In Lane 0.00                                |          | 1.00       | 1.00     | 0.0  | 0.04  | 1.00      | 0.0      | 0.42      | 0.42      | 0.0  | 0.15 |     |
| _ane Grp Cap(c), veh/h 0                         |          | 484        | 504      | 0    | 1010  | 488       | 0        | 376       | 489       | 0    | 0.13 |     |
| //C Ratio(X) 0.00                                |          | 0.19       | 0.13     | 0.00 | 0.52  | 0.38      | 0.00     | 0.05      | 0.11      | 0.00 | 0.00 |     |
| Avail Cap(c_a), veh/h 0.00                       |          | 962        | 706      | 0.00 | 1137  | 1237      | 0.00     | 1330      | 551       | 0.00 | 0.00 |     |
| HCM Platoon Ratio 1.00                           |          | 1.00       | 1.00     | 1.00 | 1.00  | 1.00      | 1.00     | 1.00      | 1.00      | 1.00 | 1.00 |     |
| Upstream Filter(I) 0.00                          |          | 1.00       | 1.00     | 0.00 | 1.00  | 1.00      | 0.00     | 1.00      | 1.00      | 0.00 | 0.00 |     |
| Jniform Delay (d), s/veh 0.0                     |          | 10.0       | 6.8      | 0.00 | 5.7   | 13.7      | 0.00     | 12.2      | 12.4      | 0.00 | 0.00 |     |
| ncr Delay (d2), s/veh 0.0                        |          | 0.2        | 0.0      | 0.0  | 0.4   | 0.5       | 0.0      | 0.1       | 0.1       | 0.0  | 0.0  |     |
| nitial Q Delay(d3),s/veh 0.0                     |          | 0.2        | 0.0      | 0.0  | 0.0   | 0.0       | 0.0      | 0.0       | 0.0       | 0.0  | 0.0  |     |
| %ile BackOfQ(50%),veh/lr0.0                      |          | 0.5        | 0.0      | 0.0  | 1.8   | 1.3       | 0.0      | 0.0       | 0.0       | 0.0  | 0.0  |     |
| Jnsig. Movement Delay, s/ve                      |          | 0.5        | 0.2      | 0.0  | 1.0   | 1.0       | 0.0      | 0.1       | 0.5       | 0.0  | 0.0  |     |
| _nGrp Delay(d),s/veh 0.0                         |          | 10.2       | 6.9      | 0.0  | 6.1   | 14.2      | 0.0      | 12.2      | 12.5      | 0.0  | 0.0  |     |
| _nGrp LOS A                                      |          | 10.2<br>B  | 0.9<br>A | Α    | Α     | 14.2<br>B | Α        | 12.2<br>B | 12.5<br>B | Α    | Α    |     |
|                                                  |          | D          | A        |      | A     | Ь         |          | ь         | Ь         | 52   | A    |     |
| Approach Vol, veh/h                              | 485      |            |          | 590  |       |           | 203      |           |           |      |      |     |
| Approach Delay, s/veh                            | 12.7     |            |          | 6.2  |       |           | 14.0     |           |           | 12.5 |      |     |
| Approach LOS                                     | В        |            |          | А    |       |           | В        |           |           | В    |      |     |
| imer - Assigned Phs 1                            | 2        |            | 4        |      | 6     |           | 8        |           |           |      |      |     |
| Phs Duration (G+Y+Rc), s9.3                      |          |            | 13.2     |      | 26.0  |           | 13.2     |           |           |      |      |     |
| Change Period (Y+Rc), \$ 4.7                     |          |            | * 4.7    |      | * 4.7 |           | * 4.7    |           |           |      |      |     |
| Max Green Setting (Gmax), 9                      |          |            | * 10     |      | * 24  |           | * 30     |           |           |      |      |     |
| Max Q Clear Time (g_c+l12),8                     |          |            | 2.9      |      | 9.0   |           | 6.5      |           |           |      |      |     |
| Green Ext Time (p_c), s 0.1                      | 2.5      |            | 0.1      |      | 3.2   |           | 0.6      |           |           |      |      |     |
| ntersection Summary                              |          |            |          |      |       |           |          |           |           |      |      |     |
| HCM 6th Ctrl Delay                               |          | 10.0       |          |      |       |           |          |           |           |      |      |     |
| HCM 6th LOS                                      |          | В          |          |      |       |           |          |           |           |      |      |     |
| Motoc                                            |          |            |          |      |       |           |          |           |           |      |      |     |

|                        |          |             |          |              |        |              | _ |
|------------------------|----------|-------------|----------|--------------|--------|--------------|---|
| Intersection           |          |             |          |              |        |              |   |
| Int Delay, s/veh       | 53       |             |          |              |        |              |   |
|                        | EDI      | EDD         | NDI      | NDT          | CDT    | CDD          |   |
| Movement               | EBL      | EBR         | NBL      | NBT          | SBT    | SBR          |   |
| Lane Configurations    | <b>\</b> | 7           | <u>ነ</u> | <b></b>      |        | 7            |   |
| Traffic Vol, veh/h     | 282      | 50          | 40       | 554          | 445    | 225          |   |
| Future Vol, veh/h      | 282      | 50          | 40       | 554          | 445    | 225          |   |
| Conflicting Peds, #/hr | 0        | 0           | 0        | 0            | 0      | 0            |   |
| Sign Control           | Stop     | Stop        | Free     | Free         | Free   | Free         |   |
| RT Channelized         | -        | Stop        | -        | None         | -      | None         |   |
| Storage Length         | 0        | 90          | 70       | -            | -      | 100          |   |
| Veh in Median Storage  |          | -           | -        | 0            | 0      | -            |   |
| Grade, %               | 0        | -           | -        | 0            | 0      | -            |   |
| Peak Hour Factor       | 92       | 92          | 92       | 92           | 92     | 92           |   |
| Heavy Vehicles, %      | 2        | 2           | 2        | 2            | 2      | 2            |   |
| Mvmt Flow              | 307      | 54          | 43       | 602          | 484    | 245          |   |
|                        |          |             |          |              |        |              |   |
| Major/Minor            | Minora   |             | Major1   |              | Major? |              | Ī |
|                        | Minor2   |             | Major1   |              | Major2 |              |   |
| Conflicting Flow All   | 1172     | 484         | 729      | 0            | -      | 0            |   |
| Stage 1                | 484      | -           | -        | -            | -      | -            |   |
| Stage 2                | 688      | -           | -        | -            | -      | -            |   |
| Critical Hdwy          | 6.42     | 6.22        | 4.12     | -            | -      | -            |   |
| Critical Hdwy Stg 1    | 5.42     | -           | -        | -            | -      | -            |   |
| Critical Hdwy Stg 2    | 5.42     | -           | -        | -            | -      | -            |   |
| Follow-up Hdwy         |          | 3.318       | 2.218    | -            | -      | -            |   |
| Pot Cap-1 Maneuver     | ~ 213    | 583         | 875      | -            | -      | -            |   |
| Stage 1                | 620      | -           | -        | -            | -      | -            |   |
| Stage 2                | 499      | -           | -        | -            | -      | -            |   |
| Platoon blocked, %     |          |             |          | -            | -      | -            |   |
| Mov Cap-1 Maneuver     | ~ 203    | 583         | 875      | _            | -      | -            |   |
| Mov Cap-2 Maneuver     |          | -           | -        | _            | _      | _            |   |
| Stage 1                | 590      | _           | _        | _            | _      | _            |   |
| Stage 2                | 499      | _           | _        | _            | _      | _            |   |
| Stage 2                | 477      | _           | _        | <del>-</del> | _      | <del>-</del> |   |
|                        |          |             |          |              |        |              |   |
| Approach               | EB       |             | NB       |              | SB     |              |   |
| HCM Control Delay, s   | 253.5    |             | 0.6      |              | 0      |              |   |
| HCM LOS                | F        |             |          |              |        |              |   |
|                        |          |             |          |              |        |              |   |
| NA: 1 /NA: NA          |          | NDI         | NDT      | - DI 4 I     | -DI 0  | CDT          |   |
| Minor Lane/Major Mvm   | nt       | NBL         | NBII     | EBLn1 E      |        | SBT          |   |
| Capacity (veh/h)       |          | 875         | -        | 203          | 583    | -            |   |
| HCM Lane V/C Ratio     |          | 0.05        | -        |              | 0.093  | -            |   |
| HCM Control Delay (s)  |          | 9.3         | -        | 296.3        | 11.8   | -            |   |
| HCM Lane LOS           |          | Α           | -        | F            | В      | -            |   |
| HCM 95th %tile Q(veh   | )        | 0.2         | -        | 19           | 0.3    | -            |   |
| Notes                  |          |             |          |              |        |              |   |
|                        |          | <b>.</b> D. | 1        |              | 00 -   | 0            |   |
| ~: Volume exceeds ca   | pacity   | \$: De      | elay exc | eeds 30      | UUS    | +: Comp      | C |

|                              | ۶    | <b>→</b> | •     | •    | <b>←</b> | 4    | 1    | <b>†</b> | /    | <b>/</b> | <b>†</b> | 1    |
|------------------------------|------|----------|-------|------|----------|------|------|----------|------|----------|----------|------|
| Movement                     | EBL  | EBT      | EBR   | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations          | ች    | <b>†</b> | 7     | ሻ    | ₽        |      | ሻ    | <b>↑</b> | 7    |          | 4        |      |
| Traffic Volume (veh/h)       | 161  | 630      | 490   | 122  | 314      | 30   | 430  | 272      | 152  | 40       | 222      | 103  |
| Future Volume (veh/h)        | 161  | 630      | 490   | 122  | 314      | 30   | 430  | 272      | 152  | 40       | 222      | 103  |
| Initial Q (Qb), veh          | 0    | 0        | 0     | 0    | 0        | 0    | 0    | 0        | 0    | 0        | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.99  | 1.00 |          | 0.99 | 1.00 |          | 0.99 | 1.00     |          | 0.99 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 |
| Work Zone On Approach        |      | No       |       |      | No       |      |      | No       |      |          | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870  | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870     | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 175  | 685      | 290   | 133  | 341      | 30   | 467  | 296      | 41   | 43       | 241      | 101  |
| Peak Hour Factor             | 0.92 | 0.92     | 0.92  | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92     | 0.92     | 0.92 |
| Percent Heavy Veh, %         | 2    | 2        | 2     | 2    | 2        | 2    | 2    | 2        | 2    | 2        | 2        | 2    |
| Cap, veh/h                   | 204  | 497      | 417   | 161  | 409      | 36   | 473  | 497      | 417  | 35       | 196      | 82   |
| Arrive On Green              | 0.11 | 0.27     | 0.27  | 0.09 | 0.24     | 0.24 | 0.27 | 0.27     | 0.27 | 0.18     | 0.18     | 0.18 |
| Sat Flow, veh/h              | 1781 | 1870     | 1570  | 1781 | 1693     | 149  | 1781 | 1870     | 1570 | 198      | 1109     | 465  |
| Grp Volume(v), veh/h         | 175  | 685      | 290   | 133  | 0        | 371  | 467  | 296      | 41   | 385      | 0        | 0    |
| Grp Sat Flow(s), veh/h/ln    | 1781 | 1870     | 1570  | 1781 | 0        | 1842 | 1781 | 1870     | 1570 | 1772     | 0        | 0    |
| Q Serve(g_s), s              | 10.9 | 30.0     | 18.8  | 8.3  | 0.0      | 21.6 | 29.5 | 15.6     | 2.2  | 20.0     | 0.0      | 0.0  |
| Cycle Q Clear(g_c), s        | 10.9 | 30.0     | 18.8  | 8.3  | 0.0      | 21.6 | 29.5 | 15.6     | 2.2  | 20.0     | 0.0      | 0.0  |
| Prop In Lane                 | 1.00 |          | 1.00  | 1.00 |          | 0.08 | 1.00 |          | 1.00 | 0.11     |          | 0.26 |
| Lane Grp Cap(c), veh/h       | 204  | 497      | 417   | 161  | 0        | 445  | 473  | 497      | 417  | 314      | 0        | 0    |
| V/C Ratio(X)                 | 0.86 | 1.38     | 0.70  | 0.82 | 0.00     | 0.83 | 0.99 | 0.60     | 0.10 | 1.23     | 0.00     | 0.00 |
| Avail Cap(c_a), veh/h        | 315  | 497      | 417   | 309  | 0        | 571  | 473  | 497      | 417  | 314      | 0        | 0    |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00     | 1.00 |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00  | 1.00 | 0.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 0.00     | 0.00 |
| Uniform Delay (d), s/veh     | 49.1 | 41.5     | 37.3  | 50.5 | 0.0      | 40.7 | 41.3 | 36.2     | 31.3 | 46.5     | 0.0      | 0.0  |
| Incr Delay (d2), s/veh       | 8.4  | 182.7    | 4.2   | 4.0  | 0.0      | 6.7  | 37.8 | 1.4      | 0.0  | 127.0    | 0.0      | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0   | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 5.2  | 38.4     | 7.4   | 3.8  | 0.0      | 10.3 | 17.3 | 7.0      | 0.8  | 19.7     | 0.0      | 0.0  |
| Unsig. Movement Delay, s/veh |      |          |       |      |          |      |      |          |      |          |          |      |
| LnGrp Delay(d),s/veh         | 57.5 | 224.1    | 41.5  | 54.5 | 0.0      | 47.3 | 79.0 | 37.5     | 31.3 | 173.4    | 0.0      | 0.0  |
| LnGrp LOS                    | Ε    | F        | D     | D    | Α        | D    | Ε    | D        | С    | F        | Α        | Α    |
| Approach Vol, veh/h          |      | 1150     |       |      | 504      |      |      | 804      |      |          | 385      |      |
| Approach Delay, s/veh        |      | 152.7    |       |      | 49.2     |      |      | 61.3     |      |          | 173.4    |      |
| Approach LOS                 |      | F        |       |      | D        |      |      | Е        |      |          | F        |      |
| Timer - Assigned Phs         | 1    | 2        |       | 4    | 5        | 6    |      | 8        |      |          |          |      |
| Phs Duration (G+Y+Rc), s     | 16.0 | 36.0     |       | 25.1 | 18.8     | 33.3 |      | 35.8     |      |          |          |      |
| Change Period (Y+Rc), s      | 5.8  | 6.0      |       | 5.1  | 5.8      | 6.0  |      | 5.8      |      |          |          |      |
| Max Green Setting (Gmax), s  | 19.6 | 30.0     |       | 20.0 | 20.0     | 35.0 |      | 30.0     |      |          |          |      |
| Max Q Clear Time (g_c+l1), s | 10.3 | 32.0     |       | 22.0 | 12.9     | 23.6 |      | 31.5     |      |          |          |      |
| Green Ext Time (p_c), s      | 0.1  | 0.0      |       | 0.0  | 0.1      | 1.0  |      | 0.0      |      |          |          |      |
|                              | 0.1  | 0.0      |       | 0.0  | 0.1      | 1.0  |      | 0.0      |      |          |          |      |
| Intersection Summary         |      |          | 111.2 |      |          |      |      |          |      |          |          |      |
| HCM 6th Ctrl Delay           |      |          | 111.3 |      |          |      |      |          |      |          |          |      |
| HCM 6th LOS                  |      |          | F     |      |          |      |      |          |      |          |          |      |
| Notes                        |      |          |       |      |          |      |      |          |      |          |          |      |

|                           | ۶       | <b>→</b> | •    | •    | <b>←</b> | •     | •    | †        | <u> </u> | <b>\</b> | ļ        | 4    |  |
|---------------------------|---------|----------|------|------|----------|-------|------|----------|----------|----------|----------|------|--|
| Movement                  | EBL     | EBT      | EBR  | WBL  | WBT      | WBR   | NBL  | NBT      | NBR      | SBL      | SBT      | SBR  |  |
| Lane Configurations       | ሻ       | <b>↑</b> | 7    | ሻ    | ĵ.       |       | ሻ    | <b>†</b> | 7        | ሻ        | <b>†</b> | 7    |  |
| Traffic Volume (veh/h)    | 70      | 161      | 411  | 20   | 91       | 30    | 245  | 544      | 20       | 50       | 404      | 50   |  |
| Future Volume (veh/h)     | 70      | 161      | 411  | 20   | 91       | 30    | 245  | 544      | 20       | 50       | 404      | 50   |  |
| Initial Q (Qb), veh       | 0       | 0        | 0    | 0    | 0        | 0     | 0    | 0        | 0        | 0        | 0        | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00    |          | 1.00 | 1.00 |          | 1.00  | 1.00 |          | 1.00     | 1.00     |          | 1.00 |  |
| Parking Bus, Adj          | 1.00    | 1.00     | 1.00 | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |  |
| Work Zone On Approac      | ch      | No       |      |      | No       |       |      | No       |          |          | No       |      |  |
| Adj Sat Flow, veh/h/ln    | 1870    | 1870     | 1870 | 1870 | 1870     | 1870  | 1870 | 1870     | 1870     | 1870     | 1870     | 1870 |  |
| Adj Flow Rate, veh/h      | 76      | 175      | 92   | 22   | 99       | 20    | 266  | 591      | 11       | 54       | 439      | 54   |  |
| Peak Hour Factor          | 0.92    | 0.92     | 0.92 | 0.92 | 0.92     | 0.92  | 0.92 | 0.92     | 0.92     | 0.92     | 0.92     | 0.92 |  |
| Percent Heavy Veh, %      | 2       | 2        | 2    | 2    | 2        | 2     | 2    | 2        | 2        | 2        | 2        | 2    |  |
| Cap, veh/h                | 96      | 254      | 215  | 37   | 132      | 27    | 321  | 776      | 657      | 74       | 517      | 438  |  |
| Arrive On Green           | 0.05    | 0.14     | 0.14 | 0.02 | 0.09     | 0.09  | 0.18 | 0.41     | 0.41     | 0.04     | 0.28     | 0.28 |  |
| Sat Flow, veh/h           | 1781    | 1870     | 1585 | 1781 | 1510     | 305   | 1781 | 1870     | 1585     | 1781     | 1870     | 1585 |  |
| Grp Volume(v), veh/h      | 76      | 175      | 92   | 22   | 0        | 119   | 266  | 591      | 11       | 54       | 439      | 54   |  |
| Grp Sat Flow(s),veh/h/lr  | n1781   | 1870     | 1585 | 1781 | 0        | 1815  | 1781 | 1870     | 1585     | 1781     | 1870     | 1585 |  |
| Q Serve(g_s), s           | 2.2     | 4.7      | 2.8  | 0.6  | 0.0      | 3.3   | 7.5  | 14.1     | 0.2      | 1.6      | 11.6     | 1.3  |  |
| Cycle Q Clear(g_c), s     | 2.2     | 4.7      | 2.8  | 0.6  | 0.0      | 3.3   | 7.5  | 14.1     | 0.2      | 1.6      | 11.6     | 1.3  |  |
| Prop In Lane              | 1.00    |          | 1.00 | 1.00 |          | 0.17  | 1.00 |          | 1.00     | 1.00     |          | 1.00 |  |
| Lane Grp Cap(c), veh/h    | 96      | 254      | 215  | 37   | 0        | 159   | 321  | 776      | 657      | 74       | 517      | 438  |  |
| V/C Ratio(X)              | 0.79    | 0.69     | 0.43 | 0.59 | 0.00     | 0.75  | 0.83 | 0.76     | 0.02     | 0.73     | 0.85     | 0.12 |  |
| Avail Cap(c_a), veh/h     | 409     | 1433     | 1214 | 409  | 0        | 904   | 682  | 1075     | 911      | 341      | 1075     | 911  |  |
| HCM Platoon Ratio         | 1.00    | 1.00     | 1.00 | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |  |
| Upstream Filter(I)        | 1.00    | 1.00     | 1.00 | 1.00 | 0.00     | 1.00  | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |  |
| Uniform Delay (d), s/veł  | h 24.4  | 21.5     | 20.7 | 25.3 | 0.0      | 23.3  | 20.6 | 13.1     | 9.0      | 24.7     | 17.9     | 14.2 |  |
| Incr Delay (d2), s/veh    | 5.4     | 1.2      | 0.5  | 5.4  | 0.0      | 2.6   | 2.1  | 1.3      | 0.0      | 5.0      | 1.5      | 0.0  |  |
| Initial Q Delay(d3),s/veh |         | 0.0      | 0.0  | 0.0  | 0.0      | 0.0   | 0.0  | 0.0      | 0.0      | 0.0      | 0.0      | 0.0  |  |
| %ile BackOfQ(50%),vel     |         | 1.9      | 0.9  | 0.3  | 0.0      | 1.5   | 2.9  | 4.9      | 0.1      | 0.7      | 4.5      | 0.4  |  |
| Unsig. Movement Delay     |         |          |      |      |          |       |      |          |          |          |          |      |  |
| LnGrp Delay(d),s/veh      | 29.8    | 22.7     | 21.2 | 30.8 | 0.0      | 25.9  | 22.8 | 14.3     | 9.0      | 29.7     | 19.4     | 14.2 |  |
| LnGrp LOS                 | С       | С        | С    | С    | A        | С     | С    | В        | Α        | С        | В        | В    |  |
| Approach Vol, veh/h       |         | 343      |      |      | 141      |       |      | 868      |          |          | 547      |      |  |
| Approach Delay, s/veh     |         | 23.9     |      |      | 26.6     |       |      | 16.8     |          |          | 19.9     |      |  |
| Approach LOS              |         | С        |      |      | С        |       |      | В        |          |          | В        |      |  |
| Timer - Assigned Phs      | 1       | 2        | 3    | 4    | 5        | 6     | 7    | 8        |          |          |          |      |  |
| Phs Duration (G+Y+Rc)     | ), s5.7 | 12.5     | 14.5 | 19.5 | 8.2      | 10.0  | 7.3  | 26.7     |          |          |          |      |  |
| Change Period (Y+Rc),     |         | 5.4      | 5.1  | 5.1  | 5.4      | * 5.4 | 5.1  | 5.1      |          |          |          |      |  |
| Max Green Setting (Gm     |         | 40.0     | 20.0 | 30.0 | 12.0     | * 26  | 10.0 | 30.0     |          |          |          |      |  |
| Max Q Clear Time (g_c     |         | 6.7      | 9.5  | 13.6 | 4.2      | 5.3   | 3.6  | 16.1     |          |          |          |      |  |
| Green Ext Time (p_c), s   |         | 0.3      | 0.1  | 0.8  | 0.0      | 0.2   | 0.0  | 1.1      |          |          |          |      |  |
| Intersection Summary      |         |          |      |      |          |       |      |          |          |          |          |      |  |
| HCM 6th Ctrl Delay        |         |          | 19.7 |      |          |       |      |          |          |          |          |      |  |
| HCM 6th LOS               |         |          | В    |      |          |       |      |          |          |          |          |      |  |
|                           |         |          |      |      |          |       |      |          |          |          |          |      |  |

| Intersection             |            |             |          |            |            |          |          |           |        |        |         |          |             |
|--------------------------|------------|-------------|----------|------------|------------|----------|----------|-----------|--------|--------|---------|----------|-------------|
| Int Delay, s/veh         | 24.7       |             |          |            |            |          |          |           |        |        |         |          |             |
| Movement                 | EBL        | EBT         | EBR      | WBL        | WBT        | WBR      | NBL      | NBT       | NBR    | SBL    | SBT     | SBR      |             |
| Lane Configurations      | LDL        | 4           | LDIN     | VVDL       | 4          | WDIN     | <u> </u> | <u> </u>  | 7      | JDL    | 4       | JDIN     |             |
| Traffic Vol, veh/h       | 10         | 10          | 20       | 71         | 10         | 20       | 20       | 709       | 122    | 30     | 715     | 30       |             |
| Future Vol, veh/h        | 10         | 10          | 20       | 71         | 10         | 20       | 20       | 709       | 122    | 30     | 715     | 30       |             |
| Conflicting Peds, #/hr   | 0          | 0           | 0        | 0          | 0          | 0        | 0        | 0         | 0      | 0      | 0       | 0        |             |
| Sign Control             | Stop       | Stop        | Stop     | Stop       | Stop       | Stop     | Free     | Free      | Free   | Free   | Free    | Free     |             |
| RT Channelized           | - Jiop     | -<br>-      | None     | -<br>-     | -<br>-     | None     | -        | -         | None   | -      | -       | None     |             |
| Storage Length           | _          | _           | -        | _          | _          | -        | 50       | _         | 270    | _      | _       | -        |             |
| Veh in Median Storage    | . # -      | 0           | _        | _          | 0          | _        | -        | 0         | -      | _      | 0       | _        |             |
| Grade, %                 | -          | 0           | -        | _          | 0          | _        | _        | 0         | _      |        | 0       | _        |             |
| Peak Hour Factor         | 92         | 92          | 92       | 92         | 92         | 92       | 92       | 92        | 92     | 92     | 92      | 92       |             |
| Heavy Vehicles, %        | 2          | 2           | 2        | 2          | 2          | 2        | 2        | 2         | 2      | 2      | 2       | 2        |             |
| Mvmt Flow                | 11         | 11          | 22       | 77         | 11         | 22       | 22       | 771       | 133    | 33     | 777     | 33       |             |
|                          |            |             |          |            |            |          |          |           |        |        |         |          |             |
| Major/Minor              | Minor      |             |          | Minor1     |            |          | Major1   |           |        | Majora |         |          |             |
|                          | Minor2     | 1000        |          | Minor1     | 1/01       |          | Major1   | 0         |        | Major2 | 0       | 0        |             |
| Conflicting Flow All     | 1758       | 1808<br>860 | 794      | 1691       | 1691       | 771      | 810      | 0         | 0      | 904    | 0       | 0        |             |
| Stage 1                  | 860<br>898 | 948         | -        | 815<br>876 | 815<br>876 | -        | -        | -         | -      | -      | -       | -        |             |
| Stage 2<br>Critical Hdwy | 7.12       | 6.52        | 6.22     | 7.12       | 6.52       | 6.22     | 4.12     | -         | -      | 4.12   | -       | -        |             |
| Critical Hdwy Stg 1      | 6.12       | 5.52        | 0.22     | 6.12       | 5.52       | 0.22     | 4.12     | -         | -      | 4.12   | -       | -        |             |
| Critical Hdwy Stg 2      | 6.12       | 5.52        | -        | 6.12       | 5.52       | -        | -        |           | -      | -      | -       | -        |             |
| Follow-up Hdwy           | 3.518      | 4.018       | 3.318    | 3.518      | 4.018      | 3.318    | 2.218    | -         | -      | 2.218  | -       | -        |             |
| Pot Cap-1 Maneuver       | 5.516      | 79          | 388      | ~ 74       | 93         | 400      | 816      |           | -      | 752    | -       |          |             |
| Stage 1                  | 351        | 373         | -        | 371        | 391        | 400      | 010      | _         | _      | 732    | _       | _        |             |
| Stage 2                  | 334        | 339         | _        | 344        | 367        |          |          | _         | _      | _      | _       | _        |             |
| Platoon blocked, %       | 337        | 337         |          | JTT        | 307        |          |          | _         | _      |        | _       | _        |             |
| Mov Cap-1 Maneuver       | 52         | 71          | 388      | ~ 57       | 83         | 400      | 816      | _         | -      | 752    | -       | -        |             |
| Mov Cap-2 Maneuver       | 52         | 71          | -        | ~ 57       | 83         | - 100    |          | _         | _      | - 102  | _       | _        |             |
| Stage 1                  | 342        | 343         | -        | 361        | 380        | -        | -        | -         | -      | -      | -       | -        |             |
| Stage 2                  | 299        | 330         | -        | 289        | 338        | -        | -        | -         | -      | -      | -       | -        |             |
| g · <b>-</b>             |            |             |          |            | 200        |          |          |           |        |        |         |          |             |
| Annroach                 | ED         |             |          | MD         |            |          | ND       |           |        | CD     |         |          |             |
| Approach                 | EB         |             |          | WB         |            |          | NB       |           |        | SB     |         |          |             |
| HCM Control Delay, s     | 62.5       |             | \$       | 403.1      |            |          | 0.2      |           |        | 0.4    |         |          |             |
| HCM LOS                  | F          |             |          | F          |            |          |          |           |        |        |         |          |             |
|                          |            |             |          |            |            |          |          |           |        |        |         |          |             |
| Minor Lane/Major Mvm     | nt         | NBL         | NBT      | NBR        | EBLn1V     | VBLn1    | SBL      | SBT       | SBR    |        |         |          |             |
| Capacity (veh/h)         |            | 816         | -        | -          | 104        | 71       | 752      | -         | -      |        |         |          |             |
| HCM Lane V/C Ratio       |            | 0.027       | -        | -          |            | 1.546    | 0.043    | -         | -      |        |         |          |             |
| HCM Control Delay (s)    |            | 9.5         | -        | -          | 62.5\$     | 403.1    | 10       | 0         | -      |        |         |          |             |
| HCM Lane LOS             |            | Α           | -        | -          | F          | F        | В        | Α         | -      |        |         |          |             |
| HCM 95th %tile Q(veh)    | )          | 0.1         | -        | -          | 1.8        | 9.3      | 0.1      | -         | -      |        |         |          |             |
| Notes                    |            |             |          |            |            |          |          |           |        |        |         |          |             |
| ~: Volume exceeds cap    | nacity     | \$: De      | elav evo | ceeds 3    | 00s        | +. Com   | putation | Not D     | efined | *· ΔII | maiory  | /olume i | in platoon  |
| . Volume exceeds ca      | pacity     | ψ. D        | hay che  | ocus 3     | 003        | i. Cuili | pulation | ו ואטנ טי | ciiicu | . 📶    | major ( | olume I  | ii piatooii |

|                              | ۶    | <b>→</b> | *    | •    | <b>←</b> | •    | 1    | <b>†</b> | ~    | <b>/</b> | ţ    | 4    |
|------------------------------|------|----------|------|------|----------|------|------|----------|------|----------|------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL      | SBT  | SBR  |
| Lane Configurations          |      | 4        |      |      | र्स      | 7    | ሻ    | <b>^</b> | 7    | ሻ        |      | 7    |
| Traffic Volume (veh/h)       | 10   | 10       | 10   | 159  | 10       | 128  | 30   | 694      | 176  | 95       | 651  | 10   |
| Future Volume (veh/h)        | 10   | 10       | 10   | 159  | 10       | 128  | 30   | 694      | 176  | 95       | 651  | 10   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0        | 0    | 0    |
| Ped-Bike Adj(A_pbT)          | 0.99 |          | 0.99 | 0.99 |          | 0.99 | 1.00 |          | 0.99 | 1.00     |      | 0.99 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00 | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No       |      |          | No   |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870     | 1870 | 1870 |
| Adj Flow Rate, veh/h         | 11   | 11       | 2    | 173  | 11       | 41   | 33   | 754      | 118  | 103      | 708  | 6    |
| Peak Hour Factor             | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92     | 0.92 | 0.92 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    | 2        | 2    | 2    |
| Cap, veh/h                   | 135  | 109      | 13   | 363  | 15       | 317  | 52   | 837      | 705  | 132      | 922  | 777  |
| Arrive On Green              | 0.20 | 0.20     | 0.20 | 0.20 | 0.20     | 0.20 | 0.03 | 0.45     | 0.45 | 0.07     | 0.49 | 0.49 |
| Sat Flow, veh/h              | 186  | 539      | 66   | 1151 | 73       | 1565 | 1781 | 1870     | 1576 | 1781     | 1870 | 1577 |
| Grp Volume(v), veh/h         | 24   | 0        | 0    | 184  | 0        | 41   | 33   | 754      | 118  | 103      | 708  | 6    |
| Grp Sat Flow(s), veh/h/ln    | 791  | 0        | 0    | 1224 | 0        | 1565 | 1781 | 1870     | 1576 | 1781     | 1870 | 1577 |
| Q Serve(g_s), s              | 0.1  | 0.0      | 0.0  | 0.0  | 0.0      | 1.2  | 1.0  | 20.0     | 2.4  | 3.1      | 16.6 | 0.1  |
| Cycle Q Clear(g_c), s        | 8.2  | 0.0      | 0.0  | 8.1  | 0.0      | 1.2  | 1.0  | 20.0     | 2.4  | 3.1      | 16.6 | 0.1  |
| Prop In Lane                 | 0.46 |          | 0.08 | 0.94 |          | 1.00 | 1.00 |          | 1.00 | 1.00     |      | 1.00 |
| Lane Grp Cap(c), veh/h       | 258  | 0        | 0    | 378  | 0        | 317  | 52   | 837      | 705  | 132      | 922  | 777  |
| V/C Ratio(X)                 | 0.09 | 0.00     | 0.00 | 0.49 | 0.00     | 0.13 | 0.64 | 0.90     | 0.17 | 0.78     | 0.77 | 0.01 |
| Avail Cap(c_a), veh/h        | 290  | 0        | 0    | 749  | 0        | 729  | 398  | 1045     | 880  | 398      | 1045 | 881  |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00 | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00 | 1.00 |
| Uniform Delay (d), s/veh     | 17.6 | 0.0      | 0.0  | 20.3 | 0.0      | 17.5 | 25.8 | 13.7     | 8.9  | 24.4     | 11.1 | 6.9  |
| Incr Delay (d2), s/veh       | 0.1  | 0.0      | 0.0  | 0.4  | 0.0      | 0.1  | 4.8  | 8.1      | 0.0  | 3.7      | 2.6  | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.2  | 0.0      | 0.0  | 2.1  | 0.0      | 0.4  | 0.5  | 8.3      | 0.7  | 1.3      | 5.8  | 0.0  |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |          |      |          |      |      |
| LnGrp Delay(d),s/veh         | 17.7 | 0.0      | 0.0  | 20.7 | 0.0      | 17.6 | 30.6 | 21.8     | 8.9  | 28.1     | 13.7 | 6.9  |
| LnGrp LOS                    | В    | Α        | Α    | С    | Α        | В    | С    | С        | Α    | С        | В    | Α    |
| Approach Vol, veh/h          |      | 24       |      |      | 225      |      |      | 905      |      |          | 817  |      |
| Approach Delay, s/veh        |      | 17.7     |      |      | 20.1     |      |      | 20.4     |      |          | 15.4 |      |
| Approach LOS                 |      | В        |      |      | С        |      |      | С        |      |          | В    |      |
| Timer - Assigned Phs         |      | 2        | 3    | 4    |          | 6    | 7    | 8        |      |          |      |      |
| Phs Duration (G+Y+Rc), s     |      | 15.5     | 6.7  | 31.6 |          | 15.5 | 9.1  | 29.1     |      |          |      |      |
| Change Period (Y+Rc), s      |      | 4.6      | 5.1  | 5.1  |          | 4.6  | 5.1  | 5.1      |      |          |      |      |
| Max Green Setting (Gmax), s  |      |          |      |      |          | 25.0 |      |          |      |          |      |      |
|                              |      | 12.0     | 12.0 | 30.0 |          |      | 12.0 | 30.0     |      |          |      |      |
| Max Q Clear Time (g_c+l1), s |      | 10.2     | 3.0  | 18.6 |          | 10.1 | 5.1  | 22.0     |      |          |      |      |
| Green Ext Time (p_c), s      |      | 0.0      | 0.0  | 1.9  |          | 0.7  | 0.0  | 1.9      |      |          |      |      |
| Intersection Summary         |      |          |      |      |          |      |      |          |      |          |      |      |
| HCM 6th Ctrl Delay           |      |          | 18.3 |      |          |      |      |          |      |          |      |      |
| HCM 6th LOS                  |      |          | В    |      |          |      |      |          |      |          |      |      |
| Notos                        |      |          |      |      |          |      |      |          |      |          |      |      |

## 9: Pocket Canyon Hwy/Front St & Mirabel Rd

| -                      |        |            |          |      |           |         |       |
|------------------------|--------|------------|----------|------|-----------|---------|-------|
| Intersection           |        |            |          |      |           |         |       |
| Int Delay, s/veh       | 5.4    |            |          |      |           |         |       |
|                        |        | <b>FDT</b> | WDT      | WDD  | CDI       | CDD     |       |
| Movement               | EBL    | EBT        | WBT      | WBR  | SBL       | SBR     |       |
| Lane Configurations    | 20     | <b>4</b>   | 100      | 422  | 272       | 7       |       |
| Traffic Vol, veh/h     | 32     | 185        | 199      | 423  | 273       | 50      |       |
| Future Vol, veh/h      | 32     | 185        | 199      | 423  | 273       | 50      |       |
| Conflicting Peds, #/hr | 0      | 0          | 0        | 0    | 0         | 0       |       |
| Sign Control           | Free   | Free       | Free     | Free | Stop      | Stop    |       |
| RT Channelized         | -      | None       | -        |      | -         | None    |       |
| Storage Length         | - "    | -          | -        | 150  | 90        | 0       |       |
| Veh in Median Storage  |        | 0          | 0        | -    | 0         | -       |       |
| Grade, %               | -      | 0          | 0        | -    | 0         | -       |       |
| Peak Hour Factor       | 92     | 92         | 92       | 92   | 92        | 92      |       |
| Heavy Vehicles, %      | 2      | 2          | 2        | 2    | 2         | 2       |       |
| Mvmt Flow              | 35     | 201        | 216      | 460  | 297       | 54      |       |
|                        |        |            |          |      |           |         |       |
| Major/Minor            | Major1 | Λ          | Major2   |      | Minor2    |         |       |
| Conflicting Flow All   | 216    | 0          | <u> </u> | 0    | 487       | 216     |       |
| Stage 1                | 210    | -          | _        | -    | 216       | 210     |       |
| Stage 2                |        | _          |          | -    | 271       | -       |       |
| Critical Hdwy          | 4.12   | -          | -        | -    | 6.42      | 6.22    |       |
| Critical Hdwy Stg 1    | 4.12   | -          | -        | -    | 5.42      | 0.22    |       |
| Critical Hdwy Stg 2    | -      | -          | -        |      | 5.42      | -       |       |
|                        | 2.218  | -          | -        | -    | 3.518     |         |       |
| Follow-up Hdwy         |        | -          | -        | -    |           |         |       |
| Pot Cap-1 Maneuver     | 1354   | -          | -        | -    | 540       | 824     |       |
| Stage 1                | -      | -          | -        | -    | 820       | -       |       |
| Stage 2                | -      | -          | -        | -    | 775       | -       |       |
| Platoon blocked, %     |        | -          | -        | -    | =0.       |         |       |
| Mov Cap-1 Maneuver     | 1354   | -          | -        | -    | 524       | 824     |       |
| Mov Cap-2 Maneuver     | -      | -          | -        | -    | 524       | -       |       |
| Stage 1                | -      | -          | -        | -    | 796       | -       |       |
| Stage 2                | -      | -          | -        | -    | 775       | -       |       |
|                        |        |            |          |      |           |         |       |
| Approach               | EB     |            | WB       |      | SB        |         |       |
|                        | 1.1    |            | 0        |      | 18.8      |         |       |
| HCM Control Delay, s   | 1.1    |            | U        |      | 18.8<br>C |         |       |
| HCM LOS                |        |            |          |      | U         |         |       |
|                        |        |            |          |      |           |         |       |
| Minor Lane/Major Mvn   | nt     | EBL        | EBT      | WBT  | WBR       | SBLn1 S | SBLn2 |
| Capacity (veh/h)       |        | 1354       | -        | -    | -         | 524     | 824   |
| HCM Lane V/C Ratio     |        | 0.026      | _        | _    | _         | 0.566   |       |
| HCM Control Delay (s)  | )      | 7.7        | 0        | _    | _         | 20.5    | 9.7   |
| HCM Lane LOS           |        | Α          | A        | _    |           | C C     | Α     |
| HCM 95th %tile Q(veh   | 1)     | 0.1        |          | _    | _         | 3.5     | 0.2   |
| HOW FORT FORTE CIVEN   | 7      | U. I       | -        | -    |           | 3.5     | 0.2   |

|                              | ۶     | <b>→</b> | •    | •    | <b>←</b> | •    | 4    | <b>†</b> | /    | <b>&gt;</b> | ţ     | 4    |
|------------------------------|-------|----------|------|------|----------|------|------|----------|------|-------------|-------|------|
| Movement                     | EBL   | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL         | SBT   | SBR  |
| Lane Configurations          |       | र्स      | 7    |      | 4        |      | ሻ    | ₽        |      | 7           | ₽     |      |
| Traffic Volume (veh/h)       | 20    | 21       | 88   | 150  | 41       | 11   | 136  | 438      | 70   | 10          | 363   | 30   |
| Future Volume (veh/h)        | 20    | 21       | 88   | 150  | 41       | 11   | 136  | 438      | 70   | 10          | 363   | 30   |
| Initial Q (Qb), veh          | 0     | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0           | 0     | 0    |
| Ped-Bike Adj(A_pbT)          | 0.99  |          | 0.99 | 0.99 |          | 0.99 | 1.00 |          | 0.99 | 1.00        |       | 0.99 |
| Parking Bus, Adj             | 1.00  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00  | 1.00 |
| Work Zone On Approach        |       | No       |      |      | No       |      |      | No       |      |             | No    |      |
| Adj Sat Flow, veh/h/ln       | 1870  | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870        | 1870  | 1870 |
| Adj Flow Rate, veh/h         | 22    | 23       | 23   | 163  | 45       | 10   | 148  | 476      | 74   | 11          | 395   | 30   |
| Peak Hour Factor             | 0.92  | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92 | 0.92     | 0.92 | 0.92        | 0.92  | 0.92 |
| Percent Heavy Veh, %         | 2     | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    | 2           | 2     | 2    |
| Cap, veh/h                   | 238   | 216      | 328  | 322  | 73       | 13   | 354  | 727      | 113  | 60          | 507   | 38   |
| Arrive On Green              | 0.21  | 0.21     | 0.21 | 0.21 | 0.21     | 0.21 | 0.20 | 0.46     | 0.46 | 0.03        | 0.30  | 0.30 |
| Sat Flow, veh/h              | 660   | 1030     | 1566 | 975  | 348      | 64   | 1781 | 1579     | 245  | 1781        | 1715  | 130  |
| Grp Volume(v), veh/h         | 45    | 0        | 23   | 218  | 0        | 0    | 148  | 0        | 550  | 11          | 0     | 425  |
| Grp Sat Flow(s),veh/h/ln     | 1690  | 0        | 1566 | 1387 | 0        | 0    | 1781 | 0        | 1825 | 1781        | 0     | 1846 |
| Q Serve(g_s), s              | 0.0   | 0.0      | 0.6  | 7.0  | 0.0      | 0.0  | 3.9  | 0.0      | 12.5 | 0.3         | 0.0   | 11.3 |
| Cycle Q Clear(g_c), s        | 1.0   | 0.0      | 0.6  | 8.1  | 0.0      | 0.0  | 3.9  | 0.0      | 12.5 | 0.3         | 0.0   | 11.3 |
| Prop In Lane                 | 0.49  |          | 1.00 | 0.75 | _        | 0.05 | 1.00 |          | 0.13 | 1.00        |       | 0.07 |
| Lane Grp Cap(c), veh/h       | 454   | 0        | 328  | 408  | 0        | 0    | 354  | 0        | 840  | 60          | 0     | 545  |
| V/C Ratio(X)                 | 0.10  | 0.00     | 0.07 | 0.53 | 0.00     | 0.00 | 0.42 | 0.00     | 0.65 | 0.18        | 0.00  | 0.78 |
| Avail Cap(c_a), veh/h        | 1584  | 0        | 1458 | 535  | 0        | 0    | 531  | 0        | 1699 | 1658        | 0     | 859  |
| HCM Platoon Ratio            | 1.00  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00  | 1.00 |
| Upstream Filter(I)           | 1.00  | 0.00     | 1.00 | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 1.00 | 1.00        | 0.00  | 1.00 |
| Uniform Delay (d), s/veh     | 17.2  | 0.0      | 17.0 | 20.1 | 0.0      | 0.0  | 18.8 | 0.0      | 11.2 | 25.2        | 0.0   | 17.3 |
| Incr Delay (d2), s/veh       | 0.1   | 0.0      | 0.1  | 1.1  | 0.0      | 0.0  | 0.8  | 0.0      | 0.9  | 1.4         | 0.0   | 2.5  |
| Initial Q Delay(d3),s/veh    | 0.0   | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0         | 0.0   | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.4   | 0.0      | 0.2  | 2.3  | 0.0      | 0.0  | 1.4  | 0.0      | 3.7  | 0.1         | 0.0   | 4.2  |
| Unsig. Movement Delay, s/veh |       | 0.0      | 171  | 21.2 | 0.0      | 0.0  | 10 / | 0.0      | 10.1 | 2/7         | 0.0   | 10.0 |
| LnGrp Delay(d),s/veh         | 17.3  | 0.0      | 17.1 | 21.2 | 0.0      | 0.0  | 19.6 | 0.0      | 12.1 | 26.7        | 0.0   | 19.8 |
| LnGrp LOS                    | В     | A        | В    | С    | A        | A    | В    | A        | В    | С           | A 404 | B    |
| Approach Vol, veh/h          |       | 68       |      |      | 218      |      |      | 698      |      |             | 436   |      |
| Approach Delay, s/veh        |       | 17.2     |      |      | 21.2     |      |      | 13.7     |      |             | 20.0  |      |
| Approach LOS                 |       | В        |      |      | С        |      |      | В        |      |             | В     |      |
| Timer - Assigned Phs         | 1     | 2        |      | 4    | 5        | 6    |      | 8        |      |             |       |      |
| Phs Duration (G+Y+Rc), s     | 15.4  | 21.7     |      | 16.7 | 6.5      | 30.5 |      | 16.7     |      |             |       |      |
| Change Period (Y+Rc), s      | * 4.7 | 5.8      |      | 5.4  | * 4.7    | 5.8  |      | 5.4      |      |             |       |      |
| Max Green Setting (Gmax), s  | * 16  | 25.0     |      | 16.0 | * 50     | 50.0 |      | 50.0     |      |             |       |      |
| Max Q Clear Time (g_c+l1), s | 5.9   | 13.3     |      | 10.1 | 2.3      | 14.5 |      | 3.0      |      |             |       |      |
| Green Ext Time (p_c), s      | 0.2   | 1.8      |      | 0.5  | 0.0      | 3.6  |      | 0.3      |      |             |       |      |
| Intersection Summary         |       |          |      |      |          |      |      |          |      |             |       |      |
| HCM 6th Ctrl Delay           |       |          | 16.9 |      |          |      |      |          |      |             |       |      |
| HCM 6th LOS                  |       |          | В    |      |          |      |      |          |      |             |       |      |

| Veh   591.4     EBL   EBT   EBR   WBL   WBT   WBR   NBL   NBT   NBR   SBL   SBT   SBR   SBT   SBR   SBL   SBT   SBR   SBL   SBT   SBR   SBL   SBT   SBR   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EBL   EBT   EBR   WBL   WBT   WBR   NBL   NBT   NBR   SBL   SBT   SBR   SBR |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Veh/h         52         588         10         20         495         380         10         20         20         395         20         32           veh/h         52         588         10         20         495         380         10         20         20         395         20         32           Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| veh/h         52         588         10         20         495         380         10         20         20         395         20         32           veh/h         52         588         10         20         495         380         10         20         20         395         20         32           Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| I         Free         Free         Free         Free         Free         Stop         St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| I         Free         Free         Free         Free         Free         Stop         St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ized None None None of the state          |
| an Storage, # - 0 0 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| an Storage, # - 0 0 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| - 0 0 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Factor 92 92 92 92 92 92 92 92 92 92 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| cles, % 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 57 639 11 22 538 413 11 22 22 429 22 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Major1 Major2 Minor1 Minor2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Flow All 951 0 0 650 0 0 1576 1754 645 1570 1553 745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1 759 759 - 789 789 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2 817 995 - 781 764 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| y 4.12 4.12 7.12 6.52 6.22 7.12 6.52 6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| y Stq 1 6.12 5.52 - 6.12 5.52 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| y Stg 2 6.12 5.52 - 6.12 5.52 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| dwy 2.218 2.218 3.518 4.018 3.318 3.518 4.018 3.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Maneuver 722 936 89 85 472 ~ 90 113 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1 399 415 - ~384 402 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2 370 323 - ~388 413 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| cked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Maneuver 722 936 63 76 472 ~ 62 102 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Maneuver 63 76 - ~62 102 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 367 382 - ~354 392 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2 313 315 - ~ 322 380 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| EB WB NB SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ol Delay, s 0.8 0.2 68.1 \$ 2692.6 F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Major Murat NDI n1 FDT FDD W/DL W/DT W/DD CDI n1 CDI n2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 SBLn2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| eh/h) 108 722 936 63 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V/C Ratio 0.503 0.078 0.023 7.16 0.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ol Delay (s) 68.1 10.4 8.9 - \$2899.1 14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LOS FBAFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (44. 0/) 0.0 0.0 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6tile Q(veh) 2.3 0.3 0.1 51.8 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6tile Q(veh) 2.3 0.3 0.1 51.8 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

|                                                       | ۶    | <b>→</b>  | •            | •           | <b>←</b>  | 4    | 1            | <b>†</b> | ~           | <b>/</b> | <b>†</b> | ✓    |
|-------------------------------------------------------|------|-----------|--------------|-------------|-----------|------|--------------|----------|-------------|----------|----------|------|
| Movement                                              | EBL  | EBT       | EBR          | WBL         | WBT       | WBR  | NBL          | NBT      | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations                                   |      | र्स       | 7            | ሻ           | ₽         |      | ሻ            | ₽        | 7           |          | 4        |      |
| Traffic Volume (veh/h)                                | 0    | 425       | 578          | 380         | 273       | 0    | 622          | 0        | 127         | 0        | 0        | 0    |
| Future Volume (veh/h)                                 | 0    | 425       | 578          | 380         | 273       | 0    | 622          | 0        | 127         | 0        | 0        | 0    |
| Initial Q (Qb), veh                                   | 0    | 0         | 0            | 0           | 0         | 0    | 0            | 0        | 0           | 0        | 0        | 0    |
| Ped-Bike Adj(A_pbT)                                   | 1.00 |           | 1.00         | 1.00        |           | 1.00 | 1.00         |          | 1.00        | 1.00     |          | 1.00 |
| Parking Bus, Adj                                      | 1.00 | 1.00      | 1.00         | 1.00        | 1.00      | 1.00 | 1.00         | 1.00     | 1.00        | 1.00     | 1.00     | 1.00 |
| Work Zone On Approach                                 |      | No        |              |             | No        |      |              | No       |             |          | No       |      |
| Adj Sat Flow, veh/h/ln                                | 1870 | 1870      | 1870         | 1870        | 1870      | 1870 | 1870         | 1870     | 1870        | 1870     | 1870     | 1870 |
| Adj Flow Rate, veh/h                                  | 0    | 462       | 339          | 413         | 297       | 0    | 676          | 0        | 91          | 0        | 0        | 0    |
| Peak Hour Factor                                      | 0.92 | 0.92      | 0.92         | 0.92        | 0.92      | 0.92 | 0.92         | 0.92     | 0.92        | 0.92     | 0.92     | 0.92 |
| Percent Heavy Veh, %                                  | 2    | 2         | 2            | 2           | 2         | 2    | 2            | 2        | 2           | 2        | 2        | 2    |
| Cap, veh/h                                            | 0    | 499       | 423          | 494         | 519       | 0    | 594          | 0        | 1057        | 0        | 2        | 0    |
| Arrive On Green                                       | 0.00 | 0.27      | 0.27         | 0.28        | 0.28      | 0.00 | 0.33         | 0.00     | 0.33        | 0.00     | 0.00     | 0.00 |
| Sat Flow, veh/h                                       | 0    | 1870      | 1585         | 1781        | 1870      | 0    | 1781         | 0        | 3170        | 0        | 1870     | 0    |
| Grp Volume(v), veh/h                                  | 0    | 462       | 339          | 413         | 297       | 0    | 676          | 0        | 91          | 0        | 0        | 0    |
| Grp Sat Flow(s), veh/h/ln                             | 0    | 1870      | 1585         | 1781        | 1870      | 0    | 1781         | 0        | 1585        | 0        | 1870     | 0    |
| Q Serve(g_s), s                                       | 0.0  | 18.0      | 15.0         | 16.4        | 10.2      | 0.0  | 25.0         | 0.0      | 1.5         | 0.0      | 0.0      | 0.0  |
| Cycle Q Clear(g_c), s                                 | 0.0  | 18.0      | 15.0         | 16.4        | 10.2      | 0.0  | 25.0         | 0.0      | 1.5         | 0.0      | 0.0      | 0.0  |
| Prop In Lane                                          | 0.00 | 100       | 1.00         | 1.00        | 540       | 0.00 | 1.00         | 0        | 1.00        | 0.00     | 0        | 0.00 |
| Lane Grp Cap(c), veh/h                                | 0    | 499       | 423          | 494         | 519       | 0    | 594          | 0        | 1057        | 0        | 2        | 0    |
| V/C Ratio(X)                                          | 0.00 | 0.93      | 0.80         | 0.84        | 0.57      | 0.00 | 1.14         | 0.00     | 0.09        | 0.00     | 0.00     | 0.00 |
| Avail Cap(c_a), veh/h                                 | 0    | 499       | 423          | 713         | 748       | 0    | 594          | 0        | 1057        | 0        | 200      | 0    |
| HCM Platoon Ratio                                     | 1.00 | 1.00      | 1.00         | 1.00        | 1.00      | 1.00 | 1.00         | 1.00     | 1.00        | 1.00     | 1.00     | 1.00 |
| Upstream Filter(I)                                    | 0.00 | 1.00      | 1.00         | 1.00        | 1.00      | 0.00 | 1.00         | 0.00     | 1.00        | 0.00     | 0.00     | 0.00 |
| Uniform Delay (d), s/veh                              | 0.0  | 26.8      | 25.7<br>10.6 | 25.5<br>5.9 | 23.3      | 0.0  | 25.0<br>81.4 | 0.0      | 17.2<br>0.0 | 0.0      | 0.0      | 0.0  |
| Incr Delay (d2), s/veh                                | 0.0  | 23.5      | 0.0          | 0.0         | 0.0       | 0.0  | 0.0          | 0.0      | 0.0         | 0.0      | 0.0      | 0.0  |
| Initial Q Delay(d3),s/veh<br>%ile BackOfQ(50%),veh/ln | 0.0  | 10.7      | 6.5          | 7.2         | 4.4       | 0.0  | 23.2         | 0.0      | 0.0         | 0.0      | 0.0      | 0.0  |
| Unsig. Movement Delay, s/veh                          | 0.0  | 10.7      | 0.5          | 1.2         | 4.4       | 0.0  | 23.2         | 0.0      | 0.5         | 0.0      | 0.0      | 0.0  |
| LnGrp Delay(d),s/veh                                  | 0.0  | 50.3      | 36.3         | 31.4        | 24.3      | 0.0  | 106.4        | 0.0      | 17.2        | 0.0      | 0.0      | 0.0  |
| LnGrp LOS                                             | Α    | 50.5<br>D | 30.3<br>D    | 31.4<br>C   | 24.3<br>C | Α    | F            | Α        | 17.2<br>B   | Α        | Α        | Α    |
| Approach Vol, veh/h                                   |      | 801       | U            | <u> </u>    | 710       | A    | ı            | 767      | Ь           | <u>A</u> | 0        |      |
| Approach Delay, s/veh                                 |      | 44.3      |              |             | 28.4      |      |              | 95.8     |             |          | 0.0      |      |
| Approach LOS                                          |      | 44.3<br>D |              |             | 20.4<br>C |      |              | _        |             |          | 0.0      |      |
| ••                                                    |      |           |              |             | C         |      |              | ŀ        |             |          |          |      |
| Timer - Assigned Phs                                  |      | 2         |              | 4           |           | 6    |              | 8        |             |          |          |      |
| Phs Duration (G+Y+Rc), s                              |      | 0.0       |              | 23.2        |           | 28.0 |              | 23.8     |             |          |          |      |
| Change Period (Y+Rc), s                               |      | 3.0       |              | 3.2         |           | 3.0  |              | 3.0      |             |          |          |      |
| Max Green Setting (Gmax), s                           |      | 8.0       |              | 20.0        |           | 25.0 |              | 30.0     |             |          |          |      |
| Max Q Clear Time (g_c+I1), s                          |      | 0.0       |              | 20.0        |           | 27.0 |              | 18.4     |             |          |          |      |
| Green Ext Time (p_c), s                               |      | 0.0       |              | 0.0         |           | 0.0  |              | 2.4      |             |          |          |      |
| Intersection Summary                                  |      |           |              |             |           |      |              |          |             |          |          |      |
| HCM 6th Ctrl Delay                                    |      |           | 56.7         |             |           |      |              |          |             |          |          |      |
| HCM 6th LOS                                           |      |           | Е            |             |           |      |              |          |             |          |          |      |

User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for turning movement.

| -                             | •    | •    | •    | •    | <b>1</b> | /    |
|-------------------------------|------|------|------|------|----------|------|
| Movement EB1                  | EBR  | EBR  | WBL  | WBT  | NBL      | NBR  |
| Lane Configurations 1         |      |      | ች    | 414  | ሻ        | 77   |
| Traffic Volume (veh/h) 245    |      |      | 414  | 388  | 285      | 723  |
| Future Volume (veh/h) 245     |      |      | 414  | 388  | 285      | 723  |
| Initial Q (Qb), veh           |      |      | 0    | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT)           | 1.00 | 1.00 | 1.00 |      | 1.00     | 1.00 |
| Parking Bus, Adj 1.00         |      |      | 1.00 | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach No      |      |      |      | No   | No       |      |
| Adj Sat Flow, veh/h/ln 1870   |      | 1870 | 1870 | 1870 | 1870     | 1870 |
| Adj Flow Rate, veh/h 266      |      |      | 487  | 370  | 310      | 486  |
| Peak Hour Factor 0.92         |      |      | 0.92 | 0.92 | 0.92     | 0.92 |
| Percent Heavy Veh, %          |      |      | 2    | 2    | 2        | 2    |
| Cap, veh/h 577                | 257  |      | 1044 | 548  | 461      | 1539 |
| Arrive On Green 0.16          |      |      | 0.29 | 0.29 | 0.26     | 0.26 |
| Sat Flow, veh/h 3647          | 1585 |      | 3563 | 1870 | 1781     | 2790 |
|                               |      |      |      |      |          |      |
| Grp Volume(v), veh/h 266      |      |      | 487  | 370  | 310      | 486  |
| Grp Sat Flow(s), veh/h/ln1777 |      |      | 1781 | 1870 | 1781     | 1395 |
| Q Serve(g_s), s 2.5           |      |      | 4.1  | 6.4  | 5.7      | 3.5  |
| Cycle Q Clear(g_c), s 2.5     |      |      | 4.1  | 6.4  | 5.7      | 3.5  |
| Prop In Lane                  | 1.00 |      | 1.00 | E 10 | 1.00     | 1.00 |
| Lane Grp Cap(c), veh/h 577    |      |      | 1044 | 548  | 461      | 1539 |
| V/C Ratio(X) 0.46             |      |      | 0.47 | 0.68 | 0.67     | 0.32 |
| Avail Cap(c_a), veh/h 1934    |      |      | 1454 | 764  | 679      | 1880 |
| HCM Platoon Ratio 1.00        |      |      | 1.00 | 1.00 | 1.00     | 1.00 |
| Upstream Filter(I) 1.00       | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 |
| Uniform Delay (d), s/veh 13.9 | 13.5 | 13.5 | 10.6 | 11.4 | 12.2     | 4.5  |
| Incr Delay (d2), s/veh 0.6    | 0.6  | 0.6  | 0.3  | 1.5  | 1.7      | 0.1  |
| Initial Q Delay(d3),s/veh 0.0 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%), veh/lr0.9  |      | 0.5  | 1.3  | 2.2  | 2.0      | 1.4  |
| Unsig. Movement Delay, s/ve   |      |      |      |      |          |      |
| LnGrp Delay(d),s/veh 14.5     |      |      | 11.0 | 12.9 | 13.9     | 4.6  |
| LnGrp LOS E                   |      |      | В    | В    | В        | A    |
| Approach Vol, veh/h 340       |      |      |      | 857  | 796      | ,,   |
| Approach Delay, s/veh 14.4    |      |      |      | 11.8 | 8.2      |      |
| Approach LOS E                |      |      |      | Н.6  | 0.2<br>A |      |
| **                            |      |      |      | D    | А        |      |
| Timer - Assigned Phs          | 2    | 2    |      |      |          | 6    |
| Phs Duration (G+Y+Rc), s      | 9.5  | 9.5  |      |      |          | 14.3 |
| Change Period (Y+Rc), s       | 3.5  |      |      |      |          | 3.5  |
| Max Green Setting (Gmax),     |      |      |      |      |          | 15.0 |
| Max Q Clear Time (g_c+l1),    |      |      |      |      |          | 8.4  |
| Green Ext Time (p_c), s       | 1.7  |      |      |      |          | 2.4  |
|                               | 1.7  | ,    |      |      |          | 1    |
| Intersection Summary          |      |      |      |      |          |      |
| HCM 6th Ctrl Delay            |      |      | 10.8 |      |          |      |
| HCM 6th LOS                   |      |      | В    |      |          |      |
| Notos                         |      |      |      |      |          |      |
| Notes                         |      |      |      |      |          |      |

|                                                 | ۶           | <b>→</b> | •           | •           | <b>←</b> | •    | •          | †             | <u> </u> | <b>&gt;</b> | ļ           | ✓           |  |
|-------------------------------------------------|-------------|----------|-------------|-------------|----------|------|------------|---------------|----------|-------------|-------------|-------------|--|
| Movement                                        | EBL         | EBT      | EBR         | WBL         | WBT      | WBR  | NBL        | NBT           | NBR      | SBL         | SBT         | SBR         |  |
| Lane Configurations                             | ሻ           | 4        | 7           | ሻ           | ĵ.       |      | ሻ          | <b>^</b>      | 7        | ሻ           | <b>^</b>    | 7           |  |
| Traffic Volume (veh/h)                          | 533         | 60       | 375         | 50          | 100      | 60   | 367        | 615           | 40       | 30          | 533         | 335         |  |
| Future Volume (veh/h)                           | 533         | 60       | 375         | 50          | 100      | 60   | 367        | 615           | 40       | 30          | 533         | 335         |  |
| Initial Q (Qb), veh                             | 0           | 0        | 0           | 0           | 0        | 0    | 0          | 0             | 0        | 0           | 0           | 0           |  |
| Ped-Bike Adj(A_pbT)                             | 1.00        |          | 0.99        | 1.00        |          | 1.00 | 1.00       |               | 0.99     | 1.00        |             | 0.99        |  |
| Parking Bus, Adj                                | 1.00        | 1.00     | 1.00        | 1.00        | 1.00     | 1.00 | 1.00       | 1.00          | 1.00     | 1.00        | 1.00        | 1.00        |  |
| Work Zone On Approac                            |             | No       |             |             | No       |      |            | No            |          |             | No          |             |  |
| Adj Sat Flow, veh/h/ln                          | 1870        | 1870     | 1870        | 1870        | 1870     | 1870 | 1870       | 1870          | 1870     | 1870        | 1870        | 1870        |  |
| Adj Flow Rate, veh/h                            | 625         | 0        | 201         | 54          | 109      | 38   | 399        | 668           | 17       | 33          | 579         | 84          |  |
| Peak Hour Factor                                | 0.92        | 0.92     | 0.92        | 0.92        | 0.92     | 0.92 | 0.92       | 0.92          | 0.92     | 0.92        | 0.92        | 0.92        |  |
| Percent Heavy Veh, %                            | 2           | 2        | 2           | 2           | 2        | 2    | 2          | 2             | 2        | 2           | 2           | 2           |  |
| Cap, veh/h                                      | 728         | 0        | 322         | 189         | 141      | 49   | 399        | 1373          | 608      | 47          | 684         | 303         |  |
| Arrive On Green                                 | 0.20        | 0.00     | 0.20        | 0.11        | 0.11     | 0.11 | 0.22       | 0.39          | 0.39     | 0.03        | 0.19        | 0.19        |  |
| Sat Flow, veh/h                                 | 3563        | 0        | 1573        | 1781        | 1325     | 462  | 1781       | 3554          | 1575     | 1781        | 3554        | 1573        |  |
| Grp Volume(v), veh/h                            | 625         | 0        | 201         | 54          | 0        | 147  | 399        | 668           | 17       | 33          | 579         | 84          |  |
| Grp Sat Flow(s),veh/h/lr                        |             | 0        | 1573        | 1781        | 0        | 1787 | 1781       | 1777          | 1575     | 1781        | 1777        | 1573        |  |
| Q Serve(g_s), s                                 | 12.8        | 0.0      | 8.8         | 2.1         | 0.0      | 6.1  | 17.0       | 10.8          | 0.5      | 1.4         | 11.9        | 3.5         |  |
| Cycle Q Clear(g_c), s                           | 12.8        | 0.0      | 8.8         | 2.1         | 0.0      | 6.1  | 17.0       | 10.8          | 0.5      | 1.4         | 11.9        | 3.5         |  |
| Prop In Lane                                    | 1.00        | Λ        | 1.00        | 1.00        | 0        | 0.26 | 1.00       | 1272          | 1.00     | 1.00        | /0/         | 1.00        |  |
| Lane Grp Cap(c), veh/h<br>V/C Ratio(X)          |             | 0        | 322         | 189         | 0        | 190  | 399        | 1373          | 608      | 47<br>0.70  | 684         | 303<br>0.28 |  |
| ` '                                             | 0.86<br>845 | 0.00     | 0.63        | 0.29        | 0.00     | 0.78 | 1.00       | 0.49<br>1373  | 0.03     | 235         | 0.85<br>750 | 332         |  |
| Avail Cap(c_a), veh/h<br>HCM Platoon Ratio      | 1.00        | 1.00     | 1.00        | 1.00        | 1.00     | 1.00 | 1.00       | 1.00          | 1.00     | 1.00        | 1.00        | 1.00        |  |
| Upstream Filter(I)                              | 1.00        | 0.00     | 1.00        | 1.00        | 0.00     | 1.00 | 1.00       | 1.00          | 1.00     | 1.00        | 1.00        | 1.00        |  |
| Uniform Delay (d), s/veł                        |             | 0.00     | 27.5        | 31.2        | 0.00     | 33.0 | 29.4       | 17.6          | 14.4     | 36.6        | 29.5        | 26.1        |  |
| Incr Delay (d2), s/veh                          | 7.0         | 0.0      | 1.4         | 0.3         | 0.0      | 9.2  | 44.9       | 0.1           | 0.0      | 6.8         | 7.6         | 0.2         |  |
| Initial Q Delay(d3),s/veh                       |             | 0.0      | 0.0         | 0.0         | 0.0      | 0.0  | 0.0        | 0.0           | 0.0      | 0.0         | 0.0         | 0.2         |  |
| %ile BackOfQ(50%),vel                           |             | 0.0      | 3.3         | 0.9         | 0.0      | 3.1  | 11.8       | 4.1           | 0.0      | 0.7         | 5.4         | 1.2         |  |
| Unsig. Movement Delay                           |             |          | 0.0         | 0.7         | 0.0      | J. I | 11.0       | 7.1           | 0.2      | 0.7         | J.T         | 1.2         |  |
| LnGrp Delay(d),s/veh                            | 36.1        | 0.0      | 28.9        | 31.6        | 0.0      | 42.2 | 74.3       | 17.7          | 14.4     | 43.5        | 37.1        | 26.3        |  |
| LnGrp LOS                                       | D           | A        | C           | C           | Α        | D    | 74.5<br>E  | В             | В        | D           | D           | C           |  |
| Approach Vol, veh/h                             |             | 826      |             |             | 201      |      |            | 1084          |          |             | 696         |             |  |
| Approach Delay, s/veh                           |             | 34.4     |             |             | 39.4     |      |            | 38.5          |          |             | 36.1        |             |  |
| Approach LOS                                    |             | С        |             |             | D        |      |            | D             |          |             | D           |             |  |
| •                                               |             |          | 2           | 1           |          |      | 7          |               |          |             |             |             |  |
| Timer - Assigned Phs                            |             | 20.6     | 3           | 20.0        |          | 12.1 | 7          | 8             |          |             |             |             |  |
| Phs Duration (G+Y+Rc)                           |             | 20.6     | 22.1        | 20.0        |          | 13.1 | 7.4<br>5.4 | 34.7<br>* 5.4 |          |             |             |             |  |
| Change Period (Y+Rc),<br>Max Green Setting (Gm  |             | 18.0     | 5.1<br>17.0 | 5.4<br>16.0 |          | 5.1  | 10.0       | * 24          |          |             |             |             |  |
| wax Green Selling (Gm<br>Max Q Clear Time (q_c. |             | 14.8     | 17.0        | 13.9        |          | 10.0 | 3.4        | 12.8          |          |             |             |             |  |
| Green Ext Time (p_c), s                         |             | 0.5      | 0.0         | 0.5         |          | 0.1  | 0.0        | 12.8          |          |             |             |             |  |
| •                                               |             | 0.5      | 0.0         | 0.5         |          | U. I | 0.0        | 1.7           |          |             |             |             |  |
| Intersection Summary                            |             |          | 0/.0        |             |          |      |            |               |          |             |             |             |  |
| HCM 6th Ctrl Delay                              |             |          | 36.8        |             |          |      |            |               |          |             |             |             |  |
| HCM 6th LOS                                     |             |          | D           |             |          |      |            |               |          |             |             |             |  |

Notes

User approved pedestrian interval to be less than phase max green.

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection             |       |  |
|--------------------------|-------|--|
| Intersection Delay, s/ve | h11.2 |  |
| Intersection LOS         | В     |  |

| Movement                | EBL             | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|-------------------------|-----------------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations     |                 | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h      | 50              | 10   | 192  | 10   | 10   | 10   | 132  | 152  | 10   | 10   | 122  | 60   |  |
| Future Vol, veh/h       | 50              | 10   | 192  | 10   | 10   | 10   | 132  | 152  | 10   | 10   | 122  | 60   |  |
| Peak Hour Factor        | 0.92            | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 | 0.92 |  |
| Heavy Vehicles, %       | 2               | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow               | 54              | 11   | 209  | 11   | 11   | 11   | 143  | 165  | 11   | 11   | 133  | 65   |  |
| Number of Lanes         | 0               | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                | EB              |      |      | WB   |      |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach       | WB              |      |      | EB   |      |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes          | 1               |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Le | eft SB          |      |      | NB   |      |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left  | 1               |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Ri | igh <b>t</b> NB |      |      | SB   |      |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right | 1               |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay       | 10.9            |      |      | 9    |      |      | 12.3 |      |      | 10.1 |      |      |  |
| HCM LOS                 | В               |      |      | Α    |      |      | В    |      |      | В    |      |      |  |

| Lane                   | NBLn1 | EBLn1\ | WBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 45%   | 20%    | 33%   | 5%    |
| Vol Thru, %            | 52%   | 4%     | 33%   | 64%   |
| Vol Right, %           | 3%    | 76%    | 33%   | 31%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 294   | 252    | 30    | 192   |
| LT Vol                 | 132   | 50     | 10    | 10    |
| Through Vol            | 152   | 10     | 10    | 122   |
| RT Vol                 | 10    | 192    | 10    | 60    |
| Lane Flow Rate         | 320   | 274    | 33    | 209   |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.454 | 0.375  | 0.051 | 0.291 |
| Departure Headway (Hd) | 5.111 | 4.93   | 5.609 | 5.019 |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Cap                    | 706   | 731    | 638   | 716   |
| Service Time           | 3.128 | 2.946  | 3.65  | 3.048 |
| HCM Lane V/C Ratio     | 0.453 | 0.375  | 0.052 | 0.292 |
| HCM Control Delay      | 12.3  | 10.9   | 9     | 10.1  |
| HCM Lane LOS           | В     | В      | Α     | В     |
| HCM 95th-tile Q        | 2.4   | 1.7    | 0.2   | 1.2   |

| Intersection                    |           |           |           |         |          |          |            |            |            |             |             |            |            |
|---------------------------------|-----------|-----------|-----------|---------|----------|----------|------------|------------|------------|-------------|-------------|------------|------------|
| Int Delay, s/veh                | 53.1      |           |           |         |          |          |            |            |            |             |             |            |            |
| Movement                        | EBL       | EBT       | EBR       | WBL     | WBT      | WBR      | NBL        | NBT        | NBR        | SBL         | SBT         | SBR        |            |
| Lane Configurations             | T T       | 1>        | LDIN      | VVDL    | 4        | VVDIX    | INDL       | 4          | NUN        | JUL         | 4           | JUIN       |            |
| Traffic Vol, veh/h              | 55        | 325       | 110       | 70      | 375      | 140      | 20         | 80         | 20         | 75          | 50          | 35         |            |
| Future Vol, veh/h               | 55        | 325       | 110       | 70      | 375      | 140      | 20         | 80         | 20         | 75          | 50          | 35         |            |
| Conflicting Peds, #/hr          | 0         | 0         | 0         | 0       | 0        | 0        | 0          | 0          | 0          | 0           | 0           | 0          |            |
| Sign Control                    | Free      | Free      | Free      | Free    | Free     | Free     | Stop       | Stop       | Stop       | Stop        | Stop        | Stop       |            |
| RT Channelized                  | -         | -         | None      | -       | -        | None     | -          | -          | None       | -           | -           | None       |            |
| Storage Length                  | 100       | -         | -         | -       | -        | -        | -          | -          | -          | -           | -           | -          |            |
| Veh in Median Storage           |           | 0         | -         | -       | 0        | -        | -          | 0          | -          | -           | 0           | -          |            |
| Grade, %                        | -         | 0         | -         | -       | 0        | -        | -          | 0          | -          | -           | 0           | -          |            |
| Peak Hour Factor                | 92        | 92        | 92        | 92      | 92       | 92       | 92         | 92         | 92         | 92          | 92          | 92         |            |
| Heavy Vehicles, %               | 2         | 2         | 2         | 2       | 2        | 2        | 2          | 2          | 2          | 2           | 2           | 2          |            |
| Mvmt Flow                       | 60        | 353       | 120       | 76      | 408      | 152      | 22         | 87         | 22         | 82          | 54          | 38         |            |
|                                 |           |           |           |         |          |          |            |            |            |             |             |            |            |
| Major/Minor                     | Major1    |           | ١         | Major2  |          | [        | Minor1     |            | [          | Minor2      |             |            |            |
| Conflicting Flow All            | 560       | 0         | 0         | 473     | 0        | 0        | 1215       | 1245       | 413        | 1224        | 1229        | 484        |            |
| Stage 1                         | -         | -         | -         | -       | -        | -        | 533        | 533        | -          | 636         | 636         | -          |            |
| Stage 2                         | -         | -         | -         | -       | -        | -        | 682        | 712        | -          | 588         | 593         | -          |            |
| Critical Hdwy                   | 4.12      | -         | -         | 4.12    | -        | -        | 7.12       | 6.52       | 6.22       | 7.12        | 6.52        | 6.22       |            |
| Critical Hdwy Stg 1             | -         | -         | -         | -       | -        | -        | 6.12       | 5.52       | -          | 6.12        | 5.52        | -          |            |
| Critical Hdwy Stg 2             | -         | -         | -         | -       | -        | -        | 6.12       | 5.52       | -          | 6.12        | 5.52        | -          |            |
| Follow-up Hdwy                  | 2.218     | -         | -         | 2.218   | -        | -        | 3.518      |            | 3.318      | 3.518       |             |            |            |
| Pot Cap-1 Maneuver              | 1011      | -         | -         | 1089    | -        | -        | 158        | 174        | 639        | 156         | 178         | 583        |            |
| Stage 1                         | -         | -         | -         | -       | -        | -        | 531        | 525        | -          | 466         | 472         | -          |            |
| Stage 2                         | -         | -         | -         | -       | -        | -        | 440        | 436        | -          | 495         | 493         | -          |            |
| Platoon blocked, %              | 1011      | -         | -         | 1000    | -        | -        | 0.4        | 1 17       | / 20       | 71          | 150         | F02        |            |
| Mov Cap-1 Maneuver              |           | -         | -         | 1089    | -        | -        | 94         | 147        | 639        | ~ 71        | 150         | 583        |            |
| Mov Cap-2 Maneuver              | -         | -         | -         | -       | -        | -        | 94<br>500  | 147<br>494 | -          | ~ 71<br>439 | 150<br>423  | -          |            |
| Stage 1<br>Stage 2              | -         | -         | -         | -       | -        | -        | 321        | 391        | -          | 371         | 423         | -          |            |
| Staye 2                         | -         | -         | -         | -       | -        | _        | JZI        | 371        | -          | 3/1         | 404         | _          |            |
| Approach                        | ED        |           |           | WD      |          |          | MD         |            |            | CD          |             |            |            |
| Approach                        | <u>EB</u> |           |           | WB<br>1 |          |          | NB<br>07.6 |            | φ          | SB          |             |            |            |
| HCM Control Delay, s<br>HCM LOS | ı         |           |           | ı       |          |          | 97.6<br>F  |            | <b>\$</b>  | 369.4<br>F  |             |            |            |
| ncivi LOS                       |           |           |           |         |          |          | Г          |            |            | Г           |             |            |            |
| Minor Lane/Major Mvm            | nt I      | NBLn1     | EBL       | EBT     | EBR      | WBL      | WBT        | WRD        | SBLn1      |             |             |            |            |
| Capacity (veh/h)                | It I      | 152       | 1011      | LDI     | LDK<br>- | 1089     | VVD1       | VVDK -     | 110        |             |             |            |            |
| HCM Lane V/C Ratio              |           | 0.858     | 0.059     | -       | -        | 0.07     | -          |            | 1.581      |             |             |            |            |
| HCM Control Delay (s)           |           | 97.6      | 8.8       | -       | -        | 8.6      | 0          |            | 369.4      |             |             |            |            |
| HCM Lane LOS                    |           | 97.0<br>F | Α         | -       | -        | Α        | A          | -φ<br>-    | 509.4<br>F |             |             |            |            |
| HCM 95th %tile Q(veh            | )         | 5.8       | 0.2       | _       | _        | 0.2      | -          | _          | 13         |             |             |            |            |
|                                 | ,         | 0.0       | 0.2       |         |          | 0.2      |            |            | - 10       |             |             |            |            |
| Notes                           | n o o!t   | ¢ D       | alove ser | 00d= 04 | 200      | · · Carr | nute!:     | o Nict D   | ofin = =   | * ^!        | l ma o! = = | ا د جدیاوی | in plateer |
| ~: Volume exceeds ca            | pacity    | \$: De    | elay exc  | eeds 30 | JUS      | +: Com   | putation   | n Not D    | etined     | :: Al       | major v     | volume     | in platoon |

|                                                      | ۶          | <b>→</b> | •        | •         | <b>←</b> | •        | 1          | <b>†</b> | ~        | <b>/</b>   | ţ           |           |
|------------------------------------------------------|------------|----------|----------|-----------|----------|----------|------------|----------|----------|------------|-------------|-----------|
| Movement                                             | EBL        | EBT      | EBR      | WBL       | WBT      | WBR      | NBL        | NBT      | NBR      | SBL        | SBT         | SBR       |
| Lane Configurations                                  |            | 4        |          |           | 4        |          |            | 4        |          | 7          | ĵ∍          |           |
| Traffic Volume (veh/h)                               | 31         | 131      | 50       | 20        | 185      | 390      | 40         | 635      | 20       | 260        | 286         | 34        |
| Future Volume (veh/h)                                | 31         | 131      | 50       | 20        | 185      | 390      | 40         | 635      | 20       | 260        | 286         | 34        |
| Initial Q (Qb), veh                                  | 0          | 0        | 0        | 0         | 0        | 0        | 0          | 0        | 0        | 0          | 0           | 0         |
| Ped-Bike Adj(A_pbT)                                  | 1.00       |          | 0.99     | 1.00      |          | 0.99     | 1.00       |          | 1.00     | 1.00       |             | 0.99      |
| Parking Bus, Adj                                     | 1.00       | 1.00     | 1.00     | 1.00      | 1.00     | 1.00     | 1.00       | 1.00     | 1.00     | 1.00       | 1.00        | 1.00      |
| Work Zone On Approach                                |            | No       |          |           | No       |          |            | No       |          |            | No          |           |
| Adj Sat Flow, veh/h/ln                               | 1870       | 1870     | 1870     | 1870      | 1870     | 1870     | 1870       | 1870     | 1870     | 1870       | 1870        | 1870      |
| Adj Flow Rate, veh/h                                 | 34         | 142      | 39       | 22        | 201      | 331      | 43         | 690      | 20       | 283        | 311         | 30        |
| Peak Hour Factor                                     | 0.92       | 0.92     | 0.92     | 0.92      | 0.92     | 0.92     | 0.92       | 0.92     | 0.92     | 0.92       | 0.92        | 0.92      |
| Percent Heavy Veh, %                                 | 2          | 2        | 2        | 2         | 2        | 2        | 2          | 2        | 2        | 2          | 2           | 2         |
| Cap, veh/h                                           | 104        | 391      | 97       | 61        | 227      | 354      | 27         | 433      | 13       | 327        | 308         | 30        |
| Arrive On Green                                      | 0.36       | 0.36     | 0.36     | 0.36      | 0.36     | 0.36     | 0.25       | 0.25     | 0.25     | 0.18       | 0.18        | 0.18      |
| Sat Flow, veh/h                                      | 135        | 1098     | 273      | 32        | 639      | 995      | 106        | 1701     | 49       | 1781       | 1677        | 162       |
| Grp Volume(v), veh/h                                 | 215        | 0        | 0        | 554       | 0        | 0        | 753        | 0        | 0        | 283        | 0           | 341       |
| Grp Sat Flow(s), veh/h/ln                            | 1507       | 0        | 0        | 1665      | 0        | 0        | 1856       | 0        | 0        | 1781       | 0           | 1839      |
| Q Serve(g_s), s                                      | 0.0        | 0.0      | 0.0      | 10.2      | 0.0      | 0.0      | 19.0       | 0.0      | 0.0      | 11.5       | 0.0         | 13.7      |
| Cycle Q Clear(g_c), s                                | 6.5        | 0.0      | 0.0      | 23.9      | 0.0      | 0.0      | 19.0       | 0.0      | 0.0      | 11.5       | 0.0         | 13.7      |
| Prop In Lane                                         | 0.16       |          | 0.18     | 0.04      | _        | 0.60     | 0.06       | _        | 0.03     | 1.00       | _           | 0.09      |
| Lane Grp Cap(c), veh/h                               | 592        | 0        | 0        | 642       | 0        | 0        | 472        | 0        | 0        | 327        | 0           | 337       |
| V/C Ratio(X)                                         | 0.36       | 0.00     | 0.00     | 0.86      | 0.00     | 0.00     | 1.59       | 0.00     | 0.00     | 0.87       | 0.00        | 1.01      |
| Avail Cap(c_a), veh/h                                | 592        | 0        | 0        | 690       | 0        | 0        | 472        | 0        | 0        | 327        | 0           | 337       |
| HCM Platoon Ratio                                    | 1.00       | 1.00     | 1.00     | 1.00      | 1.00     | 1.00     | 1.00       | 1.00     | 1.00     | 1.00       | 1.00        | 1.00      |
| Upstream Filter(I)                                   | 1.00       | 0.00     | 0.00     | 1.00      | 0.00     | 0.00     | 1.00       | 0.00     | 0.00     | 1.00       | 0.00        | 1.00      |
| Uniform Delay (d), s/veh                             | 17.6       | 0.0      | 0.0      | 23.2      | 0.0      | 0.0      | 27.8       | 0.0      | 0.0      | 29.6       | 0.0         | 30.5      |
| Incr Delay (d2), s/veh                               | 0.1        | 0.0      | 0.0      | 9.7       | 0.0      | 0.0      | 277.2      | 0.0      | 0.0      | 20.1       | 0.0         | 51.7      |
| Initial Q Delay(d3),s/veh                            | 0.0<br>2.5 | 0.0      | 0.0      | 0.0       | 0.0      | 0.0      | 0.0        | 0.0      | 0.0      | 0.0<br>6.5 | 0.0         | 0.0       |
| %ile BackOfQ(50%),veh/ln                             |            | 0.0      | 0.0      | 10.0      | 0.0      | 0.0      | 44.5       | 0.0      | 0.0      | 0.0        | 0.0         | 10.6      |
| Unsig. Movement Delay, s/veh<br>LnGrp Delay(d),s/veh | 17.7       | 0.0      | 0.0      | 32.8      | 0.0      | 0.0      | 305.0      | 0.0      | 0.0      | 49.7       | 0.0         | 82.2      |
| LnGrp LOS                                            | 17.7<br>B  | 0.0<br>A | 0.0<br>A | 32.0<br>C | 0.0<br>A | 0.0<br>A | 505.0<br>F | 0.0<br>A | 0.0<br>A | 49.7<br>D  | 0.0<br>A    | 62.2<br>F |
| -                                                    | ь          |          | A        | <u> </u>  | 554      | A        | Г          | 753      | A        | D          |             | Г         |
| Approach Vol, veh/h                                  |            | 215      |          |           |          |          |            |          |          |            | 624<br>67.4 |           |
| Approach Delay, s/veh Approach LOS                   |            | 17.7     |          |           | 32.8     |          |            | 305.0    |          |            |             |           |
| Approacti LOS                                        |            | В        |          |           | С        |          |            | F        |          |            | Е           |           |
| Timer - Assigned Phs                                 |            | 2        |          | 4         |          | 6        |            | 8        |          |            |             |           |
| Phs Duration (G+Y+Rc), s                             |            | 23.6     |          | 32.0      |          | 19.1     |            | 32.0     |          |            |             |           |
| Change Period (Y+Rc), s                              |            | 4.6      |          | * 5.4     |          | 5.4      |            | 5.4      |          |            |             |           |
| Max Green Setting (Gmax), s                          |            | 19.0     |          | * 24      |          | 13.7     |            | 28.7     |          |            |             |           |
| Max Q Clear Time (g_c+I1), s                         |            | 21.0     |          | 8.5       |          | 15.7     |            | 25.9     |          |            |             |           |
| Green Ext Time (p_c), s                              |            | 0.0      |          | 0.4       |          | 0.0      |            | 0.5      |          |            |             |           |
| Intersection Summary                                 |            |          |          |           |          |          |            |          |          |            |             |           |
| HCM 6th Ctrl Delay                                   |            |          | 136.9    |           |          |          |            |          |          |            |             |           |
| HCM 6th LOS                                          |            |          | F        |           |          |          |            |          |          |            |             |           |

User approved pedestrian interval to be less than phase max green.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

|                            | €         | •    | Ť         |           | -         | ţ        |
|----------------------------|-----------|------|-----------|-----------|-----------|----------|
| Movement \                 | WBL       | WBR  | NBT       | NBR       | SBL       | SBT      |
| Lane Configurations        | ሻ         | 7    | <b>†</b>  | 7         | ሻ         | <b>↑</b> |
| Traffic Volume (veh/h)     | 333       | 22   | 535       | 682       | 22        | 250      |
| Future Volume (veh/h)      | 333       | 22   | 535       | 682       | 22        | 250      |
| Initial Q (Qb), veh        | 0         | 0    | 0         | 0         | 0         | 0        |
| Ped-Bike Adj(A_pbT)        | 1.00      | 1.00 |           | 1.00      | 1.00      |          |
| Parking Bus, Adj           | 1.00      | 1.00 | 1.00      | 1.00      | 1.00      | 1.00     |
| Work Zone On Approach      | n No      |      | No        |           |           | No       |
| Adj Sat Flow, veh/h/ln 1   | 1870      | 1870 | 1870      | 1870      | 1870      | 1870     |
| Adj Flow Rate, veh/h       | 362       | 6    | 582       | 741       | 24        | 272      |
| Peak Hour Factor           | 0.92      | 0.92 | 0.92      | 0.92      | 0.92      | 0.92     |
| Percent Heavy Veh, %       | 2         | 2    | 2         | 2         | 2         | 2        |
| Cap, veh/h                 | 410       | 365  | 893       | 757       | 39        | 1118     |
| Arrive On Green            | 0.23      | 0.23 | 0.48      | 0.48      | 0.02      | 0.60     |
| Sat Flow, veh/h 1          | 1781      | 1585 | 1870      | 1585      | 1781      | 1870     |
| Grp Volume(v), veh/h       | 362       | 6    | 582       | 741       | 24        | 272      |
| Grp Sat Flow(s), veh/h/ln1 | 1781      | 1585 | 1870      | 1585      | 1781      | 1870     |
| •                          | 12.3      | 0.2  | 14.8      | 28.8      | 0.8       | 4.3      |
|                            | 12.3      | 0.2  | 14.8      | 28.8      | 0.8       | 4.3      |
| ) \ <u>\</u>               | 1.00      | 1.00 |           | 1.00      | 1.00      |          |
| Lane Grp Cap(c), veh/h     |           | 365  | 893       | 757       | 39        | 1118     |
|                            | 0.88      | 0.02 | 0.65      | 0.98      | 0.62      | 0.24     |
| Avail Cap(c_a), veh/h      | 850       | 757  | 893       | 757       | 340       | 1118     |
| $\cdot$                    | 1.00      | 1.00 | 1.00      | 1.00      | 1.00      | 1.00     |
|                            | 1.00      | 1.00 | 1.00      | 1.00      | 1.00      | 1.00     |
| Uniform Delay (d), s/veh   |           | 18.7 | 12.5      | 16.1      | 30.5      | 5.9      |
| Incr Delay (d2), s/veh     | 2.5       | 0.0  | 1.3       | 27.4      | 5.8       | 0.0      |
| Initial Q Delay(d3),s/veh  |           | 0.0  | 0.0       | 0.0       | 0.0       | 0.0      |
| %ile BackOfQ(50%),veh/     |           | 0.0  | 5.2       | 13.8      | 0.4       | 1.2      |
| Unsig. Movement Delay,     |           |      | J.Z       | 13.0      | 0.4       | 1.2      |
|                            | 25.9      | 18.7 | 13.8      | 43.6      | 36.3      | 6.0      |
| LnGrp LOS                  | 23.7<br>C | В    | 13.0<br>B | 43.0<br>D | 50.5<br>D | Α        |
|                            |           | ь    |           | D         | D         |          |
| Approach Vol, veh/h        | 368       |      | 1323      |           |           | 296      |
|                            | 25.8      |      | 30.5      |           |           | 8.4      |
| Approach LOS               | С         |      | С         |           |           | Α        |
| Timer - Assigned Phs       | 1         | 2    |           | 4         |           | 6        |
| Phs Duration (G+Y+Rc),     |           | 36.2 |           | 19.1      |           | 43.8     |
| Change Period (Y+Rc), s    | 6.2       | 6.2  |           | 4.6       |           | 6.2      |
| Max Green Setting (Gma     |           | 30.0 |           | 30.0      |           | 30.0     |
| Max Q Clear Time (g_c+     | 112),8s   | 30.8 |           | 14.3      |           | 6.3      |
| Green Ext Time (p_c), s    |           | 0.0  |           | 0.2       |           | 0.4      |
| Intersection Summary       |           |      |           |           |           |          |
| HCM 6th Ctrl Delay         |           |      | 26.3      |           |           |          |
| HCM 6th LOS                |           |      | 20.3<br>C |           |           |          |
|                            |           |      | C         |           |           |          |
| Notes                      |           |      |           |           |           |          |

| Int Delay, s/veh   2.1     SBL   SBT   SBR   WBL   WBT   WBR   NBL   NBT   NBR   SBL   SBT   SBR   S |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Novement   EBL   EBT   EBR   WBL   WBT   WBR   NBL   NBT   NBR   SBL   SBT   SBR   SBT   SBR   SBT   |
| Lane Configurations         1         1         1         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         5         4         2         2         5         5         2         5         5         2         5         2         5         5         2         5         5         2         5         5         2         5         5         2         5         5         2         5         5         2         5         5         2         5         5         2         5         5         2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Traffic Vol, veh/h         20         355         5         25         425         20         5         5         20         25         10         20           Future Vol, veh/h         20         355         5         25         425         20         5         5         20         25         10         20           Conflicting Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Traffic Vol, veh/h         20         355         5         25         425         20         5         5         20         25         10         20           Future Vol, veh/h         20         355         5         25         425         20         5         5         20         25         10         20           Conflicting Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Future Vol, veh/h         20         355         5         25         425         20         5         5         20         25         10         20           Conflicting Peds, #/hr         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sign ControlFreeFreeFreeFreeFreeFreeStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStopStop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sign ControlFreeFreeFreeFreeFreeFreeFreeStopStopStopStopStopStopRT Channelized-None-None-None-None-NoneStorage Length90-9000Veh in Median Storage, #0-0-0-0-0-0-Grade, %0-0-0-0-0-0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RT Channelized         -         -         None         -         -         None         -         -         None           Storage Length         90         -         -         90         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Veh in Median Storage, #       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       - </td                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Grade, % - 0 0 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Peak Hour Factor 92 92 92 92 92 92 92 92 92 92 92 92 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mvmt Flow 22 386 5 27 462 22 5 5 22 27 11 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Major/Minor Major1 Major2 Minor1 Minor2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Conflicting Flow All 484 0 0 391 0 0 977 971 389 973 962 473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Stage 1 433 433 - 527 527 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Stage 2 544 538 - 446 435 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Critical Hdwy 4.12 4.12 7.12 6.52 6.22 7.12 6.52 6.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Critical Hdwy Stg 1 6.12 5.52 - 6.12 5.52 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Critical Hdwy Stg 2 6.12 5.52 - 6.12 5.52 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Follow-up Hdwy 2.218 2.218 3.518 4.018 3.318 3.518 4.018 3.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pot Cap-1 Maneuver 1079 1168 230 253 659 231 256 591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Stage 1 601 582 - 535 528 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Stage 2 523 522 - 591 580 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Platoon blocked, %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mov Cap-1 Maneuver 1079 1168 207 242 659 212 245 591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mov Cap-2 Maneuver 207 242 - 212 245 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Stage 1 589 570 - 524 516 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Stage 2 482 510 - 555 568 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Approach EB WB NB SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| HCM Control Delay, s 0.4 0.4 14.8 20.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| HCM LOS B C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Capacity (veh/h) 399 1079 1168 286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| HCM Lane V/C Ratio 0.082 0.02 0.023 0.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| HCM Control Delay (s) 14.8 8.4 8.2 20.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| HCM Lane LOS B A A C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| HCM 95th %tile Q(veh) 0.3 0.1 0.1 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|                              | ۶         | <b>→</b> | •         | •         | •     | •         | 4    | <b>†</b>   | /         | <b>&gt;</b> | ļ          | 4    |
|------------------------------|-----------|----------|-----------|-----------|-------|-----------|------|------------|-----------|-------------|------------|------|
| Movement                     | EBL       | EBT      | EBR       | WBL       | WBT   | WBR       | NBL  | NBT        | NBR       | SBL         | SBT        | SBR  |
| Lane Configurations          | Į.        | ĵ»       |           | ň         | f)    |           | Ţ    | <b>↑</b> } |           | *           | <b>∱</b> β |      |
| Traffic Volume (veh/h)       | 110       | 350      | 63        | 73        | 380   | 240       | 72   | 255        | 102       | 240         | 270        | 110  |
| Future Volume (veh/h)        | 110       | 350      | 63        | 73        | 380   | 240       | 72   | 255        | 102       | 240         | 270        | 110  |
| Initial Q (Qb), veh          | 0         | 0        | 0         | 0         | 0     | 0         | 0    | 0          | 0         | 0           | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00      |          | 1.00      | 1.00      |       | 1.00      | 1.00 |            | 0.98      | 1.00        |            | 0.99 |
| Parking Bus, Adj             | 1.00      | 1.00     | 1.00      | 1.00      | 1.00  | 1.00      | 1.00 | 1.00       | 1.00      | 1.00        | 1.00       | 1.00 |
| Work Zone On Approach        |           | No       |           |           | No    |           |      | No         |           |             | No         |      |
| Adj Sat Flow, veh/h/ln       | 1870      | 1870     | 1870      | 1870      | 1870  | 1870      | 1870 | 1870       | 1870      | 1870        | 1870       | 1870 |
| Adj Flow Rate, veh/h         | 120       | 380      | 64        | 79        | 413   | 244       | 78   | 277        | 71        | 261         | 293        | 81   |
| Peak Hour Factor             | 0.92      | 0.92     | 0.92      | 0.92      | 0.92  | 0.92      | 0.92 | 0.92       | 0.92      | 0.92        | 0.92       | 0.92 |
| Percent Heavy Veh, %         | 2         | 2        | 2         | 2         | 2     | 2         | 2    | 2          | 2         | 2           | 2          | 2    |
| Cap, veh/h                   | 215       | 582      | 98        | 194       | 398   | 235       | 193  | 420        | 105       | 298         | 576        | 156  |
| Arrive On Green              | 0.12      | 0.37     | 0.37      | 0.11      | 0.36  | 0.36      | 0.11 | 0.15       | 0.15      | 0.17        | 0.21       | 0.21 |
| Sat Flow, veh/h              | 1781      | 1559     | 263       | 1781      | 1100  | 650       | 1781 | 2802       | 704       | 1781        | 2755       | 747  |
| Grp Volume(v), veh/h         | 120       | 0        | 444       | 79        | 0     | 657       | 78   | 174        | 174       | 261         | 187        | 187  |
| Grp Sat Flow(s), veh/h/ln    | 1781      | 0        | 1822      | 1781      | 0     | 1750      | 1781 | 1777       | 1730      | 1781        | 1777       | 1725 |
| Q Serve(g_s), s              | 5.4       | 0.0      | 17.3      | 3.5       | 0.0   | 31.0      | 3.5  | 7.9        | 8.2       | 12.3        | 8.0        | 8.3  |
| Cycle Q Clear(g_c), s        | 5.4       | 0.0      | 17.3      | 3.5       | 0.0   | 31.0      | 3.5  | 7.9        | 8.2       | 12.3        | 8.0        | 8.3  |
| Prop In Lane                 | 1.00      | 0.0      | 0.14      | 1.00      | 0.0   | 0.37      | 1.00 | 1.7        | 0.41      | 1.00        | 0.0        | 0.43 |
| Lane Grp Cap(c), veh/h       | 215       | 0        | 680       | 194       | 0     | 632       | 193  | 266        | 259       | 298         | 372        | 361  |
| V/C Ratio(X)                 | 0.56      | 0.00     | 0.65      | 0.41      | 0.00  | 1.04      | 0.40 | 0.65       | 0.67      | 0.87        | 0.50       | 0.52 |
| Avail Cap(c_a), veh/h        | 540       | 0.00     | 680       | 540       | 0.00  | 632       | 228  | 559        | 544       | 332         | 559        | 543  |
| HCM Platoon Ratio            | 1.00      | 1.00     | 1.00      | 1.00      | 1.00  | 1.00      | 1.00 | 1.00       | 1.00      | 1.00        | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00      | 0.00     | 1.00      | 1.00      | 0.00  | 1.00      | 1.00 | 1.00       | 1.00      | 1.00        | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 35.5      | 0.00     | 22.3      | 35.7      | 0.00  | 27.4      | 35.7 | 34.4       | 34.5      | 34.8        | 30.0       | 30.1 |
| Incr Delay (d2), s/veh       | 2.2       | 0.0      | 2.2       | 1.4       | 0.0   | 46.3      | 1.4  | 2.7        | 3.0       | 20.5        | 1.1        | 1.2  |
| Initial Q Delay(d3),s/veh    | 0.0       | 0.0      | 0.0       | 0.0       | 0.0   | 0.0       | 0.0  | 0.0        | 0.0       | 0.0         | 0.0        | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 2.4       | 0.0      | 7.1       | 1.6       | 0.0   | 19.9      | 1.5  | 3.4        | 3.5       | 6.8         | 3.4        | 3.4  |
| Unsig. Movement Delay, s/veh |           | 0.0      | 7.1       | 1.0       | 0.0   | 17.7      | 1.5  | 3.4        | 3.0       | 0.0         | 3.4        | 3.4  |
|                              | 37.8      | 0.0      | 24.5      | 37.0      | 0.0   | 73.7      | 37.0 | 37.1       | 37.5      | 55.3        | 31.0       | 31.3 |
| LnGrp Delay(d),s/veh         | 37.6<br>D | 0.0<br>A | 24.5<br>C | 37.0<br>D |       | 73.7<br>F |      | 37.1<br>D  | 37.5<br>D | 33.3<br>E   | 31.0<br>C  |      |
| LnGrp LOS                    | <u>U</u>  |          |           | <u>U</u>  | A 724 | <u> </u>  | D    |            | <u>U</u>  | <u>E</u>    |            | С    |
| Approach Vol, veh/h          |           | 564      |           |           | 736   |           |      | 426        |           |             | 635        |      |
| Approach Delay, s/veh        |           | 27.3     |           |           | 69.7  |           |      | 37.2       |           |             | 41.1       |      |
| Approach LOS                 |           | С        |           |           | Е     |           |      | D          |           |             | D          |      |
| Timer - Assigned Phs         | 1         | 2        | 3         | 4         | 5     | 6         | 7    | 8          |           |             |            |      |
| Phs Duration (G+Y+Rc), s     | 13.3      | 22.9     | 14.4      | 35.2      | 18.4  | 17.9      | 13.3 | 36.2       |           |             |            |      |
| Change Period (Y+Rc), s      | 4.0       | 5.0      | 4.0       | * 4.2     | 4.0   | 5.0       | 4.0  | * 4.2      |           |             |            |      |
| Max Green Setting (Gmax), s  | 11.0      | 27.0     | 26.0      | * 31      | 16.0  | 27.0      | 26.0 | * 31       |           |             |            |      |
| Max Q Clear Time (g_c+I1), s | 5.5       | 10.3     | 7.4       | 33.0      | 14.3  | 10.2      | 5.5  | 19.3       |           |             |            |      |
| Green Ext Time (p_c), s      | 0.1       | 1.9      | 0.3       | 0.0       | 0.1   | 1.6       | 0.2  | 1.9        |           |             |            |      |
| Intersection Summary         |           |          |           |           |       |           |      |            |           |             |            |      |
| HCM 6th Ctrl Delay           |           |          | 46.0      |           |       |           |      |            |           |             |            |      |
| HCM 6th LOS                  |           |          | 40.0<br>D |           |       |           |      |            |           |             |            |      |
| Notes                        |           |          | <u> </u>  |           |       |           |      |            |           |             |            |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

## ATTACHMENT C-3 CUMULATIVE (YEAR 2040) CONDITIONS OUPUTS



| ntersection              |     |
|--------------------------|-----|
| ntersection Delay, s/veh | 9.2 |
| ntersection LOS          | А   |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 50   | 20   | 210  | 20   | 20   | 20   | 110  | 30   | 20   | 20   | 30   | 30   |
| Future Vol, veh/h          | 50   | 20   | 210  | 20   | 20   | 20   | 110  | 30   | 20   | 20   | 30   | 30   |
| Peak Hour Factor           | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 53   | 21   | 221  | 21   | 21   | 21   | 116  | 32   | 21   | 21   | 32   | 32   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 9.5  |      |      | 8.2  |      |      | 9.4  |      |      | 8.4  |      |      |
| HCM LOS                    | А    |      |      | А    |      |      | Α    |      |      | А    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 69%   | 18%   | 33%   | 25%   |  |
| Vol Thru, %            | 19%   | 7%    | 33%   | 38%   |  |
| Vol Right, %           | 12%   | 75%   | 33%   | 38%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 160   | 280   | 60    | 80    |  |
| LT Vol                 | 110   | 50    | 20    | 20    |  |
| Through Vol            | 30    | 20    | 20    | 30    |  |
| RT Vol                 | 20    | 210   | 20    | 30    |  |
| Lane Flow Rate         | 168   | 295   | 63    | 84    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.229 | 0.345 | 0.083 | 0.111 |  |
| Departure Headway (Hd) | 4.887 | 4.217 | 4.748 | 4.764 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 733   | 852   | 752   | 749   |  |
| Service Time           | 2.933 | 2.249 | 2.795 | 2.816 |  |
| HCM Lane V/C Ratio     | 0.229 | 0.346 | 0.084 | 0.112 |  |
| HCM Control Delay      | 9.4   | 9.5   | 8.2   | 8.4   |  |
| HCM Lane LOS           | А     | А     | Α     | А     |  |
| HCM 95th-tile Q        | 0.9   | 1.5   | 0.3   | 0.4   |  |

|                           | ۶       | <b>→</b> | •    | •     | <b>←</b> | •     | 4    | †     | <u> </u> | <b>/</b> | Ļ    | 4    |  |
|---------------------------|---------|----------|------|-------|----------|-------|------|-------|----------|----------|------|------|--|
| Movement                  | EBL     | EBT      | EBR  | WBL   | WBT      | WBR   | NBL  | NBT   | NBR      | SBL      | SBT  | SBR  |  |
| Lane Configurations       | ሻ       | <b>†</b> |      |       | <b>†</b> | 7     | ሻ    | f)    |          | ሻ        | ĵ,   |      |  |
| Traffic Volume (veh/h)    | 90      | 520      | 0    | 0     | 540      | 140   | 20   | 40    | 40       | 160      | 0    | 40   |  |
| Future Volume (veh/h)     | 90      | 520      | 0    | 0     | 540      | 140   | 20   | 40    | 40       | 160      | 0    | 40   |  |
| Initial Q (Qb), veh       | 0       | 0        | 0    | 0     | 0        | 0     | 0    | 0     | 0        | 0        | 0    | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00    |          | 1.00 | 1.00  |          | 0.99  | 0.99 |       | 0.99     | 0.99     |      | 0.99 |  |
| Parking Bus, Adj          | 1.00    | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00  | 1.00     | 1.00     | 1.00 | 1.00 |  |
| Work Zone On Approac      |         | No       |      |       | No       |       |      | No    |          |          | No   |      |  |
|                           | 1870    | 1870     | 0    | 0     | 1870     | 1870  | 1870 | 1870  | 1870     | 1870     | 1870 | 1870 |  |
| Adj Flow Rate, veh/h      | 95      | 547      | 0    | 0     | 568      | 80    | 21   | 42    | 7        | 168      | 0    | 7    |  |
| Peak Hour Factor          | 0.95    | 0.95     | 0.95 | 0.95  | 0.95     | 0.95  | 0.95 | 0.95  | 0.95     | 0.95     | 0.95 | 0.95 |  |
| Percent Heavy Veh, %      | 2       | 2        | 0    | 0     | 2        | 2     | 2    | 2     | 2        | 2        | 2    | 2    |  |
| Cap, veh/h                | 451     | 1136     | 0    | 0     | 754      | 635   | 418  | 304   | 51       | 383      | 0    | 305  |  |
| Arrive On Green           | 0.11    | 0.61     | 0.00 | 0.00  | 0.40     | 0.40  | 0.20 | 0.20  | 0.20     | 0.20     | 0.00 | 0.20 |  |
| Sat Flow, veh/h           | 1781    | 1870     | 0    | 0     | 1870     | 1575  | 1391 | 1560  | 260      | 1341     | 0    | 1565 |  |
| Grp Volume(v), veh/h      | 95      | 547      | 0    | 0     | 568      | 80    | 21   | 0     | 49       | 168      | 0    | 7    |  |
| Grp Sat Flow(s), veh/h/lr |         | 1870     | 0    | 0     | 1870     | 1575  | 1391 | 0     | 1820     | 1341     | 0    | 1565 |  |
| Q Serve(g_s), s           | 1.2     | 7.7      | 0.0  | 0.0   | 12.4     | 1.5   | 0.6  | 0.0   | 1.1      | 5.6      | 0.0  | 0.2  |  |
| Cycle Q Clear(g_c), s     | 1.2     | 7.7      | 0.0  | 0.0   | 12.4     | 1.5   | 8.0  | 0.0   | 1.1      | 6.7      | 0.0  | 0.2  |  |
| Prop In Lane              | 1.00    |          | 0.00 | 0.00  |          | 1.00  | 1.00 |       | 0.14     | 1.00     |      | 1.00 |  |
| Lane Grp Cap(c), veh/h    |         | 1136     | 0    | 0     | 754      | 635   | 418  | 0     | 355      | 383      | 0    | 305  |  |
| V/C Ratio(X)              | 0.21    | 0.48     | 0.00 | 0.00  | 0.75     | 0.13  | 0.05 | 0.00  | 0.14     | 0.44     | 0.00 | 0.02 |  |
| Avail Cap(c_a), veh/h     | 525     | 1258     | 0    | 0     | 1651     | 1390  | 672  | 0     | 688      | 629      | 0    | 592  |  |
| HCM Platoon Ratio         | 1.00    | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00  | 1.00     | 1.00     | 1.00 | 1.00 |  |
| Upstream Filter(I)        | 1.00    | 1.00     | 0.00 | 0.00  | 1.00     | 1.00  | 1.00 | 0.00  | 1.00     | 1.00     | 0.00 | 1.00 |  |
| Uniform Delay (d), s/vel  |         | 5.2      | 0.0  | 0.0   | 12.2     | 8.9   | 15.8 | 0.0   | 15.8     | 18.6     | 0.0  | 15.5 |  |
| Incr Delay (d2), s/veh    | 0.2     | 0.3      | 0.0  | 0.0   | 1.5      | 0.1   | 0.0  | 0.0   | 0.2      | 0.8      | 0.0  | 0.0  |  |
| Initial Q Delay(d3),s/veh |         | 0.0      | 0.0  | 0.0   | 0.0      | 0.0   | 0.0  | 0.0   | 0.0      | 0.0      | 0.0  | 0.0  |  |
| %ile BackOfQ(50%),vel     |         | 2.0      | 0.0  | 0.0   | 4.6      | 0.5   | 0.2  | 0.0   | 0.4      | 1.7      | 0.0  | 0.1  |  |
| Unsig. Movement Delay     |         |          |      |       |          |       |      |       |          |          |      |      |  |
| LnGrp Delay(d),s/veh      | 7.8     | 5.5      | 0.0  | 0.0   | 13.7     | 9.0   | 15.8 | 0.0   | 16.0     | 19.4     | 0.0  | 15.5 |  |
| LnGrp LOS                 | A       | A        | Α    | А     | В        | A     | В    | A     | В        | В        | Α    | В    |  |
| Approach Vol, veh/h       |         | 642      |      |       | 648      |       |      | 70    |          |          | 175  |      |  |
| Approach Delay, s/veh     |         | 5.8      |      |       | 13.1     |       |      | 16.0  |          |          | 19.2 |      |  |
| Approach LOS              |         | Α        |      |       | В        |       |      | В     |          |          | В    |      |  |
| Timer - Assigned Phs      |         | 2        |      | 4     | 5        | 6     |      | 8     |          |          |      |      |  |
| Phs Duration (G+Y+Rc)     | , S     | 33.6     |      | 14.0  | 9.7      | 23.9  |      | 14.0  |          |          |      |      |  |
| Change Period (Y+Rc),     |         | * 4.7    |      | * 4.7 | * 4.7    | * 4.7 |      | * 4.7 |          |          |      |      |  |
| Max Green Setting (Gm     |         | * 32     |      | * 18  | * 7      | * 42  |      | * 18  |          |          |      |      |  |
| Max Q Clear Time (g_c-    | +I1), s | 9.7      |      | 8.7   | 3.2      | 14.4  |      | 3.1   |          |          |      |      |  |
| Green Ext Time (p_c), s   |         | 3.9      |      | 0.3   | 0.1      | 4.6   |      | 0.2   |          |          |      |      |  |
| Intersection Summary      |         |          |      |       |          |       |      |       |          |          |      |      |  |
| HCM 6th Ctrl Delay        |         |          | 10.9 |       |          |       |      |       |          |          |      |      |  |
| HCM 6th LOS               |         |          | В    |       |          |       |      |       |          |          |      |      |  |
|                           |         |          |      |       |          |       |      |       |          |          |      |      |  |

| •                             | <b>→</b> | •    | <b>√</b> | <b>←</b> | 4     | •    | <b>†</b> | <u> </u> | <b>\</b> | <del> </del> | <b>√</b> |
|-------------------------------|----------|------|----------|----------|-------|------|----------|----------|----------|--------------|----------|
| Movement EBL                  | EBT      | EBR  | WBL      | WBT      | WBR   | NBL  | NBT      | NBR      | SBL      | SBT          | SBR      |
| Lane Configurations           | <b></b>  | 7    | ሻ        | f)       |       | ሻ    | î,       |          |          | 4            |          |
| Traffic Volume (veh/h) 0      | 510      | 210  | 40       | 490      | 20    | 170  | 50       | 120      | 20       | 40           | 20       |
| Future Volume (veh/h) 0       | 510      | 210  | 40       | 490      | 20    | 170  | 50       | 120      | 20       | 40           | 20       |
| Initial Q (Qb), veh 0         | 0        | 0    | 0        | 0        | 0     | 0    | 0        | 0        | 0        | 0            | 0        |
| Ped-Bike Adj(A_pbT) 1.00      |          | 0.99 | 1.00     |          | 1.00  | 0.99 |          | 1.00     | 1.00     |              | 0.99     |
| Parking Bus, Adj 1.00         | 1.00     | 1.00 | 1.00     | 1.00     | 1.00  | 1.00 | 1.00     | 1.00     | 1.00     | 1.00         | 1.00     |
| Work Zone On Approach         | No       |      |          | No       |       |      | No       |          |          | No           |          |
| Adj Sat Flow, veh/h/ln 0      | 1870     | 1870 | 1870     | 1870     | 1870  | 1870 | 1870     | 1870     | 1870     | 1870         | 1870     |
| Adj Flow Rate, veh/h 0        | 537      | 163  | 42       | 516      | 19    | 179  | 53       | 27       | 21       | 42           | 4        |
| Peak Hour Factor 0.95         | 0.95     | 0.95 | 0.95     | 0.95     | 0.95  | 0.95 | 0.95     | 0.95     | 0.95     | 0.95         | 0.95     |
| Percent Heavy Veh, % 0        | 2        | 2    | 2        | 2        | 2     | 2    | 2        | 2        | 2        | 2            | 2        |
| Cap, veh/h 0                  | 708      | 596  | 412      | 1025     | 38    | 461  | 243      | 124      | 175      | 272          | 21       |
| Arrive On Green 0.00          | 0.38     | 0.38 | 0.08     | 0.57     | 0.57  | 0.21 | 0.21     | 0.21     | 0.21     | 0.21         | 0.21     |
| Sat Flow, veh/h 0             | 1870     | 1575 | 1781     | 1792     | 66    | 1346 | 1168     | 595      | 307      | 1312         | 103      |
| Grp Volume(v), veh/h 0        | 537      | 163  | 42       | 0        | 535   | 179  | 0        | 80       | 67       | 0            | 0        |
| Grp Sat Flow(s), veh/h/ln 0   | 1870     | 1575 | 1781     | 0        | 1858  | 1346 | 0        | 1763     | 1722     | 0            | 0        |
| Q Serve(g_s), s 0.0           | 10.7     | 3.1  | 0.5      | 0.0      | 7.4   | 3.5  | 0.0      | 1.6      | 0.0      | 0.0          | 0.0      |
| Cycle Q Clear(g_c), s 0.0     | 10.7     | 3.1  | 0.5      | 0.0      | 7.4   | 4.7  | 0.0      | 1.6      | 1.3      | 0.0          | 0.0      |
| Prop In Lane 0.00             |          | 1.00 | 1.00     |          | 0.04  | 1.00 |          | 0.34     | 0.31     |              | 0.06     |
| Lane Grp Cap(c), veh/h 0      | 708      | 596  | 412      | 0        | 1062  | 461  | 0        | 366      | 468      | 0            | 0        |
| V/C Ratio(X) 0.00             | 0.76     | 0.27 | 0.10     | 0.00     | 0.50  | 0.39 | 0.00     | 0.22     | 0.14     | 0.00         | 0.00     |
| Avail Cap(c_a), veh/h 0       | 1054     | 887  | 641      | 0        | 1062  | 1129 | 0        | 1242     | 513      | 0            | 0        |
| HCM Platoon Ratio 1.00        | 1.00     | 1.00 | 1.00     | 1.00     | 1.00  | 1.00 | 1.00     | 1.00     | 1.00     | 1.00         | 1.00     |
| Upstream Filter(I) 0.00       | 1.00     | 1.00 | 1.00     | 0.00     | 1.00  | 1.00 | 0.00     | 1.00     | 1.00     | 0.00         | 0.00     |
| Uniform Delay (d), s/veh 0.0  | 11.5     | 9.2  | 7.3      | 0.0      | 5.5   | 15.1 | 0.0      | 14.0     | 13.9     | 0.0          | 0.0      |
| Incr Delay (d2), s/veh 0.0    | 1.8      | 0.2  | 0.1      | 0.0      | 0.4   | 0.5  | 0.0      | 0.3      | 0.1      | 0.0          | 0.0      |
| Initial Q Delay(d3),s/veh 0.0 | 0.0      | 0.0  | 0.0      | 0.0      | 0.0   | 0.0  | 0.0      | 0.0      | 0.0      | 0.0          | 0.0      |
| %ile BackOfQ(50%),veh/ln0.0   | 3.9      | 0.9  | 0.1      | 0.0      | 1.9   | 1.4  | 0.0      | 0.6      | 0.5      | 0.0          | 0.0      |
| Unsig. Movement Delay, s/vel  |          |      |          |          |       |      |          |          |          |              |          |
| LnGrp Delay(d),s/veh 0.0      | 13.3     | 9.4  | 7.4      | 0.0      | 5.9   | 15.7 | 0.0      | 14.3     | 14.0     | 0.0          | 0.0      |
| LnGrp LOS A                   | В        | Α    | A        | A        | A     | В    | Α        | В        | В        | Α            | A        |
| Approach Vol, veh/h           | 700      |      |          | 577      |       |      | 259      |          |          | 67           |          |
| Approach Delay, s/veh         | 12.4     |      |          | 6.0      |       |      | 15.2     |          |          | 14.0         |          |
| Approach LOS                  | В        |      |          | А        |       |      | В        |          |          | В            |          |
| Timer - Assigned Phs 1        | 2        |      | 4        |          | 6     |      | 8        |          |          |              |          |
| Phs Duration (G+Y+Rc), s8.2   | 20.8     |      | 13.5     |          | 29.1  |      | 13.5     |          |          |              |          |
| Change Period (Y+Rc), \$ 4.7  | * 4.7    |      | * 4.7    |          | * 4.7 |      | * 4.7    |          |          |              |          |
| Max Green Setting (Gmax), 9   | * 24     |      | * 10     |          | * 24  |      | * 30     |          |          |              |          |
| Max Q Clear Time (g_c+l12),5s |          |      | 3.3      |          | 9.4   |      | 6.7      |          |          |              |          |
| Green Ext Time (p_c), s 0.0   | 3.3      |      | 0.1      |          | 3.2   |      | 1.0      |          |          |              |          |
| Intersection Summary          |          |      |          |          |       |      |          |          |          |              |          |
| HCM 6th Ctrl Delay            |          | 10.6 |          |          |       |      |          |          |          |              |          |
| HCM 6th LOS                   |          | В    |          |          |       |      |          |          |          |              |          |
| Notes                         |          |      |          |          |       |      |          |          |          |              |          |

| Intersection           |           |        |          |          |          |      |  |
|------------------------|-----------|--------|----------|----------|----------|------|--|
| Int Delay, s/veh       | 12.7      |        |          |          |          |      |  |
|                        |           | EDD    | ND       | NDT      | CDT      | CDD  |  |
| Movement               | EBL       | EBR    | NBL      | NBT      | SBT      | SBR  |  |
| Lane Configurations    | 100       | 7      | <u>ነ</u> | <b>†</b> | <b>^</b> | 7    |  |
| Traffic Vol, veh/h     | 180       | 40     | 40       | 190      | 860      | 400  |  |
| Future Vol, veh/h      | 180       | 40     | 40       | 190      | 860      | 400  |  |
| Conflicting Peds, #/hr | 0         | 0      | 0        | 0        | 0        | 0    |  |
| Sign Control           | Stop      | Stop   | Free     | Free     | Free     | Free |  |
| RT Channelized         | -         | Stop   | -        | None     | -        | None |  |
| Storage Length         | 0         | 90     | 70       | -        | -        | 100  |  |
| Veh in Median Storage  |           | -      | -        | 0        | 0        | -    |  |
| Grade, %               | 0         | -      | -        | 0        | 0        | -    |  |
| Peak Hour Factor       | 95        | 95     | 95       | 95       | 95       | 95   |  |
| Heavy Vehicles, %      | 2         | 2      | 2        | 2        | 2        | 2    |  |
| Mvmt Flow              | 189       | 42     | 42       | 200      | 905      | 421  |  |
|                        |           |        |          |          |          |      |  |
| Major/Minor            | Minor2    |        | Major1   |          | Major2   |      |  |
|                        | 1189      | 905    |          |          |          | 0    |  |
| Conflicting Flow All   |           |        | 1326     | 0        | -        |      |  |
| Stage 1                | 905       | -      | -        | -        | -        | -    |  |
| Stage 2                | 284       | - / 22 | 112      | -        | -        | -    |  |
| Critical Hdwy          | 6.42      | 6.22   | 4.12     | -        | -        | -    |  |
| Critical Hdwy Stg 1    | 5.42      | -      | -        | -        | -        | -    |  |
| Critical Hdwy Stg 2    | 5.42      | -      | - 0.010  | -        | -        | -    |  |
| Follow-up Hdwy         |           | 3.318  |          | -        | -        | -    |  |
| Pot Cap-1 Maneuver     | 208       | 335    | 521      | -        | -        | -    |  |
| Stage 1                | 395       | -      | -        | -        | -        | -    |  |
| Stage 2                | 764       | -      | -        | -        | -        | -    |  |
| Platoon blocked, %     |           |        |          | -        | -        | -    |  |
| Mov Cap-1 Maneuver     | 191       | 335    | 521      | -        | -        | -    |  |
| Mov Cap-2 Maneuver     | 191       | -      | -        | -        | -        | -    |  |
| Stage 1                | 363       | -      | -        | -        | -        | -    |  |
| Stage 2                | 764       | -      | -        | -        | -        | -    |  |
|                        |           |        |          |          |          |      |  |
| Approach               | EB        |        | NB       |          | SB       |      |  |
| HCM Control Delay, s   | 96.3      |        | 2.2      |          | 0        |      |  |
| HCM LOS                | 70.5<br>F |        | ۷.۷      |          | - 0      |      |  |
| TIOWI LOG              | ı         |        |          |          |          |      |  |
|                        |           |        |          |          |          |      |  |
| Minor Lane/Major Mvn   | nt        | NBL    | NBT      | EBLn1    | EBLn2    | SBT  |  |
| Capacity (veh/h)       |           | 521    | -        | 191      | 335      | -    |  |
| HCM Lane V/C Ratio     |           | 0.081  | -        | 0.992    | 0.126    | -    |  |
| HCM Control Delay (s)  |           | 12.5   | -        | 113.8    | 17.3     | -    |  |
| HCM Lane LOS           |           | В      | -        | F        | С        | -    |  |
| HCM 95th %tile Q(veh   | )         | 0.3    | -        | 8.3      | 0.4      | -    |  |
|                        | ,         | 5.5    |          | 0.0      |          |      |  |

|                              | ۶    | <b>→</b> | •          | •    | -     | •     | 1     | <b>†</b> | <b>/</b> | <b>/</b> | Ţ     | ✓    |
|------------------------------|------|----------|------------|------|-------|-------|-------|----------|----------|----------|-------|------|
| Movement                     | EBL  | EBT      | EBR        | WBL  | WBT   | WBR   | NBL   | NBT      | NBR      | SBL      | SBT   | SBR  |
| Lane Configurations          | 7    | <b>↑</b> | 7          | ሻ    | ₽     |       | ሻ     | <b>↑</b> | 7        |          | 4     |      |
| Traffic Volume (veh/h)       | 80   | 340      | 210        | 230  | 610   | 30    | 720   | 180      | 160      | 40       | 280   | 260  |
| Future Volume (veh/h)        | 80   | 340      | 210        | 230  | 610   | 30    | 720   | 180      | 160      | 40       | 280   | 260  |
| Initial Q (Qb), veh          | 0    | 0        | 0          | 0    | 0     | 0     | 0     | 0        | 0        | 0        | 0     | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.99       | 1.00 |       | 0.99  | 1.00  |          | 0.99     | 1.00     |       | 0.99 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00       | 1.00 | 1.00  | 1.00  | 1.00  | 1.00     | 1.00     | 1.00     | 1.00  | 1.00 |
| Work Zone On Approach        |      | No       |            |      | No    |       |       | No       |          |          | No    |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870       | 1870 | 1870  | 1870  | 1870  | 1870     | 1870     | 1870     | 1870  | 1870 |
| Adj Flow Rate, veh/h         | 84   | 358      | 41         | 242  | 642   | 31    | 758   | 189      | 35       | 42       | 295   | 249  |
| Peak Hour Factor             | 0.95 | 0.95     | 0.95       | 0.95 | 0.95  | 0.95  | 0.95  | 0.95     | 0.95     | 0.95     | 0.95  | 0.95 |
| Percent Heavy Veh, %         | 2    | 2        | 2          | 2    | 2     | 2     | 2     | 2        | 2        | 2        | 2     | 2    |
| Cap, veh/h                   | 107  | 406      | 340        | 270  | 540   | 26    | 467   | 490      | 411      | 22       | 152   | 128  |
| Arrive On Green              | 0.06 | 0.22     | 0.22       | 0.15 | 0.31  | 0.31  | 0.26  | 0.26     | 0.26     | 0.17     | 0.17  | 0.17 |
| Sat Flow, veh/h              | 1781 | 1870     | 1567       | 1781 | 1769  | 85    | 1781  | 1870     | 1570     | 124      | 868   | 733  |
| Grp Volume(v), veh/h         | 84   | 358      | 41         | 242  | 0     | 673   | 758   | 189      | 35       | 586      | 0     | 0    |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 1870     | 1567       | 1781 | 0     | 1854  | 1781  | 1870     | 1570     | 1725     | 0     | 0    |
| Q Serve(g_s), s              | 5.3  | 21.2     | 2.4        | 15.3 | 0.0   | 35.0  | 30.0  | 9.5      | 1.9      | 20.0     | 0.0   | 0.0  |
| Cycle Q Clear(g_c), s        | 5.3  | 21.2     | 2.4        | 15.3 | 0.0   | 35.0  | 30.0  | 9.5      | 1.9      | 20.0     | 0.0   | 0.0  |
| Prop In Lane                 | 1.00 |          | 1.00       | 1.00 |       | 0.05  | 1.00  |          | 1.00     | 0.07     |       | 0.42 |
| Lane Grp Cap(c), veh/h       | 107  | 406      | 340        | 270  | 0     | 566   | 467   | 490      | 411      | 301      | 0     | 0    |
| V/C Ratio(X)                 | 0.79 | 0.88     | 0.12       | 0.90 | 0.00  | 1.19  | 1.62  | 0.39     | 0.09     | 1.95     | 0.00  | 0.00 |
| Avail Cap(c_a), veh/h        | 311  | 490      | 410        | 311  | 0     | 566   | 467   | 490      | 411      | 301      | 0     | 0    |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00       | 1.00 | 1.00  | 1.00  | 1.00  | 1.00     | 1.00     | 1.00     | 1.00  | 1.00 |
| Upstream Filter(I)           | 1.00 | 1.00     | 1.00       | 1.00 | 0.00  | 1.00  | 1.00  | 1.00     | 1.00     | 1.00     | 0.00  | 0.00 |
| Uniform Delay (d), s/veh     | 53.1 | 43.4     | 36.0       | 47.7 | 0.0   | 39.8  | 42.3  | 34.7     | 31.9     | 47.3     | 0.0   | 0.0  |
| Incr Delay (d2), s/veh       | 4.7  | 13.3     | 0.1        | 22.8 | 0.0   | 101.9 | 290.8 | 0.2      | 0.0      | 437.6    | 0.0   | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0        | 0.0  | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0      | 0.0   | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 2.5  | 10.9     | 0.9        | 8.3  | 0.0   | 31.3  | 50.3  | 4.2      | 0.7      | 45.1     | 0.0   | 0.0  |
| Unsig. Movement Delay, s/veh |      |          |            |      |       |       |       |          |          |          |       |      |
| LnGrp Delay(d),s/veh         | 57.8 | 56.7     | 36.1       | 70.5 | 0.0   | 141.6 | 333.1 | 34.9     | 31.9     | 484.8    | 0.0   | 0.0  |
| LnGrp LOS                    | Ε    | Ε        | D          | Ε    | Α     | F     | F     | С        | С        | F        | Α     | Α    |
| Approach Vol, veh/h          |      | 483      |            |      | 915   |       |       | 982      |          |          | 586   |      |
| Approach Delay, s/veh        |      | 55.2     |            |      | 122.8 |       |       | 264.9    |          |          | 484.8 |      |
| Approach LOS                 |      | Е        |            |      | F     |       |       | F        |          |          | F     |      |
| Timer - Assigned Phs         | 1    | 2        |            | 4    | 5     | 6     |       | 8        |          |          |       |      |
| Phs Duration (G+Y+Rc), s     | 22.8 | 30.9     |            | 25.1 | 12.7  | 41.0  |       | 35.8     |          |          |       |      |
| Change Period (Y+Rc), s      | 5.4  | 6.0      |            | 5.1  | 5.8   | 6.0   |       | 5.8      |          |          |       |      |
| Max Green Setting (Gmax), s  | 20.0 | 30.0     |            | 20.0 | 20.0  | 30.0  |       | 30.0     |          |          |       |      |
| Max Q Clear Time (g_c+l1), s | 17.3 | 23.2     |            | 22.0 | 7.3   | 37.0  |       | 32.0     |          |          |       |      |
| Green Ext Time (p_c), s      | 0.1  | 0.7      |            | 0.0  | 0.1   | 0.0   |       | 0.0      |          |          |       |      |
| Intersection Summary         |      |          |            |      |       |       |       |          |          |          |       |      |
| HCM 6th Ctrl Delay           |      |          | 230.4      |      |       |       |       |          |          |          |       |      |
| HCM 6th LOS                  |      |          | 230.4<br>F |      |       |       |       |          |          |          |       |      |
| Notes                        |      |          | '          |      |       |       |       |          |          |          |       |      |

|                           | ۶       | <b>→</b> | •     | •    | <b>←</b> | •     | •    | †        | <b>/</b> | <b>\</b> | <b>↓</b> | ✓    |  |
|---------------------------|---------|----------|-------|------|----------|-------|------|----------|----------|----------|----------|------|--|
| Movement                  | EBL     | EBT      | EBR   | WBL  | WBT      | WBR   | NBL  | NBT      | NBR      | SBL      | SBT      | SBR  |  |
| Lane Configurations       | ሻ       | <b>↑</b> | 7     | ሻ    | ĵ.       |       | ሻ    | <b>↑</b> | 7        | ሻ        | <b>†</b> | 7    |  |
| Traffic Volume (veh/h)    | 40      | 160      | 360   | 40   | 310      | 40    | 360  | 200      | 20       | 40       | 850      | 80   |  |
| Future Volume (veh/h)     | 40      | 160      | 360   | 40   | 310      | 40    | 360  | 200      | 20       | 40       | 850      | 80   |  |
| Initial Q (Qb), veh       | 0       | 0        | 0     | 0    | 0        | 0     | 0    | 0        | 0        | 0        | 0        | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00    |          | 0.99  | 1.00 |          | 0.99  | 1.00 |          | 0.99     | 1.00     |          | 0.99 |  |
| Parking Bus, Adj          | 1.00    | 1.00     | 1.00  | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |  |
| Work Zone On Approac      | :h      | No       |       |      | No       |       |      | No       |          |          | No       |      |  |
| Adj Sat Flow, veh/h/ln    | 1870    | 1870     | 1870  | 1870 | 1870     | 1870  | 1870 | 1870     | 1870     | 1870     | 1870     | 1870 |  |
| Adj Flow Rate, veh/h      | 42      | 168      | 66    | 42   | 326      | 37    | 379  | 211      | 9        | 42       | 895      | 25   |  |
| Peak Hour Factor          | 0.95    | 0.95     | 0.95  | 0.95 | 0.95     | 0.95  | 0.95 | 0.95     | 0.95     | 0.95     | 0.95     | 0.95 |  |
| Percent Heavy Veh, %      | 2       | 2        | 2     | 2    | 2        | 2     | 2    | 2        | 2        | 2        | 2        | 2    |  |
| Cap, veh/h                | 53      | 430      | 361   | 53   | 365      | 41    | 376  | 930      | 784      | 53       | 591      | 497  |  |
| Arrive On Green           | 0.03    | 0.23     | 0.23  | 0.03 | 0.22     | 0.22  | 0.21 | 0.50     | 0.50     | 0.03     | 0.32     | 0.32 |  |
| Sat Flow, veh/h           | 1781    | 1870     | 1568  | 1781 | 1648     | 187   | 1781 | 1870     | 1577     | 1781     | 1870     | 1573 |  |
| Grp Volume(v), veh/h      | 42      | 168      | 66    | 42   | 0        | 363   | 379  | 211      | 9        | 42       | 895      | 25   |  |
| Grp Sat Flow(s), veh/h/lr | n1781   | 1870     | 1568  | 1781 | 0        | 1835  | 1781 | 1870     | 1577     | 1781     | 1870     | 1573 |  |
| Q Serve(g_s), s           | 2.2     | 7.2      | 3.2   | 2.2  | 0.0      | 18.2  | 20.0 | 6.1      | 0.3      | 2.2      | 30.0     | 1.0  |  |
| Cycle Q Clear(g_c), s     | 2.2     | 7.2      | 3.2   | 2.2  | 0.0      | 18.2  | 20.0 | 6.1      | 0.3      | 2.2      | 30.0     | 1.0  |  |
| Prop In Lane              | 1.00    |          | 1.00  | 1.00 |          | 0.10  | 1.00 |          | 1.00     | 1.00     |          | 1.00 |  |
| Lane Grp Cap(c), veh/h    | 53      | 430      | 361   | 53   | 0        | 407   | 376  | 930      | 784      | 53       | 591      | 497  |  |
| V/C Ratio(X)              | 0.79    | 0.39     | 0.18  | 0.79 | 0.00     | 0.89  | 1.01 | 0.23     | 0.01     | 0.79     | 1.51     | 0.05 |  |
| Avail Cap(c_a), veh/h     | 225     | 789      | 661   | 225  | 0        | 503   | 376  | 930      | 784      | 188      | 591      | 497  |  |
| HCM Platoon Ratio         | 1.00    | 1.00     | 1.00  | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |  |
| Upstream Filter(I)        | 1.00    | 1.00     | 1.00  | 1.00 | 0.00     | 1.00  | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |  |
| Uniform Delay (d), s/vel  | h 45.7  | 30.9     | 29.4  | 45.7 | 0.0      | 35.8  | 37.4 | 13.5     | 12.1     | 45.7     | 32.4     | 22.5 |  |
| Incr Delay (d2), s/veh    | 9.3     | 0.2      | 0.1   | 9.2  | 0.0      | 13.9  | 48.8 | 0.0      | 0.0      |          | 239.6    | 0.0  |  |
| Initial Q Delay(d3),s/veh | า 0.0   | 0.0      | 0.0   | 0.0  | 0.0      | 0.0   | 0.0  | 0.0      | 0.0      | 0.0      | 0.0      | 0.0  |  |
| %ile BackOfQ(50%),vel     |         | 3.2      | 1.2   | 1.1  | 0.0      | 9.6   | 13.5 | 2.4      | 0.1      | 1.1      | 52.3     | 0.4  |  |
| Unsig. Movement Delay     |         |          |       |      |          |       |      |          |          |          |          |      |  |
| LnGrp Delay(d),s/veh      | 55.0    | 31.1     | 29.4  | 54.9 | 0.0      | 49.7  | 86.2 | 13.6     | 12.1     | 55.0     | 272.0    | 22.5 |  |
| LnGrp LOS                 | E       | С        | С     | D    | Α        | D     | F    | В        | В        | E        | F        | С    |  |
| Approach Vol, veh/h       |         | 276      |       |      | 405      |       |      | 599      |          |          | 962      |      |  |
| Approach Delay, s/veh     |         | 34.3     |       |      | 50.2     |       |      | 59.5     |          |          | 256.0    |      |  |
| Approach LOS              |         | С        |       |      | D        |       |      | Е        |          |          | F        |      |  |
| Timer - Assigned Phs      | 1       | 2        | 3     | 4    | 5        | 6     | 7    | 8        |          |          |          |      |  |
| Phs Duration (G+Y+Rc)     | ), s7.4 | 27.2     | 25.1  | 35.1 | 8.2      | 26.4  | 7.9  | 52.3     |          |          |          |      |  |
| Change Period (Y+Rc),     |         | 5.4      | 5.1   | 5.1  | 5.4      | * 5.4 | 5.1  | 5.1      |          |          |          |      |  |
| Max Green Setting (Gm     |         | 40.0     | 20.0  | 30.0 | 12.0     | * 26  | 10.0 | 30.0     |          |          |          |      |  |
| Max Q Clear Time (g_c     |         | 9.2      | 22.0  | 32.0 | 4.2      | 20.2  | 4.2  | 8.1      |          |          |          |      |  |
| Green Ext Time (p_c), s   |         | 0.3      | 0.0   | 0.0  | 0.0      | 0.5   | 0.0  | 0.4      |          |          |          |      |  |
| Intersection Summary      |         |          |       |      |          |       |      |          |          |          |          |      |  |
| HCM 6th Ctrl Delay        |         |          | 139.1 |      |          |       |      |          |          |          |          |      |  |
| HCM 6th LOS               |         |          | F     |      |          |       |      |          |          |          |          |      |  |
|                           |         |          |       |      |          |       |      |          |          |          |          |      |  |

| Intersection                            |            |        |          |         |          |        |          |              |             |        |         |         |            |
|-----------------------------------------|------------|--------|----------|---------|----------|--------|----------|--------------|-------------|--------|---------|---------|------------|
| Int Delay, s/veh                        | 246.5      |        |          |         |          |        |          |              |             |        |         |         |            |
| Movement                                | EBL        | EBT    | EBR      | WBL     | WBT      | WBR    | NBL      | NBT          | NBR         | SBL    | SBT     | SBR     |            |
|                                         | LDL        |        | LDI      | WDL     |          | WDIX   | NDL      | ND1          | NDIX<br>7   | JDL    |         | JUIN    |            |
| Lane Configurations Traffic Vol, veh/h  | 60         | 20     | 30       | 180     | <b>4</b> | 20     | 20       | <b>T</b> 420 | 110         | 30     | 1100    | 30      |            |
| Future Vol, veh/h                       | 60         | 20     | 30       | 180     | 20       | 20     | 20       | 420          | 110         | 30     | 1100    | 30      |            |
|                                         | 0          | 0      | 0        | 0       | 0        | 0      | 0        | 420          | 0           | 0      | 0       | 0       |            |
| Conflicting Peds, #/hr                  |            |        |          |         |          |        |          |              |             |        |         | Free    |            |
| Sign Control                            | Stop       | Stop   | Stop     | Stop    | Stop     | Stop   | Free     | Free         | Free        | Free   | Free    |         |            |
| RT Channelized                          | -          | -      | None     | -       | -        | None   | 50       | -            | None<br>270 | -      | -       | None    |            |
| Storage Length<br>Veh in Median Storage | -          | 0      | -        | -       | 0        | -      | 50       | 0            | 270         | -      | 0       | -       |            |
| Grade, %                                | e,# -<br>- | 0      |          | -       | 0        |        |          | 0            |             | -      | 0       | -       |            |
| Peak Hour Factor                        | 95         | 95     | 95       | 95      | 95       | 95     | 95       | 95           | 95          | 95     | 95      | 95      |            |
|                                         | 2          | 2      | 2        | 2       | 2        | 2      | 2        | 2            | 2           | 2      | 2       | 2       |            |
| Heavy Vehicles, % Mvmt Flow             | 63         | 21     | 32       | 189     | 21       | 21     | 21       | 442          | 116         | 32     | 1158    | 32      |            |
| IVIVIIII FIOW                           | 03         | 21     | 32       | 109     | 21       | 21     | 21       | 442          | 110         | 32     | 1100    | 32      |            |
|                                         |            |        |          |         |          |        |          |              |             |        |         |         |            |
| Major/Minor                             | Minor2     |        |          | Minor1  |          | 1      | Major1   |              | 1           | Major2 |         |         |            |
| Conflicting Flow All                    | 1801       | 1838   | 1174     | 1749    | 1738     | 442    | 1190     | 0            | 0           | 558    | 0       | 0       |            |
| Stage 1                                 | 1238       | 1238   | -        | 484     | 484      | -      | -        | -            | -           | -      | -       | -       |            |
| Stage 2                                 | 563        | 600    | -        | 1265    | 1254     | -      | -        | -            | -           | -      | -       | -       |            |
| Critical Hdwy                           | 7.12       | 6.52   | 6.22     | 7.12    | 6.52     | 6.22   | 4.12     | -            | -           | 4.12   | -       | -       |            |
| Critical Hdwy Stg 1                     | 6.12       | 5.52   | -        | 6.12    | 5.52     | -      | -        | -            | -           | -      | -       | -       |            |
| Critical Hdwy Stg 2                     | 6.12       | 5.52   | -        | 6.12    | 5.52     | -      | -        | -            | -           | -      | -       | -       |            |
| Follow-up Hdwy                          | 3.518      | 4.018  | 3.318    | 3.518   | 4.018    | 3.318  | 2.218    | -            | -           | 2.218  | -       | -       |            |
| Pot Cap-1 Maneuver                      | ~ 62       | 76     | 234      | ~ 67    | 87       | 615    | 587      | -            | -           | 1013   | -       | -       |            |
| Stage 1                                 | 215        | 248    | -        | 564     | 552      | -      | -        | -            | -           | -      | -       | -       |            |
| Stage 2                                 | 511        | 490    | -        | 208     | 243      | -      | -        | -            | -           | -      | -       | -       |            |
| Platoon blocked, %                      |            |        |          |         |          |        |          | -            | -           |        | -       | -       |            |
| Mov Cap-1 Maneuver                      | ~ 43       | 66     | 234      | ~ 40    | 76       | 615    | 587      | -            | -           | 1013   | -       | -       |            |
| Mov Cap-2 Maneuver                      | ~ 43       | 66     | -        | ~ 40    | 76       | -      | -        | -            | -           | -      | -       | -       |            |
| Stage 1                                 | 207        | 225    | -        | 544     | 532      | -      | -        | -            | -           | -      | -       | -       |            |
| Stage 2                                 | 457        | 472    | -        | ~ 148   | 220      | -      | -        | -            | -           | -      | -       | -       |            |
|                                         |            |        |          |         |          |        |          |              |             |        |         |         |            |
| Approach                                | EB         |        |          | WB      |          |        | NB       |              |             | SB     |         |         |            |
| HCM Control Delay, s\$                  |            |        | \$       | 1991.6  |          |        | 0.4      |              |             | 0.2    |         |         |            |
| HCM LOS                                 | F          |        | •        | F       |          |        |          |              |             |        |         |         |            |
|                                         |            |        |          |         |          |        |          |              |             |        |         |         |            |
| Minor Lang/Major Mum                    | <b>\</b> † | NDI    | NDT      | NDD     | EDI n1\  | VDI 51 | SBL      | SBT          | SBR         |        |         |         |            |
| Minor Lane/Major Mvm                    | It         | NBL    | NBT      | NDK     | EBLn1V   |        |          | SDI          | SDK         |        |         |         |            |
| Capacity (veh/h)                        |            | 587    | -        | -       | 60       | 46     | 1013     | -            | -           |        |         |         |            |
| HCM Cantrol Dalay (c)                   |            | 0.036  | -        | -<br>-  |          | 5.034  |          | -            | -           |        |         |         |            |
| HCM Control Delay (s)                   |            | 11.4   | -        | -\$     | 583.\$   |        | 8.7      | 0            | -           |        |         |         |            |
| HCM Lane LOS                            | ١          | B      | -        | -       | F        | 74 F   | A        | A            | -           |        |         |         |            |
| HCM 95th %tile Q(veh                    | )          | 0.1    | -        | -       | 10.9     | 26.5   | 0.1      |              | -           |        |         |         |            |
| Notes                                   |            |        |          |         |          |        |          |              |             |        |         |         |            |
| ~: Volume exceeds ca                    | pacity     | \$: De | elay exc | ceeds 3 | 00s      | +: Com | putatior | Not D        | efined      | *: All | major v | olume i | in platoon |

|                              | ۶    | <b>→</b> | •    | •    | <b>←</b> | •    | 1    | <b>†</b> | /    | <b>&gt;</b> | Ţ        | 4    |
|------------------------------|------|----------|------|------|----------|------|------|----------|------|-------------|----------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations          |      | 4        |      |      | र्स      | 7    | ሻ    | <b>↑</b> | 7    | ሻ           | <b>•</b> | 7    |
| Traffic Volume (veh/h)       | 30   | 20       | 30   | 180  | 20       | 40   | 20   | 410      | 150  | 240         | 950      | 20   |
| Future Volume (veh/h)        | 30   | 20       | 30   | 180  | 20       | 40   | 20   | 410      | 150  | 240         | 950      | 20   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0           | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 0.99 |          | 0.99 | 0.99 |          | 0.99 | 1.00 |          | 0.99 | 1.00        |          | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No       |      |             | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870        | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 32   | 21       | 6    | 189  | 21       | 7    | 21   | 432      | 52   | 253         | 1000     | 10   |
| Peak Hour Factor             | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 | 0.95        | 0.95     | 0.95 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    | 2           | 2        | 2    |
| Cap, veh/h                   | 134  | 73       | 13   | 356  | 27       | 342  | 35   | 674      | 567  | 302         | 954      | 805  |
| Arrive On Green              | 0.22 | 0.22     | 0.22 | 0.22 | 0.22     | 0.22 | 0.02 | 0.36     | 0.36 | 0.17        | 0.51     | 0.51 |
| Sat Flow, veh/h              | 183  | 335      | 59   | 1097 | 122      | 1567 | 1781 | 1870     | 1574 | 1781        | 1870     | 1577 |
| Grp Volume(v), veh/h         | 59   | 0        | 0    | 210  | 0        | 7    | 21   | 432      | 52   | 253         | 1000     | 10   |
| Grp Sat Flow(s),veh/h/ln     | 576  | 0        | 0    | 1219 | 0        | 1567 | 1781 | 1870     | 1574 | 1781        | 1870     | 1577 |
| Q Serve(g_s), s              | 0.3  | 0.0      | 0.0  | 0.0  | 0.0      | 0.2  | 0.7  | 11.3     | 1.3  | 8.1         | 30.0     | 0.2  |
| Cycle Q Clear(g_c), s        | 10.4 | 0.0      | 0.0  | 10.0 | 0.0      | 0.2  | 0.7  | 11.3     | 1.3  | 8.1         | 30.0     | 0.2  |
| Prop In Lane                 | 0.54 |          | 0.10 | 0.90 |          | 1.00 | 1.00 |          | 1.00 | 1.00        |          | 1.00 |
| Lane Grp Cap(c), veh/h       | 220  | 0        | 0    | 382  | 0        | 342  | 35   | 674      | 567  | 302         | 954      | 805  |
| V/C Ratio(X)                 | 0.27 | 0.00     | 0.00 | 0.55 | 0.00     | 0.02 | 0.60 | 0.64     | 0.09 | 0.84        | 1.05     | 0.01 |
| Avail Cap(c_a), veh/h        | 220  | 0        | 0    | 675  | 0        | 666  | 364  | 954      | 803  | 364         | 954      | 805  |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |
| Uniform Delay (d), s/veh     | 19.2 | 0.0      | 0.0  | 21.9 | 0.0      | 18.0 | 28.6 | 15.6     | 12.4 | 23.6        | 14.4     | 7.1  |
| Incr Delay (d2), s/veh       | 0.2  | 0.0      | 0.0  | 0.5  | 0.0      | 0.0  | 5.9  | 0.4      | 0.0  | 11.7        | 42.4     | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0         | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.6  | 0.0      | 0.0  | 2.6  | 0.0      | 0.1  | 0.3  | 4.2      | 0.4  | 4.1         | 20.8     | 0.0  |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |          |      |             |          |      |
| LnGrp Delay(d),s/veh         | 19.4 | 0.0      | 0.0  | 22.3 | 0.0      | 18.1 | 34.4 | 16.0     | 12.5 | 35.3        | 56.8     | 7.1  |
| LnGrp LOS                    | В    | Α        | Α    | С    | Α        | В    | С    | В        | В    | D           | F        | Α    |
| Approach Vol, veh/h          |      | 59       |      |      | 217      |      |      | 505      |      |             | 1263     |      |
| Approach Delay, s/veh        |      | 19.4     |      |      | 22.2     |      |      | 16.4     |      |             | 52.1     |      |
| Approach LOS                 |      | В        |      |      | С        |      |      | В        |      |             | D        |      |
| Timer - Assigned Phs         |      | 2        | 3    | 4    |          | 6    | 7    | 8        |      |             |          |      |
| Phs Duration (G+Y+Rc), s     |      | 17.4     | 6.3  | 35.1 |          | 17.4 | 15.1 | 26.3     |      |             |          |      |
| Change Period (Y+Rc), s      |      | 4.6      | 5.1  | 5.1  |          | 4.6  | 5.1  | 5.1      |      |             |          |      |
| Max Green Setting (Gmax), s  |      | 12.0     | 12.0 | 30.0 |          | 25.0 | 12.0 | 30.0     |      |             |          |      |
| Max Q Clear Time (g_c+l1), s |      | 12.4     | 2.7  | 32.0 |          | 12.0 | 10.1 | 13.3     |      |             |          |      |
| Green Ext Time (p_c), s      |      | 0.0      | 0.0  | 0.0  |          | 0.7  | 0.1  | 1.2      |      |             |          |      |
| Intersection Summary         |      |          |      |      |          |      |      |          |      |             |          |      |
| HCM 6th Ctrl Delay           |      |          | 39.2 |      |          |      |      |          |      |             |          |      |
| HCM 6th LOS                  |      |          | D    |      |          |      |      |          |      |             |          |      |
| Notes                        |      |          |      |      |          |      |      |          |      |             |          |      |

| Intersection           |         |        |          |         |        |         |                     |                                  |
|------------------------|---------|--------|----------|---------|--------|---------|---------------------|----------------------------------|
| Int Delay, s/veh       | 100.5   |        |          |         |        |         |                     |                                  |
|                        |         |        |          |         |        |         |                     |                                  |
| Movement               | EBL     | EBT    | WBT      | WBR     | SBL    | SBR     |                     |                                  |
| Lane Configurations    |         | 4      |          | - 7     | - ሽ    | - 7     |                     |                                  |
| Traffic Vol, veh/h     | 100     | 340    | 220      | 210     | 470    | 40      |                     |                                  |
| Future Vol, veh/h      | 100     | 340    | 220      | 210     | 470    | 40      |                     |                                  |
| Conflicting Peds, #/hr |         | 0      | 0        | 0       | 0      | 0       |                     |                                  |
| Sign Control           | Free    | Free   | Free     | Free    | Stop   | Stop    |                     |                                  |
| RT Channelized         | -       | None   | -        | Yield   | -      | None    |                     |                                  |
| Storage Length         | -       | -      | -        | 150     | 90     | 0       |                     |                                  |
| Veh in Median Storag   | e,# -   | 0      | 0        | -       | 0      | -       |                     |                                  |
| Grade, %               | -       | 0      | 0        | -       | 0      | -       |                     |                                  |
| Peak Hour Factor       | 95      | 95     | 95       | 95      | 95     | 95      |                     |                                  |
| Heavy Vehicles, %      | 2       | 2      | 2        | 2       | 2      | 2       |                     |                                  |
| Mvmt Flow              | 105     | 358    | 232      | 221     | 495    | 42      |                     |                                  |
|                        |         |        |          |         |        |         |                     |                                  |
| Major/Minor            | Major1  | ľ      | Major2   | [       | Minor2 |         |                     |                                  |
| Conflicting Flow All   | 232     | 0      | -        | 0       | 800    | 232     |                     |                                  |
| Stage 1                | -       | -      | -        | -       | 232    | -       |                     |                                  |
| Stage 2                | -       | -      | -        | -       | 568    | -       |                     |                                  |
| Critical Hdwy          | 4.12    | -      | -        | -       | 6.42   | 6.22    |                     |                                  |
| Critical Hdwy Stg 1    | -       | -      | -        | -       | 5.42   | -       |                     |                                  |
| Critical Hdwy Stg 2    | -       | -      | -        | -       | 5.42   | -       |                     |                                  |
| Follow-up Hdwy         | 2.218   | -      | -        | -       | 3.518  |         |                     |                                  |
| Pot Cap-1 Maneuver     | 1336    | -      | -        | -       | ~ 354  | 807     |                     |                                  |
| Stage 1                | -       | -      | -        | -       | 807    | -       |                     |                                  |
| Stage 2                | -       | -      | -        | -       | 567    | -       |                     |                                  |
| Platoon blocked, %     |         | -      | -        | -       |        |         |                     |                                  |
| Mov Cap-1 Maneuver     |         | -      | -        | -       | ~ 319  | 807     |                     |                                  |
| Mov Cap-2 Maneuver     | -       | -      | -        | -       | ~ 319  | -       |                     |                                  |
| Stage 1                | -       | -      | -        | -       | 728    | -       |                     |                                  |
| Stage 2                | -       | -      | -        | -       | 567    | -       |                     |                                  |
|                        |         |        |          |         |        |         |                     |                                  |
| Approach               | EB      |        | WB       |         | SB     |         |                     |                                  |
| HCM Control Delay, s   | 1.8     |        | 0        |         | 270.5  |         |                     |                                  |
| HCM LOS                |         |        |          |         | F      |         |                     |                                  |
|                        |         |        |          |         |        |         |                     |                                  |
| Minor Lane/Major Mvr   | mt      | EBL    | EBT      | WBT     | WBR    | SBLn1 S | SBLn2               |                                  |
| Capacity (veh/h)       |         | 1336   | -        | -       | -      | 319     | 807                 |                                  |
| HCM Lane V/C Ratio     |         | 0.079  | -        | -       | -      | 1.551   | 0.052               |                                  |
| HCM Control Delay (s   | 5)      | 7.9    | 0        | -       | -      | 292.7   | 9.7                 |                                  |
| HCM Lane LOS           |         | Α      | Α        | -       | -      | F       | А                   |                                  |
| HCM 95th %tile Q(vel   | n)      | 0.3    | -        | -       | -      | 28.5    | 0.2                 |                                  |
| Notes                  |         |        |          |         |        |         |                     |                                  |
| ~: Volume exceeds ca   | apacity | \$: De | elay exc | ceeds 3 | 00s    | +: Comi | outation Not Define | d *: All major volume in platoon |
| . Volume exceeds ca    | apacity | \$. DE | elay exc | eeus 3  | 005    | +. Com  | bulation Not Deline | u . Ali major volume in piatoon  |

|                                         | ۶     | <b>→</b>  | •            | •           | <b>←</b>  | 4         | 1           | <b>†</b>  | ~            | <b>/</b> | <b>†</b> | 1           |
|-----------------------------------------|-------|-----------|--------------|-------------|-----------|-----------|-------------|-----------|--------------|----------|----------|-------------|
| Movement                                | EBL   | EBT       | EBR          | WBL         | WBT       | WBR       | NBL         | NBT       | NBR          | SBL      | SBT      | SBR         |
| Lane Configurations                     |       | र्स       | 7            |             | 4         |           | ሻ           | <b>₽</b>  |              | ሻ        | ₽        |             |
| Traffic Volume (veh/h)                  | 50    | 80        | 170          | 140         | 70        | 20        | 110         | 450       | 170          | 20       | 510      | 40          |
| Future Volume (veh/h)                   | 50    | 80        | 170          | 140         | 70        | 20        | 110         | 450       | 170          | 20       | 510      | 40          |
| Initial Q (Qb), veh                     | 0     | 0         | 0            | 0           | 0         | 0         | 0           | 0         | 0            | 0        | 0        | 0           |
| Ped-Bike Adj(A_pbT)                     | 0.99  |           | 0.99         | 0.99        |           | 0.99      | 1.00        |           | 0.99         | 1.00     |          | 0.99        |
| Parking Bus, Adj                        | 1.00  | 1.00      | 1.00         | 1.00        | 1.00      | 1.00      | 1.00        | 1.00      | 1.00         | 1.00     | 1.00     | 1.00        |
| Work Zone On Approach                   |       | No        |              |             | No        |           |             | No        |              |          | No       |             |
| Adj Sat Flow, veh/h/ln                  | 1870  | 1870      | 1870         | 1870        | 1870      | 1870      | 1870        | 1870      | 1870         | 1870     | 1870     | 1870        |
| Adj Flow Rate, veh/h                    | 53    | 84        | 30           | 147         | 74        | 19        | 116         | 474       | 174          | 21       | 537      | 40          |
| Peak Hour Factor                        | 0.95  | 0.95      | 0.95         | 0.95        | 0.95      | 0.95      | 0.95        | 0.95      | 0.95         | 0.95     | 0.95     | 0.95        |
| Percent Heavy Veh, %                    | 2     | 2         | 2            | 2           | 2         | 2         | 2           | 2         | 2            | 2        | 2        | 2           |
| Cap, veh/h                              | 192   | 271       | 371          | 243         | 107       | 22        | 292         | 594       | 218          | 104      | 603      | 45          |
| Arrive On Green                         | 0.24  | 0.24      | 0.24         | 0.24        | 0.24      | 0.24      | 0.16        | 0.46      | 0.46         | 0.06     | 0.35     | 0.35        |
| Sat Flow, veh/h                         | 482   | 1146      | 1568         | 644         | 452       | 94        | 1781        | 1303      | 478          | 1781     | 1718     | 128         |
| Grp Volume(v), veh/h                    | 137   | 0         | 30           | 240         | 0         | 0         | 116         | 0         | 648          | 21       | 0        | 577         |
| Grp Sat Flow(s), veh/h/ln               | 1628  | 0         | 1568         | 1190        | 0         | 0         | 1781        | 0         | 1781         | 1781     | 0        | 1846        |
| Q Serve(g_s), s                         | 0.0   | 0.0       | 1.0          | 8.9         | 0.0       | 0.0       | 3.7         | 0.0       | 19.9         | 0.7      | 0.0      | 18.9        |
| Cycle Q Clear(g_c), s                   | 4.0   | 0.0       | 1.0          | 12.9        | 0.0       | 0.0       | 3.7         | 0.0       | 19.9         | 0.7      | 0.0      | 18.9        |
| Prop In Lane                            | 0.39  | 0         | 1.00         | 0.61        | 0         | 0.08      | 1.00        | 0         | 0.27         | 1.00     | 0        | 0.07        |
| Lane Grp Cap(c), veh/h                  | 463   | 0         | 371          | 372         | 0         | 0         | 292         | 0         | 813          | 104      | 0        | 648         |
| V/C Ratio(X)                            | 0.30  | 0.00      | 0.08         | 0.64<br>392 | 0.00      | 0.00      | 0.40        | 0.00      | 0.80         | 0.20     | 0.00     | 0.89<br>722 |
| Avail Cap(c_a), veh/h HCM Platoon Ratio | 1335  | 0<br>1.00 | 1227<br>1.00 | 1.00        | 0<br>1.00 | 0<br>1.00 | 446<br>1.00 | 0<br>1.00 | 1394<br>1.00 | 1394     | 1.00     | 1.00        |
| Upstream Filter(I)                      | 1.00  | 0.00      | 1.00         | 1.00        | 0.00      | 0.00      | 1.00        | 0.00      | 1.00         | 1.00     | 0.00     | 1.00        |
| Uniform Delay (d), s/veh                | 20.1  | 0.00      | 19.0         | 24.4        | 0.00      | 0.00      | 23.9        | 0.00      | 14.8         | 28.7     | 0.00     | 19.6        |
| Incr Delay (d2), s/veh                  | 0.4   | 0.0       | 0.1          | 3.4         | 0.0       | 0.0       | 0.9         | 0.0       | 1.8          | 0.9      | 0.0      | 12.4        |
| Initial Q Delay(d3),s/veh               | 0.0   | 0.0       | 0.0          | 0.0         | 0.0       | 0.0       | 0.9         | 0.0       | 0.0          | 0.9      | 0.0      | 0.0         |
| %ile BackOfQ(50%),veh/ln                | 1.6   | 0.0       | 0.3          | 3.5         | 0.0       | 0.0       | 1.5         | 0.0       | 6.6          | 0.3      | 0.0      | 8.9         |
| Unsig. Movement Delay, s/veh            |       | 0.0       | 0.5          | 0.0         | 0.0       | 0.0       | 1.0         | 0.0       | 0.0          | 0.5      | 0.0      | 0.7         |
| LnGrp Delay(d),s/veh                    | 20.5  | 0.0       | 19.1         | 27.8        | 0.0       | 0.0       | 24.8        | 0.0       | 16.7         | 29.6     | 0.0      | 32.0        |
| LnGrp LOS                               | C     | Α         | В            | C           | A         | A         | C           | A         | В            | C        | Α        | C           |
| Approach Vol, veh/h                     |       | 167       |              |             | 240       |           |             | 764       |              |          | 598      |             |
| Approach Delay, s/veh                   |       | 20.2      |              |             | 27.8      |           |             | 17.9      |              |          | 31.9     |             |
| Approach LOS                            |       | C         |              |             | C         |           |             | В         |              |          | C        |             |
| •                                       |       |           |              |             |           | ,         |             |           |              |          |          |             |
| Timer - Assigned Phs                    | 1     | 2         |              | 4           | 5         | 6         |             | 8         |              |          |          |             |
| Phs Duration (G+Y+Rc), s                | 15.2  | 28.2      |              | 20.5        | 8.4       | 35.0      |             | 20.5      |              |          |          |             |
| Change Period (Y+Rc), s                 | * 4.7 | 5.8       |              | 5.4         | * 4.7     | 5.8       |             | 5.4       |              |          |          |             |
| Max Green Setting (Gmax), s             | * 16  | 25.0      |              | 16.0        | * 50      | 50.0      |             | 50.0      |              |          |          |             |
| Max Q Clear Time (g_c+I1), s            | 5.7   | 20.9      |              | 14.9        | 2.7       | 21.9      |             | 6.0       |              |          |          |             |
| Green Ext Time (p_c), s                 | 0.2   | 1.3       |              | 0.1         | 0.0       | 4.4       |             | 0.9       |              |          |          |             |
| Intersection Summary                    |       |           |              |             |           |           |             |           |              |          |          |             |
| HCM 6th Ctrl Delay                      |       |           | 24.2         |             |           |           |             |           |              |          |          |             |
| HCM 6th LOS                             |       |           | С            |             |           |           |             |           |              |          |          |             |

| Intersection                         |              |          |          |         |       |          |               |                 |         |                |              |              |              |
|--------------------------------------|--------------|----------|----------|---------|-------|----------|---------------|-----------------|---------|----------------|--------------|--------------|--------------|
|                                      | 302.9        |          |          |         |       |          |               |                 |         |                |              |              |              |
| Movement                             | EBL          | EBT      | EBR      | WBL     | WBT   | WBR      | NBL           | NBT             | NBR     | SBL            | SBT          | SBR          |              |
| Lane Configurations                  | EDL          | <u> </u> | EDK      | WDL     | ₩D1   | WDK      | INDL          | IND I           | NDK     | SDL            | <u>अज्ञा</u> | JDR<br>7     |              |
| Traffic Vol, veh/h                   | 70           | 450      | 20       | 20      | 510   | 390      | 20            | 20              | 20      | 330            | 20           | 90           |              |
| Future Vol, veh/h                    | 70           | 450      | 20       | 20      | 510   | 390      | 20            | 20              | 20      | 330            | 20           | 90           |              |
| Conflicting Peds, #/hr               | 0            | 450      | 0        | 0       | 0     | 0        | 0             | 0               | 0       | 0              | 0            | 0            |              |
| Sign Control                         | Free         | Free     | Free     | Free    | Free  | Free     | Stop          | Stop            | Stop    | Stop           | Stop         | Stop         |              |
| RT Channelized                       | -            | -        | None     | -       | -     | None     | 310p<br>-     | Jiop<br>-       | None    | 310p           | 310p         | None         |              |
| Storage Length                       | 100          | _        | -        | 70      | _     | -        | _             | _               | -       | _              | _            | 60           |              |
| /eh in Median Storage,               |              | 0        | _        | -       | 0     | _        | _             | 0               | _       | _              | 0            | -            |              |
| Grade, %                             | -            | 0        | _        | _       | 0     | _        | _             | 0               | _       | _              | 0            | _            |              |
| Peak Hour Factor                     | 95           | 95       | 95       | 95      | 95    | 95       | 95            | 95              | 95      | 95             | 95           | 95           |              |
| Heavy Vehicles, %                    | 2            | 2        | 2        | 2       | 2     | 2        | 2             | 2               | 2       | 2              | 2            | 2            |              |
| Mvmt Flow                            | 74           | 474      | 21       | 21      | 537   | 411      | 21            | 21              | 21      | 347            | 21           | 95           |              |
|                                      |              |          |          |         |       |          |               |                 |         |                |              |              |              |
| Aning/Minney                         | 1-!1         |          |          | Malau0  |       |          | A!1           |                 |         | \              |              |              |              |
|                                      | /lajor1      |          |          | Major2  |       |          | Minor1        | 1/00            |         | Minor2         | 1400         | 740          |              |
| Conflicting Flow All                 | 948          | 0        | 0        | 495     | 0     | 0        | 1476          | 1623            | 485     | 1439           | 1428         | 743          |              |
| Stage 1                              | -            | -        | -        | -       | -     | -        | 633           | 633             | -       | 785            | 785          | -            |              |
| Stage 2                              | 4 1 2        | -        | -        | - 110   | -     | -        | 843           | 990             | - ( ))  | 654            | 643          | -            |              |
| Critical Hdwy                        | 4.12         | -        | -        | 4.12    | -     | -        | 7.12          | 6.52            | 6.22    | 7.12           | 6.52         | 6.22         |              |
| Critical Hdwy Stg 1                  | -            | -        | -        | -       | -     | -        | 6.12          | 5.52            | -       | 6.12           | 5.52         | -            |              |
| Critical Hdwy Stg 2                  | -            | -        | -        | 2.218   | -     | -        | 6.12<br>3.518 | 5.52<br>4.018   | 3.318   | 6.12           | 5.52         | 2 210        |              |
| Follow-up Hdwy<br>Pot Cap-1 Maneuver | 2.218<br>724 | -        | -        | 1069    | -     | -        | 104           | 103             |         | 3.518<br>~ 111 | 4.018<br>135 | 3.318<br>415 |              |
| Stage 1                              | 124          | -        | -        | 1009    | -     | -        | 468           | 473             | 302     | 386            | 404          | 410          |              |
| Stage 2                              | -            | -        | -        | -       | -     | -        | 358           | 324             | -       | 456            | 468          | -            |              |
| Platoon blocked, %                   |              | _        | _        |         |       | _        | 330           | J2 <del>4</del> |         | 430            | 400          |              |              |
| Mov Cap-1 Maneuver                   | 724          | _        | _        | 1069    | _     | _        | 63            | 91              | 582     | ~ 80           | 119          | 415          |              |
| Nov Cap-1 Maneuver                   | - 124        | _        | _        | -       | _     | _        | 63            | 91              | - 502   | ~ 80           | 119          | -            |              |
| Stage 1                              | -            | -        | -        | -       | -     | -        | 420           | 425             | -       | ~ 347          | 396          | -            |              |
| Stage 2                              | _            | _        | -        | _       | _     | _        | 256           | 318             | _       | 375            | 420          | _            |              |
|                                      |              |          |          |         |       |          |               | - , -           |         |                |              |              |              |
|                                      | ED           |          |          | MD      |       |          | ND            |                 |         | CD             |              |              |              |
| Approach                             | EB           |          |          | WB      |       |          | NB            |                 | φ.      | SB             |              |              |              |
| HCM Control Delay, s                 | 1.4          |          |          | 0.2     |       |          | 81.2          |                 | \$      | 1335.9         |              |              |              |
| ICM LOS                              |              |          |          |         |       |          | F             |                 |         | F              |              |              |              |
|                                      |              |          |          |         |       |          |               |                 |         |                |              |              |              |
| linor Lane/Major Mvm                 | t I          | NBLn1    | EBL      | EBT     | EBR   | WBL      | WBT           | WBR S           | SBLn1   | SBLn2          |              |              |              |
| Capacity (veh/h)                     |              | 105      | 724      | -       | -     | 1069     | -             | -               | 82      | 415            |              |              |              |
| ICM Lane V/C Ratio                   |              | 0.602    | 0.102    | -       | -     | 0.02     | -             | -               | 4.493   | 0.228          |              |              |              |
| ICM Control Delay (s)                |              | 81.2     | 10.5     | -       | -     | 8.4      | -             | \$ 1            | 1675.3  | 16.2           |              |              |              |
| ICM Lane LOS                         |              | F        | В        | -       | -     | Α        | -             | -               | F       | С              |              |              |              |
| HCM 95th %tile Q(veh)                |              | 2.9      | 0.3      | -       | -     | 0.1      | -             | -               | 39.3    | 0.9            |              |              |              |
| Votes                                |              |          |          |         |       |          |               |                 |         |                |              |              |              |
| : Volume exceeds cap                 | acity        | \$. Da   | alay eye | eeds 30 | nns - | +. Com   | nutation      | n Not D         | efined  | *· \\          | maiory       | ioluma i     | in platoon   |
| nume exceeds cap                     | acity        | p. Dt    | ciay exc | CCU3 31 | JU2   | T. UUIII | pulaliUl      | TINULU          | CIIIICU | . All          | IIIajUi \    | voluttie t   | iii pialuull |

|                                                          | ۶    | <b>→</b>     | •           | •           | <b>←</b>  | 4        | 1           | <b>†</b> | ~         | <b>/</b> | <b>†</b> | ✓    |
|----------------------------------------------------------|------|--------------|-------------|-------------|-----------|----------|-------------|----------|-----------|----------|----------|------|
| Movement                                                 | EBL  | EBT          | EBR         | WBL         | WBT       | WBR      | NBL         | NBT      | NBR       | SBL      | SBT      | SBR  |
| Lane Configurations                                      |      | र्स          | 7           | ሻ           | ₽         |          | ሻ           | <b>₽</b> | 7         |          | 4        |      |
| Traffic Volume (veh/h)                                   | 0    | 390          | 410         | 400         | 330       | 0        | 590         | 0        | 140       | 0        | 0        | 0    |
| Future Volume (veh/h)                                    | 0    | 390          | 410         | 400         | 330       | 0        | 590         | 0        | 140       | 0        | 0        | 0    |
| Initial Q (Qb), veh                                      | 0    | 0            | 0           | 0           | 0         | 0        | 0           | 0        | 0         | 0        | 0        | 0    |
| Ped-Bike Adj(A_pbT)                                      | 1.00 |              | 1.00        | 1.00        |           | 1.00     | 1.00        |          | 1.00      | 1.00     |          | 1.00 |
| Parking Bus, Adj                                         | 1.00 | 1.00         | 1.00        | 1.00        | 1.00      | 1.00     | 1.00        | 1.00     | 1.00      | 1.00     | 1.00     | 1.00 |
| Work Zone On Approach                                    |      | No           |             |             | No        |          |             | No       |           |          | No       |      |
| Adj Sat Flow, veh/h/ln                                   | 1870 | 1870         | 1870        | 1870        | 1870      | 1870     | 1870        | 1870     | 1870      | 1870     | 1870     | 1870 |
| Adj Flow Rate, veh/h                                     | 0    | 411          | 195         | 421         | 347       | 0        | 621         | 0        | 94        | 0        | 0        | 0    |
| Peak Hour Factor                                         | 0.95 | 0.95         | 0.95        | 0.95        | 0.95      | 0.95     | 0.95        | 0.95     | 0.95      | 0.95     | 0.95     | 0.95 |
| Percent Heavy Veh, %                                     | 2    | 2            | 2           | 2           | 2         | 2        | 2           | 2        | 2         | 2        | 2        | 2    |
| Cap, veh/h                                               | 0    | 467          | 395         | 509         | 534       | 0        | 606         | 0        | 1078      | 0        | 3        | 0    |
| Arrive On Green                                          | 0.00 | 0.25         | 0.25        | 0.29        | 0.29      | 0.00     | 0.34        | 0.00     | 0.34      | 0.00     | 0.00     | 0.00 |
| Sat Flow, veh/h                                          | 0    | 1870         | 1585        | 1781        | 1870      | 0        | 1781        | 0        | 3170      | 0        | 1870     | 0    |
| Grp Volume(v), veh/h                                     | 0    | 411          | 195         | 421         | 347       | 0        | 621         | 0        | 94        | 0        | 0        | 0    |
| Grp Sat Flow(s), veh/h/ln                                | 0    | 1870         | 1585        | 1781        | 1870      | 0        | 1781        | 0        | 1585      | 0        | 1870     | 0    |
| Q Serve(g_s), s                                          | 0.0  | 15.5         | 7.7         | 16.3        | 12.0      | 0.0      | 25.0        | 0.0      | 1.5       | 0.0      | 0.0      | 0.0  |
| Cycle Q Clear(g_c), s                                    | 0.0  | 15.5         | 7.7         | 16.3        | 12.0      | 0.0      | 25.0        | 0.0      | 1.5       | 0.0      | 0.0      | 0.0  |
| Prop In Lane                                             | 0.00 | 4.7          | 1.00        | 1.00        | 504       | 0.00     | 1.00        | •        | 1.00      | 0.00     | 0        | 0.00 |
| Lane Grp Cap(c), veh/h                                   | 0    | 467          | 395         | 509         | 534       | 0        | 606         | 0        | 1078      | 0        | 3        | 0    |
| V/C Ratio(X)                                             | 0.00 | 0.88         | 0.49        | 0.83        | 0.65      | 0.00     | 1.03        | 0.00     | 0.09      | 0.00     | 0.00     | 0.00 |
| Avail Cap(c_a), veh/h                                    | 0    | 509          | 431         | 727         | 763       | 0        | 606         | 0        | 1078      | 0        | 203      | 0    |
| HCM Platoon Ratio                                        | 1.00 | 1.00         | 1.00        | 1.00        | 1.00      | 1.00     | 1.00        | 1.00     | 1.00      | 1.00     | 1.00     | 1.00 |
| Upstream Filter(I)                                       | 0.00 | 1.00         | 1.00        | 1.00        | 1.00      | 0.00     | 1.00        | 0.00     | 1.00      | 0.00     | 0.00     | 0.00 |
| Uniform Delay (d), s/veh                                 | 0.0  | 26.5<br>15.5 | 23.6<br>1.0 | 24.6<br>5.4 | 23.0      | 0.0      | 24.3        | 0.0      | 16.5      | 0.0      | 0.0      | 0.0  |
| Incr Delay (d2), s/veh                                   | 0.0  | 0.0          | 0.0         | 0.0         | 0.0       | 0.0      | 43.2<br>0.0 | 0.0      | 0.0       | 0.0      | 0.0      | 0.0  |
| Initial Q Delay(d3),s/veh                                | 0.0  | 8.4          | 2.8         | 7.1         | 5.1       | 0.0      | 17.0        | 0.0      | 0.0       | 0.0      | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln<br>Unsig. Movement Delay, s/veh |      | 0.4          | 2.0         | 7.1         | 0.1       | 0.0      | 17.0        | 0.0      | 0.5       | 0.0      | 0.0      | 0.0  |
| LnGrp Delay(d),s/veh                                     | 0.0  | 42.0         | 24.6        | 30.0        | 24.4      | 0.0      | 67.5        | 0.0      | 16.5      | 0.0      | 0.0      | 0.0  |
| LnGrp LOS                                                | Α    | 42.0<br>D    | 24.0<br>C   | 30.0<br>C   | 24.4<br>C | 0.0<br>A | 67.5<br>F   | Α        | 10.5<br>B | Α        | Α        | Α    |
| Approach Vol, veh/h                                      | A    | 606          | C           | C           | 768       | A        | Г           | 715      | ь         | A        | A        | A    |
| • •                                                      |      | 36.4         |             |             | 27.5      |          |             | 60.8     |           |          | 0.0      |      |
| Approach Delay, s/veh Approach LOS                       |      | _            |             |             | 27.3<br>C |          |             | _        |           |          | 0.0      |      |
| Approach LOS                                             |      | D            |             |             | C         |          |             | E        |           |          |          |      |
| Timer - Assigned Phs                                     |      | 2            |             | 4           |           | 6        |             | 8        |           |          |          |      |
| Phs Duration (G+Y+Rc), s                                 |      | 0.0          |             | 21.5        |           | 28.0     |             | 24.0     |           |          |          |      |
| Change Period (Y+Rc), s                                  |      | 3.0          |             | 3.2         |           | 3.0      |             | 3.0      |           |          |          |      |
| Max Green Setting (Gmax), s                              |      | 8.0          |             | 20.0        |           | 25.0     |             | 30.0     |           |          |          |      |
| Max Q Clear Time (g_c+I1), s                             |      | 0.0          |             | 17.5        |           | 27.0     |             | 18.3     |           |          |          |      |
| Green Ext Time (p_c), s                                  |      | 0.0          |             | 0.8         |           | 0.0      |             | 2.7      |           |          |          |      |
| Intersection Summary                                     |      |              |             |             |           |          |             |          |           |          |          |      |
| HCM 6th Ctrl Delay                                       |      |              | 41.5        |             |           |          |             |          |           |          |          |      |
| HCM 6th LOS                                              |      |              | D           |             |           |          |             |          |           |          |          |      |

User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for turning movement.

|                           | <b>→</b> | •    | •    | •    | ^    | /    |
|---------------------------|----------|------|------|------|------|------|
| Movement                  | EBT      | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Configurations       | <b>^</b> | 7    | ች    | 414  |      | 77   |
| Traffic Volume (veh/h)    | 210      | 270  | 390  | 290  | 250  | 520  |
| Future Volume (veh/h)     | 210      | 270  | 390  | 290  | 250  | 520  |
| Initial Q (Qb), veh       | 0        | 0    | 0    | 0    | 0    | 0    |
| Ped-Bike Adj(A_pbT)       | U        | 1.00 | 1.00 | U    | 1.00 | 1.00 |
| Parking Bus, Adj          | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Work Zone On Approach     |          | 1.00 | 1.00 | No   | No   | 1.00 |
|                           | 1870     | 1870 | 1870 | 1870 | 1870 | 1870 |
| Adj Flow Rate, veh/h      | 221      | 48   | 411  | 305  | 263  | 292  |
| Peak Hour Factor          | 0.95     | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
|                           |          |      |      |      |      |      |
| Percent Heavy Veh, %      | 2        | 2    | 2    | 2    | 2    | 2    |
| Cap, veh/h                | 524      | 234  | 992  | 521  | 422  | 1438 |
| Arrive On Green           | 0.15     | 0.15 | 0.28 | 0.28 | 0.24 | 0.24 |
|                           | 3647     | 1585 | 3563 | 1870 | 1781 | 2790 |
| Grp Volume(v), veh/h      | 221      | 48   | 411  | 305  | 263  | 292  |
| Grp Sat Flow(s), veh/h/ln | 1777     | 1585 | 1781 | 1870 | 1781 | 1395 |
| Q Serve(g_s), s           | 1.8      | 0.8  | 2.9  | 4.4  | 4.1  | 1.8  |
| Cycle Q Clear(g_c), s     | 1.8      | 0.8  | 2.9  | 4.4  | 4.1  | 1.8  |
| Prop In Lane              |          | 1.00 | 1.00 |      | 1.00 | 1.00 |
| Lane Grp Cap(c), veh/h    | 524      | 234  | 992  | 521  | 422  | 1438 |
| V/C Ratio(X)              | 0.42     | 0.21 | 0.41 | 0.59 | 0.62 | 0.20 |
| · /                       | 2281     | 1017 | 1715 | 900  | 800  | 2030 |
| HCM Platoon Ratio         | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Upstream Filter(I)        | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| Uniform Delay (d), s/veh  |          | 11.7 | 9.2  | 9.7  | 10.6 | 4.1  |
|                           | 0.5      | 0.4  | 0.3  | 1.0  | 1.5  | 0.1  |
| Incr Delay (d2), s/veh    |          |      |      |      |      |      |
| Initial Q Delay(d3),s/veh |          | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh     |          | 0.3  | 0.8  | 1.4  | 1.3  | 0.6  |
| Unsig. Movement Delay     |          |      |      |      |      |      |
| LnGrp Delay(d),s/veh      | 12.6     | 12.1 | 9.4  | 10.7 | 12.1 | 4.2  |
| LnGrp LOS                 | В        | В    | A    | В    | В    | A    |
| Approach Vol, veh/h       | 269      |      |      | 716  | 555  |      |
| Approach Delay, s/veh     | 12.5     |      |      | 10.0 | 7.9  |      |
| Approach LOS              | В        |      |      | Α    | Α    |      |
| Timer - Assigned Phs      |          | 2    |      |      |      | 6    |
| Phs Duration (G+Y+Rc)     | c        | 8.1  |      |      |      | 12.2 |
| ,                         |          | 3.5  |      |      |      | 3.5  |
| Change Period (Y+Rc),     |          |      |      |      |      |      |
| Max Green Setting (Gm.    |          | 20.0 |      |      |      | 15.0 |
| Max Q Clear Time (g_c+    |          | 3.8  |      |      |      | 6.4  |
| Green Ext Time (p_c), s   |          | 1.3  |      |      |      | 2.3  |
| Intersection Summary      |          |      |      |      |      |      |
| HCM 6th Ctrl Delay        |          |      | 9.7  |      |      |      |
| HCM 6th LOS               |          |      | Α    |      |      |      |
|                           |          |      | A    |      |      |      |
| Notes                     |          |      |      |      |      |      |

| ٠                             | <b>→</b> | •    | •    | <b>←</b> | •    | •    | <b>†</b> | <b>/</b> | <b>&gt;</b> | <b>↓</b> | ✓    |  |
|-------------------------------|----------|------|------|----------|------|------|----------|----------|-------------|----------|------|--|
| Movement EBL                  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR      | SBL         | SBT      | SBR  |  |
| ane Configurations            | सी       | 7    |      | 1→       |      | ሻ    | <b>^</b> | 7        |             | <b>^</b> | 7    |  |
| Fraffic Volume (veh/h) 340    | 120      | 270  | 30   | 40       | 40   | 370  | 710      | 50       | 60          | 350      | 270  |  |
| Future Volume (veh/h) 340     | 120      | 270  | 30   | 40       | 40   | 370  | 710      | 50       | 60          | 350      | 270  |  |
| nitial Q (Qb), veh 0          | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0        | 0           | 0        | 0    |  |
| Ped-Bike Adj(A_pbT) 1.00      |          | 0.99 | 1.00 |          | 1.00 | 1.00 |          | 0.99     | 1.00        |          | 0.99 |  |
| Parking Bus, Adj 1.00         | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00     | 1.00        | 1.00     | 1.00 |  |
| Work Zone On Approach         | No       |      |      | No       |      |      | No       |          |             | No       |      |  |
| Adj Sat Flow, veh/h/ln 1870   | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870     | 1870        | 1870     | 1870 |  |
| Adj Flow Rate, veh/h 242      | 288      | 47   | 32   | 42       | 1    | 389  | 747      | 19       | 63          | 368      | 49   |  |
| Peak Hour Factor 0.95         | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     | 0.95     | 0.95        | 0.95     | 0.95 |  |
| Percent Heavy Veh, % 2        | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2        | 2           | 2        | 2    |  |
| Cap, veh/h 352                | 370      | 311  | 86   | 87       | 2    | 439  | 1251     | 554      | 79          | 552      | 244  |  |
| Arrive On Green 0.20          | 0.20     | 0.20 | 0.05 | 0.05     | 0.05 | 0.25 | 0.35     | 0.35     | 0.04        | 0.16     | 0.16 |  |
| Sat Flow, veh/h 1781          | 1870     | 1573 | 1781 | 1819     | 43   | 1781 | 3554     | 1574     | 1781        | 3554     | 1570 |  |
| Grp Volume(v), veh/h 242      | 288      | 47   | 32   | 0        | 43   | 389  | 747      | 19       | 63          | 368      | 49   |  |
| Grp Sat Flow(s),veh/h/ln1781  | 1870     | 1573 | 1781 | 0        | 1863 | 1781 | 1777     | 1574     | 1781        | 1777     | 1570 |  |
| 2 Serve(g_s), s 7.4           | 8.6      | 1.5  | 1.0  | 0.0      | 1.3  | 12.4 | 10.1     | 0.5      | 2.1         | 5.7      | 1.6  |  |
| Cycle Q Clear(g_c), s 7.4     | 8.6      | 1.5  | 1.0  | 0.0      | 1.3  | 12.4 | 10.1     | 0.5      | 2.1         | 5.7      | 1.6  |  |
| Prop In Lane 1.00             |          | 1.00 | 1.00 |          | 0.02 | 1.00 |          | 1.00     | 1.00        |          | 1.00 |  |
| ane Grp Cap(c), veh/h 352     | 370      | 311  | 86   | 0        | 90   | 439  | 1251     | 554      | 79          | 552      | 244  |  |
| //C Ratio(X) 0.69             | 0.78     | 0.15 | 0.37 | 0.00     | 0.48 | 0.89 | 0.60     | 0.03     | 0.79        | 0.67     | 0.20 |  |
| Avail Cap(c_a), veh/h 546     | 573      | 482  | 303  | 0        | 317  | 516  | 1453     | 643      | 303         | 968      | 428  |  |
| HCM Platoon Ratio 1.00        | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00     | 1.00        | 1.00     | 1.00 |  |
| Jpstream Filter(I) 1.00       | 1.00     | 1.00 | 1.00 | 0.00     | 1.00 | 1.00 | 1.00     | 1.00     | 1.00        | 1.00     | 1.00 |  |
| Jniform Delay (d), s/veh 21.9 | 22.3     | 19.5 | 27.1 | 0.0      | 27.2 | 21.3 | 15.6     | 12.5     | 27.8        | 23.4     | 21.6 |  |
| ncr Delay (d2), s/veh 0.9     | 1.4      | 0.1  | 1.0  | 0.0      | 1.5  | 13.8 | 0.2      | 0.0      | 6.5         | 0.5      | 0.1  |  |
| nitial Q Delay(d3),s/veh 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0      | 0.0         | 0.0      | 0.0  |  |
| %ile BackOfQ(50%),veh/lr2.9   | 3.6      | 0.5  | 0.4  | 0.0      | 0.6  | 6.3  | 3.6      | 0.1      | 0.9         | 2.2      | 0.5  |  |
| Jnsig. Movement Delay, s/veb  |          |      |      |          |      |      |          |          |             |          |      |  |
| _nGrp Delay(d),s/veh 22.8     | 23.8     | 19.6 | 28.1 | 0.0      | 28.7 | 35.1 | 15.8     | 12.5     | 34.3        | 23.9     | 21.8 |  |
| nGrp LOS C                    | С        | В    | С    | A        | С    | D    | В        | В        | С           | С        | С    |  |
| Approach Vol, veh/h           | 577      |      |      | 75       |      |      | 1155     |          |             | 480      |      |  |
| Approach Delay, s/veh         | 23.0     |      |      | 28.4     |      |      | 22.3     |          |             | 25.0     |      |  |
| Approach LOS                  | С        |      |      | С        |      |      | С        |          |             | С        |      |  |
| Fimer - Assigned Phs          | 2        | 3    | 4    |          | 6    | 7    | 8        |          |             |          |      |  |
| Phs Duration (G+Y+Rc), s      | 16.7     | 19.6 | 14.5 |          | 7.9  | 8.0  | 26.1     |          |             |          |      |  |
| Change Period (Y+Rc), s       | 5.1      | 5.1  | 5.4  |          | 5.1  | 5.4  | * 5.4    |          |             |          |      |  |
| Max Green Setting (Gmax), s   | 18.0     | 17.0 | 16.0 |          | 10.0 | 10.0 | * 24     |          |             |          |      |  |
| Max Q Clear Time (g_c+I1), s  | 10.6     | 14.4 | 7.7  |          | 3.3  | 4.1  | 12.1     |          |             |          |      |  |
| Green Ext Time (p_c), s       | 0.8      | 0.1  | 0.8  |          | 0.0  | 0.0  | 2.2      |          |             |          |      |  |
| ntersection Summary           |          |      |      |          |      |      |          |          |             |          |      |  |
| 1014 (11 01 1 5 1             |          |      |      |          |      |      |          |          |             |          |      |  |
| HCM 6th Ctrl Delay            |          | 23.2 |      |          |      |      |          |          |             |          |      |  |

Notes

User approved pedestrian interval to be less than phase max green.

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection        |           |  |  |  |
|---------------------|-----------|--|--|--|
| Intersection Delay, | s/veh13.6 |  |  |  |
| Intersection LOS    | В         |  |  |  |

| Movement                | EBL    | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|-------------------------|--------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations     |        | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h      | 50     | 20   | 270  | 20   | 20   | 20   | 140  | 130  | 20   | 20   | 220  | 50   |  |
| Future Vol, veh/h       | 50     | 20   | 270  | 20   | 20   | 20   | 140  | 130  | 20   | 20   | 220  | 50   |  |
| Peak Hour Factor        | 0.95   | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |  |
| Heavy Vehicles, %       | 2      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow               | 53     | 21   | 284  | 21   | 21   | 21   | 147  | 137  | 21   | 21   | 232  | 53   |  |
| Number of Lanes         | 0      | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                | EB     |      |      | WB   |      |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach       | WB     |      |      | EB   |      |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes          | 1      |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Le | eft SB |      |      | NB   |      |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left  | 1      |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach R  | ightNB |      |      | SB   |      |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right | 1      |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay       | 14.1   |      |      | 10   |      |      | 13.9 |      |      | 13.5 |      |      |  |
| HCM LOS                 | В      |      |      | Α    |      |      | В    |      |      | В    |      |      |  |

| Lane                   | NBLn1 | EBLn1\ | NBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 48%   | 15%    | 33%   | 7%    |
| Vol Thru, %            | 45%   | 6%     | 33%   | 76%   |
| Vol Right, %           | 7%    | 79%    | 33%   | 17%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 290   | 340    | 60    | 290   |
| LT Vol                 | 140   | 50     | 20    | 20    |
| Through Vol            | 130   | 20     | 20    | 220   |
| RT Vol                 | 20    | 270    | 20    | 50    |
| Lane Flow Rate         | 305   | 358    | 63    | 305   |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.481 | 0.525  | 0.109 | 0.47  |
| Departure Headway (Hd) | 5.678 | 5.285  | 6.185 | 5.544 |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Cap                    | 632   | 680    | 575   | 647   |
| Service Time           | 3.741 | 3.347  | 4.275 | 3.607 |
| HCM Lane V/C Ratio     | 0.483 | 0.526  | 0.11  | 0.471 |
| HCM Control Delay      | 13.9  | 14.1   | 10    | 13.5  |
| HCM Lane LOS           | В     | В      | Α     | В     |
| HCM 95th-tile Q        | 2.6   | 3.1    | 0.4   | 2.5   |

| Intersection           |        |           |       |        |      |          |        |       |            |        |       |       |
|------------------------|--------|-----------|-------|--------|------|----------|--------|-------|------------|--------|-------|-------|
| Int Delay, s/veh       | 26.6   |           |       |        |      |          |        |       |            |        |       |       |
| Movement               | EBL    | EBT       | EBR   | WBL    | WBT  | WBR      | NBL    | NBT   | NBR        | SBL    | SBT   | SBR   |
| Lane Configurations    | ች      | <b>1</b>  |       |        | 4    |          | .,,,,, | 4     |            | 002    | 4     | 05.1  |
| Traffic Vol, veh/h     | 50     | 290       | 20    | 100    | 250  | 60       | 30     | 30    | 30         | 140    | 30    | 50    |
| Future Vol, veh/h      | 50     | 290       | 20    | 100    | 250  | 60       | 30     | 30    | 30         | 140    | 30    | 50    |
| Conflicting Peds, #/hr | 0      | 0         | 0     | 0      | 0    | 0        | 0      | 0     | 0          | 0      | 0     | 0     |
| Sign Control           | Free   | Free      | Free  | Free   | Free | Free     | Stop   | Stop  | Stop       | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -         | None  | _      | _    | None     | -      | -     | None       | -      | -     | None  |
| Storage Length         | 100    | -         | -     | -      | -    | -        | -      | -     | -          | -      | -     | -     |
| Veh in Median Storage  |        | 0         | -     | -      | 0    | -        | -      | 0     | -          | -      | 0     | -     |
| Grade, %               | -      | 0         | -     | -      | 0    | -        | -      | 0     | -          | -      | 0     | -     |
| Peak Hour Factor       | 95     | 95        | 95    | 95     | 95   | 95       | 95     | 95    | 95         | 95     | 95    | 95    |
| Heavy Vehicles, %      | 2      | 2         | 2     | 2      | 2    | 2        | 2      | 2     | 2          | 2      | 2     | 2     |
| Mvmt Flow              | 53     | 305       | 21    | 105    | 263  | 63       | 32     | 32    | 32         | 147    | 32    | 53    |
|                        |        |           |       |        |      |          |        |       |            |        |       |       |
| Major/Minor            | Major1 |           | _     | Major2 |      |          | Minor1 |       |            | Minor2 |       |       |
| Conflicting Flow All   | 326    | 0         | 0     | 326    | 0    | 0        | 969    | 958   | 316        | 959    | 937   | 295   |
| Stage 1                | -      | -         | -     | -      | -    | -        | 422    | 422   | -          | 505    | 505   | _,,   |
| Stage 2                | _      | _         | _     | _      | _    | _        | 547    | 536   | _          | 454    | 432   | _     |
| Critical Hdwy          | 4.12   | -         | -     | 4.12   | -    | -        | 7.12   | 6.52  | 6.22       | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -      | -         | -     | -      | -    | _        | 6.12   | 5.52  | -          | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -      | _         | -     | -      | -    | -        | 6.12   | 5.52  | _          | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218  | -         | -     | 2.218  | -    | _        | 3.518  | 4.018 | 3.318      | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1234   | -         | -     | 1234   | -    | -        | 233    | 257   | 724        | 237    | 265   | 744   |
| Stage 1                | -      | -         | -     | -      | -    | -        | 609    | 588   | -          | 549    | 540   | -     |
| Stage 2                | -      | -         | -     | -      | -    | -        | 521    | 523   | -          | 586    | 582   | -     |
| Platoon blocked, %     |        | -         | -     |        | -    | -        |        |       |            |        |       |       |
| Mov Cap-1 Maneuver     | 1234   | -         | -     | 1234   | -    | -        | 173    | 220   | 724        | 180    | 227   | 744   |
| Mov Cap-2 Maneuver     | -      | -         | -     | -      | -    | -        | 173    | 220   | -          | 180    | 227   | -     |
| Stage 1                | -      | -         | -     | -      | -    | -        | 583    | 563   | -          | 525    | 483   | -     |
| Stage 2                | -      | -         | -     | -      | -    | -        | 405    | 468   | -          | 506    | 557   | -     |
| ŭ                      |        |           |       |        |      |          |        |       |            |        |       |       |
| Approach               | EB     |           |       | WB     |      |          | NB     |       |            | SB     |       |       |
| HCM Control Delay, s   | 1.1    |           |       | 2      |      |          | 27.1   |       |            | 113.9  |       |       |
| HCM LOS                |        |           |       | _      |      |          | D      |       |            | F      |       |       |
|                        |        |           |       |        |      |          |        |       |            |        |       |       |
| Minor Lane/Major Mvm   | nt tr  | NBLn1     | EBL   | EBT    | EBR  | WBL      | WBT    | WBR   | SRI n1     |        |       |       |
| Capacity (veh/h)       | . 1    | 256       | 1234  | LUI    |      | 1234     | VVDI   | -     |            |        |       |       |
| HCM Lane V/C Ratio     |        | 0.37      | 0.043 | -      |      | 0.085    | -      |       | 1.029      |        |       |       |
| HCM Control Delay (s)  |        | 27.1      | 0.043 | -      | -    | 8.2      | 0      |       | 113.9      |        |       |       |
| HCM Lane LOS           |        | 27.1<br>D | A     | -      | -    | 8.2<br>A | A      | -     | 113.9<br>F |        |       |       |
| HCM 95th %tile Q(veh   | )      | 1.6       | 0.1   | -      | -    | 0.3      | A -    | -     | 9.7        |        |       |       |
| HOW FOR TOUR Q(VEH     | )      | 1.0       | U. I  | -      | -    | 0.3      | -      | -     | 7.1        |        |       |       |

|                                                       | ۶         | <b>→</b>  | •     | •           | <b>←</b>  | •        | 1           | <b>†</b>  | /        | <b>&gt;</b>   | ţ          |            |
|-------------------------------------------------------|-----------|-----------|-------|-------------|-----------|----------|-------------|-----------|----------|---------------|------------|------------|
| Movement                                              | EBL       | EBT       | EBR   | WBL         | WBT       | WBR      | NBL         | NBT       | NBR      | SBL           | SBT        | SBR        |
| Lane Configurations                                   |           | 4         |       |             | 4         |          |             | 4         |          | ሻ             | <b>₽</b>   |            |
| Traffic Volume (veh/h)                                | 60        | 260       | 100   | 20          | 130       | 410      | 60          | 280       | 20       | 510           | 650        | 70         |
| Future Volume (veh/h)                                 | 60        | 260       | 100   | 20          | 130       | 410      | 60          | 280       | 20       | 510           | 650        | 70         |
| Initial Q (Qb), veh                                   | 0         | 0         | 0     | 0           | 0         | 0        | 0           | 0         | 0        | 0             | 0          | 0          |
| Ped-Bike Adj(A_pbT)                                   | 1.00      |           | 0.99  | 1.00        |           | 0.99     | 1.00        |           | 1.00     | 1.00          |            | 0.99       |
| Parking Bus, Adj                                      | 1.00      | 1.00      | 1.00  | 1.00        | 1.00      | 1.00     | 1.00        | 1.00      | 1.00     | 1.00          | 1.00       | 1.00       |
| Work Zone On Approach                                 | 1070      | No        | 4070  | 1070        | No        | 4070     | 1070        | No        | 4070     | 4070          | No         | 4070       |
| Adj Sat Flow, veh/h/ln                                | 1870      | 1870      | 1870  | 1870        | 1870      | 1870     | 1870        | 1870      | 1870     | 1870          | 1870       | 1870       |
| Adj Flow Rate, veh/h                                  | 63        | 274       | 89    | 21          | 137       | 285      | 63          | 295       | 18       | 537           | 684        | 69         |
| Peak Hour Factor                                      | 0.95      | 0.95      | 0.95  | 0.95        | 0.95      | 0.95     | 0.95        | 0.95      | 0.95     | 0.95          | 0.95       | 0.95       |
| Percent Heavy Veh, %                                  | 2         | 2         | 2     | 2           | 2         | 2        | 2           | 2         | 2        | 2             | 2          | 2          |
| Cap, veh/h                                            | 113       | 335       | 101   | 71          | 171       | 330      | 74          | 346       | 21       | 386           | 361        | 36         |
| Arrive On Green                                       | 0.30      | 0.30      | 0.30  | 0.30        | 0.30      | 0.30     | 0.24        | 0.24      | 0.24     | 0.22          | 0.22       | 0.22       |
| Sat Flow, veh/h                                       | 160       | 1114      | 336   | 39          | 569       | 1097     | 308         | 1443      | 88       | 1781          | 1669       | 168        |
| Grp Volume(v), veh/h                                  | 426       | 0         | 0     | 443         | 0         | 0        | 376         | 0         | 0        | 537           | 0          | 753        |
| Grp Sat Flow(s), veh/h/ln                             | 1610      | 0         | 0     | 1705        | 0         | 0        | 1839        | 0         | 0        | 1781          | 0          | 1838       |
| Q Serve(g_s), s                                       | 0.5       | 0.0       | 0.0   | 0.0         | 0.0       | 0.0      | 12.4        | 0.0       | 0.0      | 13.7          | 0.0        | 13.7       |
| Cycle Q Clear(g_c), s                                 | 15.9      | 0.0       | 0.0   | 15.4        | 0.0       | 0.0      | 12.4        | 0.0       | 0.0      | 13.7          | 0.0        | 13.7       |
| Prop In Lane                                          | 0.15      | 0         | 0.21  | 0.05        | •         | 0.64     | 0.17        | 0         | 0.05     | 1.00          | 0          | 0.09       |
| Lane Grp Cap(c), veh/h                                | 549       | 0         | 0     | 572         | 0         | 0        | 441         | 0         | 0        | 386           | 0          | 398        |
| V/C Ratio(X)                                          | 0.78      | 0.00      | 0.00  | 0.77        | 0.00      | 0.00     | 0.85        | 0.00      | 0.00     | 1.39          | 0.00       | 1.89       |
| Avail Cap(c_a), veh/h                                 | 674       | 1.00      | 0     | 818         | 0         | 0        | 552         | 0         | 0        | 386           | 0          | 398        |
| HCM Platoon Ratio                                     | 1.00      | 1.00      | 1.00  | 1.00        | 1.00      | 1.00     | 1.00        | 1.00      | 1.00     | 1.00          | 1.00       | 1.00       |
| Upstream Filter(I)                                    | 1.00      | 0.00      | 0.00  | 1.00        | 0.00      | 0.00     | 1.00        | 0.00      | 0.00     | 1.00          | 0.00       | 1.00       |
| Uniform Delay (d), s/veh                              | 20.7      | 0.0       | 0.0   | 21.0<br>1.7 | 0.0       | 0.0      | 23.0<br>9.6 | 0.0       | 0.0      | 24.8<br>192.1 | 0.0        | 24.8       |
| Incr Delay (d2), s/veh                                | 0.0       | 0.0       | 0.0   | 0.0         | 0.0       | 0.0      | 0.0         | 0.0       | 0.0      | 0.0           | 0.0        | 411.4      |
| Initial Q Delay(d3),s/veh<br>%ile BackOfQ(50%),veh/ln | 5.8       | 0.0       | 0.0   | 5.6         | 0.0       | 0.0      | 6.2         | 0.0       | 0.0      | 25.8          | 0.0        | 50.9       |
| Unsig. Movement Delay, s/veh                          |           | 0.0       | 0.0   | 3.0         | 0.0       | 0.0      | 0.2         | 0.0       | 0.0      | 20.0          | 0.0        | 30.9       |
| LnGrp Delay(d),s/veh                                  | 24.3      | 0.0       | 0.0   | 22.7        | 0.0       | 0.0      | 32.6        | 0.0       | 0.0      | 216.9         | 0.0        | 436.2      |
| LnGrp LOS                                             | 24.3<br>C | 0.0<br>A  | Α     | 22.7<br>C   | Α         | 0.0<br>A | 32.0<br>C   | 0.0<br>A  | Α        | 210.9<br>F    | 0.0<br>A   | 430.2<br>F |
| Approach Vol, veh/h                                   |           | 426       |       | C           | 443       |          | C           | 376       | <u>A</u> | ı             | 1290       | 1          |
| Approach Delay, s/veh                                 |           | 24.3      |       |             | 22.7      |          |             | 32.6      |          |               | 344.9      |            |
| Approach LOS                                          |           | 24.3<br>C |       |             | 22.7<br>C |          |             | 32.0<br>C |          |               | 544.9<br>F |            |
| Approach LOS                                          |           | C         |       |             | C         |          |             | C         |          |               | Г          |            |
| Timer - Assigned Phs                                  |           | 2         |       | 4           |           | 6        |             | 8         |          |               |            |            |
| Phs Duration (G+Y+Rc), s                              |           | 19.8      |       | 24.4        |           | 19.1     |             | 24.4      |          |               |            |            |
| Change Period (Y+Rc), s                               |           | 4.6       |       | * 5.4       |           | 5.4      |             | 5.4       |          |               |            |            |
| Max Green Setting (Gmax), s                           |           | 19.0      |       | * 24        |           | 13.7     |             | 28.7      |          |               |            |            |
| Max Q Clear Time (g_c+I1), s                          |           | 14.4      |       | 17.9        |           | 15.7     |             | 17.4      |          |               |            |            |
| Green Ext Time (p_c), s                               |           | 8.0       |       | 0.6         |           | 0.0      |             | 0.8       |          |               |            |            |
| Intersection Summary                                  |           |           |       |             |           |          |             |           |          |               |            |            |
| HCM 6th Ctrl Delay                                    |           |           | 188.4 |             |           |          |             |           |          |               |            |            |
| HCM 6th LOS                                           |           |           | F     |             |           |          |             |           |          |               |            |            |

User approved pedestrian interval to be less than phase max green.

\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| €                              | •    | •    | Ť        |      | -    | ¥        |
|--------------------------------|------|------|----------|------|------|----------|
| Movement WBL                   | WBR  | WBR  | NBT      | NBR  | SBL  | SBT      |
| Lane Configurations 3          | 7    | 7    | <b>†</b> | 7    | ሻ    | <b>1</b> |
| Traffic Volume (veh/h) 650     | 30   |      | 270      | 330  | 40   | 680      |
| Future Volume (veh/h) 650      | 30   | 30   | 270      | 330  | 40   | 680      |
| Initial Q (Qb), veh 0          | 0    | 0    | 0        | 0    | 0    | 0        |
| Ped-Bike Adj(A_pbT) 1.00       | 1.00 | 1.00 |          | 1.00 | 1.00 |          |
| Parking Bus, Adj 1.00          | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     |
| Work Zone On Approach No       |      |      | No       |      |      | No       |
| Adj Sat Flow, veh/h/ln 1870    | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     |
| Adj Flow Rate, veh/h 684       | 12   | 12   | 284      | 347  | 42   | 716      |
| Peak Hour Factor 0.95          | 0.95 | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     |
| Percent Heavy Veh, % 2         | 2    | 2    | 2        | 2    | 2    | 2        |
| Cap, veh/h 726                 | 646  | 646  | 518      | 439  | 60   | 773      |
| Arrive On Green 0.41           | 0.41 | 0.41 | 0.28     | 0.28 | 0.03 | 0.41     |
| Sat Flow, veh/h 1781           | 1585 | 1585 | 1870     | 1585 | 1781 | 1870     |
| Grp Volume(v), veh/h 684       | 12   | 12   | 284      | 347  | 42   | 716      |
| Grp Sat Flow(s), veh/h/ln1781  | 1585 |      | 1870     | 1585 | 1781 | 1870     |
| Q Serve(g_s), s 22.2           | 0.3  |      | 7.8      | 12.2 | 1.4  | 21.9     |
| Cycle Q Clear( $g_c$ ), s 22.2 | 0.3  |      | 7.8      | 12.2 | 1.4  | 21.9     |
| Prop In Lane 1.00              | 1.00 |      | 7.0      | 1.00 | 1.00 | 21.7     |
| Lane Grp Cap(c), veh/h 726     | 646  |      | 518      | 439  | 60   | 773      |
| V/C Ratio(X) 0.94              | 0.02 |      | 0.55     | 0.79 | 0.70 | 0.93     |
| Avail Cap(c_a), veh/h 888      | 790  |      | 932      | 790  | 355  | 932      |
| HCM Platoon Ratio 1.00         | 1.00 |      | 1.00     | 1.00 | 1.00 | 1.00     |
| Upstream Filter(I) 1.00        | 1.00 |      | 1.00     | 1.00 | 1.00 | 1.00     |
| Uniform Delay (d), s/veh 17.2  | 10.7 |      | 18.6     | 20.2 | 28.8 | 16.8     |
| Incr Delay (d2), s/veh 14.9    | 0.0  |      | 0.3      | 1.2  | 5.5  | 12.3     |
| J , , ,                        |      |      |          |      |      |          |
| Initial Q Delay(d3),s/veh 0.0  | 0.0  |      | 0.0      | 0.0  | 0.0  | 0.0      |
| %ile BackOfQ(50%),veh/lnl.0    | 0.1  | 0.1  | 3.0      | 4.0  | 0.6  | 10.2     |
| Unsig. Movement Delay, s/vel   |      | 10.7 | 10.0     | 01.4 | 242  | 20.0     |
| LnGrp Delay(d),s/veh 32.1      | 10.7 |      | 18.9     | 21.4 | 34.3 | 29.0     |
| LnGrp LOS C                    | В    | В    | В        | С    | С    | С        |
| Approach Vol, veh/h 696        |      |      | 631      |      |      | 758      |
| Approach Delay, s/veh 31.7     |      |      | 20.3     |      |      | 29.3     |
| Approach LOS C                 |      |      | С        |      |      | С        |
| Timer - Assigned Phs 1         | 2    |      |          | 4    |      | 6        |
| Phs Duration (G+Y+Rc), s8.2    | 22.9 | 22.9 |          | 29.1 |      | 31.1     |
| Change Period (Y+Rc), s 6.2    | 6.2  |      |          | 4.6  |      | 6.2      |
| Max Green Setting (Gmalt), &   | 30.0 |      |          | 30.0 |      | 30.0     |
| Max Q Clear Time (g_c+l13),4s  | 14.2 |      |          | 24.2 |      | 23.9     |
| Green Ext Time (p_c), s 0.0    | 0.6  |      |          | 0.3  |      | 1.0      |
| η = /-                         |      |      |          |      |      |          |
| Intersection Summary           |      |      |          |      |      |          |
| HCM 6th Ctrl Delay             |      |      | 27.4     |      |      |          |
| HCM 6th LOS                    |      |      | С        |      |      |          |
| Notes                          |      |      |          |      |      |          |

| Intersection           |        |       |       |        |      |      |        |       |           |        |       |       |
|------------------------|--------|-------|-------|--------|------|------|--------|-------|-----------|--------|-------|-------|
| Int Delay, s/veh       | 2.2    |       |       |        |      |      |        |       |           |        |       |       |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT  | WBR  | NBL    | NBT   | NBR       | SBL    | SBT   | SBR   |
| Lane Configurations    |        | ĵ.    |       | ች      | ĵ.   |      |        | 4     |           |        | 4     |       |
| Traffic Vol, veh/h     | 30     | 570   | 0     | 0      | 420  | 30   | 0      | 0     | 0         | 50     | 0     | 30    |
| Future Vol., veh/h     | 30     | 570   | 0     | 0      | 420  | 30   | 0      | 0     | 0         | 50     | 0     | 30    |
| Conflicting Peds, #/hr | 0      | 0     | 0     | 0      | 0    | 0    | 0      | 0     | 0         | 0      | 0     | 0     |
| Sign Control           | Free   | Free  | Free  | Free   | Free | Free | Stop   | Stop  | Stop      | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -     | None  | -      | -    | None | -      | -     | None      | -      | -     | None  |
| Storage Length         | 90     | -     | -     | 90     | -    | -    | -      | -     | -         | -      | -     | -     |
| Veh in Median Storage  | e,# -  | 0     | -     | -      | 0    | -    | -      | 0     | -         | -      | 0     | -     |
| Grade, %               | -      | 0     | -     | -      | 0    | -    | -      | 0     | -         | -      | 0     | -     |
| Peak Hour Factor       | 95     | 95    | 95    | 95     | 95   | 95   | 95     | 95    | 95        | 95     | 95    | 95    |
| Heavy Vehicles, %      | 2      | 2     | 2     | 2      | 2    | 2    | 2      | 2     | 2         | 2      | 2     | 2     |
| Mvmt Flow              | 32     | 600   | 0     | 0      | 442  | 32   | 0      | 0     | 0         | 53     | 0     | 32    |
|                        |        |       |       |        |      |      |        |       |           |        |       |       |
| Major/Minor            | Major1 |       |       | Major2 |      |      | Minor1 |       |           | Minor2 |       |       |
| Conflicting Flow All   | 474    | 0     | 0     | 600    | 0    | 0    | 1138   | 1138  | 600       | 1122   | 1122  | 458   |
| Stage 1                | -      | -     | -     | -      | -    | -    | 664    | 664   | -         | 458    | 458   | -     |
| Stage 2                | -      | _     | -     | -      | -    | _    | 474    | 474   | -         | 664    | 664   | -     |
| Critical Hdwy          | 4.12   | -     | -     | 4.12   | -    | -    | 7.12   | 6.52  | 6.22      | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -      | -     | -     | -      | -    | -    | 6.12   | 5.52  | -         | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -      | -     | -     | -      | -    | -    | 6.12   | 5.52  | -         | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218  | -     | -     | 2.218  | -    | -    | 3.518  | 4.018 | 3.318     | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1088   | -     | -     | 977    | -    | -    | 179    | 201   | 501       | 183    | 206   | 603   |
| Stage 1                | -      | -     | -     | -      | -    | -    | 450    | 458   | -         | 583    | 567   | -     |
| Stage 2                | -      | -     | -     | -      | -    | -    | 571    | 558   | -         | 450    | 458   | -     |
| Platoon blocked, %     |        | -     | -     |        | -    | -    |        |       |           |        |       |       |
| Mov Cap-1 Maneuver     | 1088   | -     | -     | 977    | -    | -    | 166    | 195   | 501       | 179    | 200   | 603   |
| Mov Cap-2 Maneuver     | -      | -     | -     | -      | -    | -    | 166    | 195   | -         | 179    | 200   | -     |
| Stage 1                | -      | -     | -     | -      | -    | -    | 437    | 445   | -         | 566    | 567   | -     |
| Stage 2                | -      | -     | -     | -      | -    | -    | 541    | 558   | -         | 437    | 445   | -     |
|                        |        |       |       |        |      |      |        |       |           |        |       |       |
| Approach               | EB     |       |       | WB     |      |      | NB     |       |           | SB     |       |       |
| HCM Control Delay, s   | 0.4    |       |       | 0      |      |      | 0      |       |           | 27.5   |       |       |
| HCM LOS                |        |       |       |        |      |      | A      |       |           | D      |       |       |
|                        |        |       |       |        |      |      |        |       |           |        |       |       |
| Minor Lane/Major Mvm   | nt N   | NBLn1 | EBL   | EBT    | EBR  | WBL  | WBT    | WBR   | SBI n1    |        |       |       |
| Capacity (veh/h)       | . 1    |       | 1088  | -      |      | 977  | ,,,,,  | -     |           |        |       |       |
| HCM Lane V/C Ratio     |        | -     | 0.029 | -      | -    | 911  | -      |       | 0.347     |        |       |       |
| HCM Control Delay (s)  |        | 0     | 8.4   |        | _    | 0    | -      | -     |           |        |       |       |
| HCM Lane LOS           |        | A     | Α     | -      | -    | A    | -      | -     | 27.5<br>D |        |       |       |
| HCM 95th %tile Q(veh   | )      | -     | 0.1   |        |      | 0    | -      | -     |           |        |       |       |
| 113W 73W 70W Q(VCI)    | ,      |       | U. I  |        |      | U    |        |       | 1.0       |        |       |       |

|                              | ۶         | <b>→</b> | •         | •         | <b>←</b> | •          | 4    | <b>†</b>   | /         | <b>&gt;</b> | ļ          | 4    |
|------------------------------|-----------|----------|-----------|-----------|----------|------------|------|------------|-----------|-------------|------------|------|
| Movement                     | EBL       | EBT      | EBR       | WBL       | WBT      | WBR        | NBL  | NBT        | NBR       | SBL         | SBT        | SBR  |
| Lane Configurations          | ,         | ĵ»       |           | ¥         | f)       |            | Ţ    | <b>↑</b> } |           | *           | <b>↑</b> ↑ |      |
| Traffic Volume (veh/h)       | 340       | 390      | 90        | 80        | 280      | 300        | 80   | 390        | 140       | 230         | 260        | 90   |
| Future Volume (veh/h)        | 340       | 390      | 90        | 80        | 280      | 300        | 80   | 390        | 140       | 230         | 260        | 90   |
| Initial Q (Qb), veh          | 0         | 0        | 0         | 0         | 0        | 0          | 0    | 0          | 0         | 0           | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00      |          | 1.00      | 1.00      |          | 0.99       | 1.00 |            | 0.99      | 1.00        |            | 0.99 |
| Parking Bus, Adj             | 1.00      | 1.00     | 1.00      | 1.00      | 1.00     | 1.00       | 1.00 | 1.00       | 1.00      | 1.00        | 1.00       | 1.00 |
| Work Zone On Approach        |           | No       |           |           | No       |            |      | No         |           |             | No         |      |
| Adj Sat Flow, veh/h/ln       | 1870      | 1870     | 1870      | 1870      | 1870     | 1870       | 1870 | 1870       | 1870      | 1870        | 1870       | 1870 |
| Adj Flow Rate, veh/h         | 358       | 411      | 89        | 84        | 295      | 282        | 84   | 411        | 113       | 242         | 274        | 63   |
| Peak Hour Factor             | 0.95      | 0.95     | 0.95      | 0.95      | 0.95     | 0.95       | 0.95 | 0.95       | 0.95      | 0.95        | 0.95       | 0.95 |
| Percent Heavy Veh, %         | 2         | 2        | 2         | 2         | 2        | 2          | 2    | 2          | 2         | 2           | 2          | 2    |
| Cap, veh/h                   | 389       | 615      | 133       | 168       | 253      | 242        | 168  | 506        | 138       | 265         | 686        | 155  |
| Arrive On Green              | 0.22      | 0.41     | 0.41      | 0.09      | 0.29     | 0.29       | 0.09 | 0.18       | 0.18      | 0.15        | 0.24       | 0.24 |
| Sat Flow, veh/h              | 1781      | 1489     | 322       | 1781      | 877      | 838        | 1781 | 2752       | 748       | 1781        | 2873       | 649  |
| Grp Volume(v), veh/h         | 358       | 0        | 500       | 84        | 0        | 577        | 84   | 264        | 260       | 242         | 168        | 169  |
| Grp Sat Flow(s), veh/h/ln    | 1781      | 0        | 1811      | 1781      | 0        | 1714       | 1781 | 1777       | 1723      | 1781        | 1777       | 1745 |
| Q Serve(g_s), s              | 21.1      | 0.0      | 24.1      | 4.8       | 0.0      | 31.0       | 4.8  | 15.3       | 15.6      | 14.4        | 8.5        | 8.8  |
| Cycle Q Clear(q_c), s        | 21.1      | 0.0      | 24.1      | 4.8       | 0.0      | 31.0       | 4.8  | 15.3       | 15.6      | 14.4        | 8.5        | 8.8  |
| Prop In Lane                 | 1.00      | 0.0      | 0.18      | 1.00      | 0.0      | 0.49       | 1.00 | 10.0       | 0.43      | 1.00        | 0.5        | 0.37 |
| Lane Grp Cap(c), veh/h       | 389       | 0        | 748       | 168       | 0        | 495        | 168  | 327        | 317       | 265         | 425        | 417  |
| V/C Ratio(X)                 | 0.92      | 0.00     | 0.67      | 0.50      | 0.00     | 1.17       | 0.50 | 0.81       | 0.82      | 0.91        | 0.39       | 0.41 |
| Avail Cap(c_a), veh/h        | 431       | 0.00     | 748       | 431       | 0.00     | 495        | 182  | 447        | 433       | 265         | 447        | 439  |
| HCM Platoon Ratio            | 1.00      | 1.00     | 1.00      | 1.00      | 1.00     | 1.00       | 1.00 | 1.00       | 1.00      | 1.00        | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00      | 0.00     | 1.00      | 1.00      | 0.00     | 1.00       | 1.00 | 1.00       | 1.00      | 1.00        | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 41.1      | 0.00     | 25.6      | 46.3      | 0.00     | 38.2       | 46.3 | 42.0       | 42.1      | 45.0        | 34.3       | 34.5 |
| Incr Delay (d2), s/veh       | 23.7      | 0.0      | 2.3       | 2.3       | 0.0      | 94.9       | 2.3  | 7.6        | 8.8       | 33.0        | 0.6        | 0.6  |
| Initial Q Delay(d3),s/veh    | 0.0       | 0.0      | 0.0       | 0.0       | 0.0      | 0.0        | 0.0  | 0.0        | 0.0       | 0.0         | 0.0        | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 11.4      | 0.0      | 10.1      | 2.2       | 0.0      | 25.5       | 2.2  | 7.1        | 7.1       | 8.7         | 3.7        | 3.7  |
| Unsig. Movement Delay, s/veh |           | 0.0      | 10.1      | ۷.۷       | 0.0      | 25.5       | ۷.۷  | 7.1        | 7.1       | 0.7         | 3.1        | 3.7  |
|                              | 64.8      | 0.0      | 27.9      | 48.6      | 0.0      | 133.1      | 48.6 | 49.6       | 50.9      | 78.1        | 34.9       | 35.1 |
| LnGrp Delay(d),s/veh         | 04.0<br>E |          | 27.9<br>C | 40.0<br>D |          | 133.1<br>F |      |            | 50.9<br>D |             | 34.9<br>C  |      |
| LnGrp LOS                    | <u>E</u>  | A        |           | <u> </u>  | A (11    | <u> </u>   | D    | D          | <u>U</u>  | <u>E</u>    |            | D    |
| Approach Vol, veh/h          |           | 858      |           |           | 661      |            |      | 608        |           |             | 579        |      |
| Approach Delay, s/veh        |           | 43.3     |           |           | 122.4    |            |      | 50.0       |           |             | 53.0       |      |
| Approach LOS                 |           | D        |           |           | F        |            |      | D          |           |             | D          |      |
| Timer - Assigned Phs         | 1         | 2        | 3         | 4         | 5        | 6          | 7    | 8          |           |             |            |      |
| Phs Duration (G+Y+Rc), s     | 14.1      | 30.7     | 27.4      | 35.2      | 20.0     | 24.8       | 14.1 | 48.5       |           |             |            |      |
| Change Period (Y+Rc), s      | 4.0       | 5.0      | 4.0       | * 4.2     | 4.0      | 5.0        | 4.0  | * 4.2      |           |             |            |      |
| Max Green Setting (Gmax), s  | 11.0      | 27.0     | 26.0      | * 31      | 16.0     | 27.0       | 26.0 | * 31       |           |             |            |      |
| Max Q Clear Time (g_c+I1), s | 6.8       | 10.8     | 23.1      | 33.0      | 16.4     | 17.6       | 6.8  | 26.1       |           |             |            |      |
| Green Ext Time (p_c), s      | 0.1       | 1.7      | 0.3       | 0.0       | 0.0      | 2.0        | 0.2  | 1.3        |           |             |            |      |
| Intersection Summary         |           |          |           |           |          |            |      |            |           |             |            |      |
| HCM 6th Ctrl Delay           |           |          | 66.2      |           |          |            |      |            |           |             |            |      |
| HCM 6th LOS                  |           |          | 60.2<br>E |           |          |            |      |            |           |             |            |      |
| Notes                        |           |          |           |           |          |            |      |            |           |             |            |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection              |     |  |  |
|---------------------------|-----|--|--|
| Intersection Delay, s/veh | 9.4 |  |  |
| Intersection LOS          | А   |  |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 50   | 20   | 120  | 20   | 20   | 20   | 170  | 50   | 20   | 20   | 50   | 30   |
| Future Vol, veh/h          | 50   | 20   | 120  | 20   | 20   | 20   | 170  | 50   | 20   | 20   | 50   | 30   |
| Peak Hour Factor           | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 53   | 21   | 126  | 21   | 21   | 21   | 179  | 53   | 21   | 21   | 53   | 32   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 9.1  |      |      | 8.4  |      |      | 10.2 |      |      | 8.5  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | В    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 71%   | 26%   | 33%   | 20%   |  |
| Vol Thru, %            | 21%   | 11%   | 33%   | 50%   |  |
| Vol Right, %           | 8%    | 63%   | 33%   | 30%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 240   | 190   | 60    | 100   |  |
| LT Vol                 | 170   | 50    | 20    | 20    |  |
| Through Vol            | 50    | 20    | 20    | 50    |  |
| RT Vol                 | 20    | 120   | 20    | 30    |  |
| Lane Flow Rate         | 253   | 200   | 63    | 105   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.334 | 0.252 | 0.086 | 0.138 |  |
| Departure Headway (Hd) | 4.763 | 4.544 | 4.906 | 4.718 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 753   | 788   | 726   | 756   |  |
| Service Time           | 2.812 | 2.591 | 2.966 | 2.775 |  |
| HCM Lane V/C Ratio     | 0.336 | 0.254 | 0.087 | 0.139 |  |
| HCM Control Delay      | 10.2  | 9.1   | 8.4   | 8.5   |  |
| HCM Lane LOS           | В     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 1.5   | 1     | 0.3   | 0.5   |  |

|                           | ۶    | <b>→</b> | •    | •     | <b>←</b> | •     | 4    | †     | <u> </u> | <b>/</b> | ļ              | 4    |  |
|---------------------------|------|----------|------|-------|----------|-------|------|-------|----------|----------|----------------|------|--|
| Movement                  | EBL  | EBT      | EBR  | WBL   | WBT      | WBR   | NBL  | NBT   | NBR      | SBL      | SBT            | SBR  |  |
| Lane Configurations       | ሻ    | <b>†</b> |      |       | <b>†</b> | 7     | ሻ    | f)    |          | ሻ        | <del>(</del> î |      |  |
| Traffic Volume (veh/h)    | 80   | 540      | 0    | 0     | 650      | 260   | 20   | 50    | 30       | 120      | 0              | 90   |  |
| Future Volume (veh/h)     | 80   | 540      | 0    | 0     | 650      | 260   | 20   | 50    | 30       | 120      | 0              | 90   |  |
| Initial Q (Qb), veh       | 0    | 0        | 0    | 0     | 0        | 0     | 0    | 0     | 0        | 0        | 0              | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00 |          | 1.00 | 1.00  |          | 0.99  | 0.99 |       | 0.99     | 0.99     |                | 0.99 |  |
| Parking Bus, Adj          | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00  | 1.00     | 1.00     | 1.00           | 1.00 |  |
| Work Zone On Approach     |      | No       |      |       | No       |       |      | No    |          |          | No             |      |  |
|                           | 1870 | 1870     | 0    | 0     | 1870     | 1870  | 1870 | 1870  | 1870     | 1870     | 1870           | 1870 |  |
| Adj Flow Rate, veh/h      | 84   | 568      | 0    | 0     | 684      | 183   | 21   | 53    | 12       | 126      | 0              | 14   |  |
| Peak Hour Factor          | 0.95 | 0.95     | 0.95 | 0.95  | 0.95     | 0.95  | 0.95 | 0.95  | 0.95     | 0.95     | 0.95           | 0.95 |  |
| Percent Heavy Veh, %      | 2    | 2        | 0    | 0     | 2        | 2     | 2    | 2     | 2        | 2        | 2              | 2    |  |
| Cap, veh/h                | 407  | 1221     | 0    | 0     | 882      | 744   | 361  | 252   | 57       | 320      | 0              | 268  |  |
| Arrive On Green           | 0.09 | 0.65     | 0.00 | 0.00  | 0.47     | 0.47  | 0.17 | 0.17  | 0.17     | 0.17     | 0.00           | 0.17 |  |
| Sat Flow, veh/h           | 1781 | 1870     | 0    | 0     | 1870     | 1577  | 1380 | 1471  | 333      | 1320     | 0              | 1562 |  |
| Grp Volume(v), veh/h      | 84   | 568      | 0    | 0     | 684      | 183   | 21   | 0     | 65       | 126      | 0              | 14   |  |
| Grp Sat Flow(s), veh/h/ln | 1781 | 1870     | 0    | 0     | 1870     | 1577  | 1380 | 0     | 1805     | 1320     | 0              | 1562 |  |
| Q Serve(g_s), s           | 1.1  | 8.1      | 0.0  | 0.0   | 16.3     | 3.7   | 0.7  | 0.0   | 1.7      | 4.9      | 0.0            | 0.4  |  |
| Cycle Q Clear(g_c), s     | 1.1  | 8.1      | 0.0  | 0.0   | 16.3     | 3.7   | 1.1  | 0.0   | 1.7      | 6.5      | 0.0            | 0.4  |  |
| Prop In Lane              | 1.00 |          | 0.00 | 0.00  |          | 1.00  | 1.00 |       | 0.18     | 1.00     |                | 1.00 |  |
| Lane Grp Cap(c), veh/h    |      | 1221     | 0    | 0     | 882      | 744   | 361  | 0     | 309      | 320      | 0              | 268  |  |
| V/C Ratio(X)              | 0.21 | 0.47     | 0.00 | 0.00  | 0.78     | 0.25  | 0.06 | 0.00  | 0.21     | 0.39     | 0.00           | 0.05 |  |
| Avail Cap(c_a), veh/h     | 474  | 1221     | 0    | 0     | 2517     | 2122  | 589  | 0     | 607      | 538      | 0              | 525  |  |
| HCM Platoon Ratio         | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00  | 1.00     | 1.00     | 1.00           | 1.00 |  |
| Upstream Filter(I)        | 1.00 | 1.00     | 0.00 | 0.00  | 1.00     | 1.00  | 1.00 | 0.00  | 1.00     | 1.00     | 0.00           | 1.00 |  |
| Uniform Delay (d), s/veh  |      | 4.6      | 0.0  | 0.0   | 11.8     | 8.4   | 19.0 | 0.0   | 19.1     | 21.9     | 0.0            | 18.5 |  |
| Incr Delay (d2), s/veh    | 0.2  | 0.3      | 0.0  | 0.0   | 1.5      | 0.2   | 0.1  | 0.0   | 0.3      | 0.8      | 0.0            | 0.1  |  |
| Initial Q Delay(d3),s/veh |      | 0.0      | 0.0  | 0.0   | 0.0      | 0.0   | 0.0  | 0.0   | 0.0      | 0.0      | 0.0            | 0.0  |  |
| %ile BackOfQ(50%),veh     |      | 2.1      | 0.0  | 0.0   | 6.0      | 1.1   | 0.2  | 0.0   | 0.7      | 1.5      | 0.0            | 0.1  |  |
| Unsig. Movement Delay     |      |          |      |       |          |       |      |       |          |          |                |      |  |
| LnGrp Delay(d),s/veh      | 8.3  | 4.9      | 0.0  | 0.0   | 13.3     | 8.6   | 19.1 | 0.0   | 19.4     | 22.6     | 0.0            | 18.6 |  |
| LnGrp LOS                 | A    | A        | Α    | А     | В        | A     | В    | A     | В        | С        | Α              | В    |  |
| Approach Vol, veh/h       |      | 652      |      |       | 867      |       |      | 86    |          |          | 140            |      |  |
| Approach Delay, s/veh     |      | 5.3      |      |       | 12.3     |       |      | 19.3  |          |          | 22.2           |      |  |
| Approach LOS              |      | Α        |      |       | В        |       |      | В     |          |          | С              |      |  |
| Timer - Assigned Phs      |      | 2        |      | 4     | 5        | 6     |      | 8     |          |          |                |      |  |
| Phs Duration (G+Y+Rc)     | , S  | 39.6     |      | 13.9  | 9.7      | 29.9  |      | 13.9  |          |          |                |      |  |
| Change Period (Y+Rc),     |      | * 4.7    |      | * 4.7 | * 4.7    | * 4.7 |      | * 4.7 |          |          |                |      |  |
| Max Green Setting (Gm.    |      | * 32     |      | * 18  | * 7      | * 72  |      | * 18  |          |          |                |      |  |
| Max Q Clear Time (g_c+    |      | 10.1     |      | 8.5   | 3.1      | 18.3  |      | 3.7   |          |          |                |      |  |
| Green Ext Time (p_c), s   |      | 4.1      |      | 0.3   | 0.1      | 7.0   |      | 0.3   |          |          |                |      |  |
| Intersection Summary      |      |          |      |       |          |       |      |       |          |          |                |      |  |
| HCM 6th Ctrl Delay        |      |          | 10.8 |       |          |       |      |       |          |          |                |      |  |
| HCM 6th LOS               |      |          | В    |       |          |       |      |       |          |          |                |      |  |
| 1.5.01 0.11 2.00          |      |          |      |       |          |       |      |       |          |          |                |      |  |

|                                                   | ۶          | <b>→</b> | •    | •     | <b>←</b>       | 4     | •    | †     | <b>/</b> | <b>/</b> | ţ    | 4    |
|---------------------------------------------------|------------|----------|------|-------|----------------|-------|------|-------|----------|----------|------|------|
| Movement E                                        | EBL        | EBT      | EBR  | WBL   | WBT            | WBR   | NBL  | NBT   | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations                               |            |          | 7    | ሻ     | <del>(</del> Î |       | ሻ    | f)    |          |          | 4    |      |
| Traffic Volume (veh/h)                            | 0          | 500      | 190  | 90    | 630            | 30    | 230  | 20    | 50       | 30       | 30   | 50   |
| Future Volume (veh/h)                             | 0          | 500      | 190  | 90    | 630            | 30    | 230  | 20    | 50       | 30       | 30   | 50   |
| Initial Q (Qb), veh                               | 0          | 0        | 0    | 0     | 0              | 0     | 0    | 0     | 0        | 0        | 0    | 0    |
| Ped-Bike Adj(A_pbT) 1                             | 1.00       |          | 0.99 | 1.00  |                | 1.00  | 0.99 |       | 1.00     | 1.00     |      | 0.99 |
|                                                   | 1.00       | 1.00     | 1.00 | 1.00  | 1.00           | 1.00  | 1.00 | 1.00  | 1.00     | 1.00     | 1.00 | 1.00 |
| Work Zone On Approach                             |            | No       |      |       | No             |       |      | No    |          |          | No   |      |
| Adj Sat Flow, veh/h/ln                            | 0          | 1870     | 1870 | 1870  | 1870           | 1870  | 1870 | 1870  | 1870     | 1870     | 1870 | 1870 |
| Adj Flow Rate, veh/h                              | 0          | 526      | 141  | 95    | 663            | 30    | 242  | 21    | 13       | 32       | 32   | 13   |
|                                                   | 0.95       | 0.95     | 0.95 | 0.95  | 0.95           | 0.95  | 0.95 | 0.95  | 0.95     | 0.95     | 0.95 | 0.95 |
| Percent Heavy Veh, %                              | 0          | 2        | 2    | 2     | 2              | 2     | 2    | 2     | 2        | 2        | 2    | 2    |
| Cap, veh/h                                        | 0          | 667      | 561  | 469   | 1044           | 47    | 456  | 234   | 145      | 212      | 189  | 60   |
| •                                                 | 0.00       | 0.36     | 0.36 | 0.13  | 0.59           | 0.59  | 0.22 | 0.22  | 0.22     | 0.22     | 0.22 | 0.22 |
| Sat Flow, veh/h                                   | 0          | 1870     | 1574 | 1781  | 1775           | 80    | 1348 | 1081  | 669      | 491      | 872  | 277  |
| Grp Volume(v), veh/h                              | 0          | 526      | 141  | 95    | 0              | 693   | 242  | 0     | 34       | 77       | 0    | 0    |
| Grp Sat Flow(s), veh/h/ln                         | 0          | 1870     | 1574 | 1781  | 0              | 1855  | 1348 | 0     | 1750     | 1640     | 0    | 0    |
|                                                   | 0.0        | 12.1     | 3.1  | 1.3   | 0.0            | 11.8  | 6.0  | 0.0   | 0.7      | 0.0      | 0.0  | 0.0  |
|                                                   | 0.0        | 12.1     | 3.1  | 1.3   | 0.0            | 11.8  | 7.6  | 0.0   | 0.7      | 1.7      | 0.0  | 0.0  |
| 3 (5- 7)                                          | 0.00       | 12.1     | 1.00 | 1.00  | 0.0            | 0.04  | 1.00 | 0.0   | 0.38     | 0.42     | 0.0  | 0.17 |
| Lane Grp Cap(c), veh/h                            | 0          | 667      | 561  | 469   | 0              | 1092  | 456  | 0     | 379      | 461      | 0    | 0    |
|                                                   | 0.00       | 0.79     | 0.25 | 0.20  | 0.00           | 0.63  | 0.53 | 0.00  | 0.09     | 0.17     | 0.00 | 0.00 |
| Avail Cap(c_a), veh/h                             | 0          | 931      | 784  | 562   | 0              | 1092  | 1003 | 0.00  | 1089     | 461      | 0.00 | 0.00 |
| • • •                                             | 1.00       | 1.00     | 1.00 | 1.00  | 1.00           | 1.00  | 1.00 | 1.00  | 1.00     | 1.00     | 1.00 | 1.00 |
|                                                   | 0.00       | 1.00     | 1.00 | 1.00  | 0.00           | 1.00  | 1.00 | 0.00  | 1.00     | 1.00     | 0.00 | 0.00 |
| Uniform Delay (d), s/veh                          |            | 13.9     | 11.0 | 7.9   | 0.0            | 6.5   | 17.6 | 0.0   | 15.1     | 15.4     | 0.0  | 0.0  |
|                                                   | 0.0        | 3.1      | 0.2  | 0.2   | 0.0            | 1.2   | 1.0  | 0.0   | 0.1      | 0.2      | 0.0  | 0.0  |
| Initial Q Delay(d3),s/veh                         |            | 0.0      | 0.0  | 0.0   | 0.0            | 0.0   | 0.0  | 0.0   | 0.0      | 0.0      | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/l                           |            | 4.9      | 1.0  | 0.4   | 0.0            | 3.5   | 2.4  | 0.0   | 0.3      | 0.7      | 0.0  | 0.0  |
| Unsig. Movement Delay,                            |            |          | 1.0  | 3. 7  | 3.0            | 3.0   |      | 3.0   | 3.0      | 3.7      | 3.0  | 3.0  |
| 3                                                 | 0.0        | 17.0     | 11.2 | 8.1   | 0.0            | 7.7   | 18.6 | 0.0   | 15.2     | 15.6     | 0.0  | 0.0  |
| LnGrp LOS                                         | A          | В        | В    | A     | A              | A     | В    | A     | В        | В        | A    | A    |
| Approach Vol, veh/h                               |            | 667      |      |       | 788            |       |      | 276   |          |          | 77   |      |
| Approach Delay, s/veh                             |            | 15.8     |      |       | 7.8            |       |      | 18.1  |          |          | 15.6 |      |
| Approach LOS                                      |            | В        |      |       | Α.             |       |      | В     |          |          | В    |      |
| ••                                                | 1          | 2        |      | Λ     |                | 4     |      | 8     |          |          |      |      |
| Timer - Assigned Phs  Phs Puretion (C - V - Pa) 1 | 1<br>1.1 2 |          |      | 1 1 1 |                | 22.1  |      |       |          |          |      |      |
| Phs Duration (G+Y+Rc), 1                          |            | 21.9     |      | 15.1  |                | 33.1  |      | 15.1  |          |          |      |      |
| Change Period (Y+Rc), \$                          |            | * 4.7    |      | * 4.7 |                | * 4.7 |      | * 4.7 |          |          |      |      |
| Max Green Setting (Gmax                           |            | * 24     |      | * 10  |                | * 24  |      | * 30  |          |          |      |      |
| Max Q Clear Time (g_c+l                           |            | 14.1     |      | 3.7   |                | 13.8  |      | 9.6   |          |          |      |      |
| Green Ext Time (p_c), s                           | U. I       | 2.9      |      | 0.1   |                | 3.6   |      | 0.9   |          |          |      |      |
| Intersection Summary                              |            |          |      |       |                |       |      |       |          |          |      |      |
| HCM 6th Ctrl Delay                                |            |          | 12.6 |       |                |       |      |       |          |          |      |      |
| HCM 6th LOS                                       |            |          | В    |       |                |       |      |       |          |          |      |      |
| Notes                                             |            |          |      |       |                |       |      |       |          |          |      |      |

| Intersection           |        |       |           |          |          |      |     |  |
|------------------------|--------|-------|-----------|----------|----------|------|-----|--|
| Int Delay, s/veh       | 267.2  |       |           |          |          |      |     |  |
| Movement               | EBL    | EBR   | NBL       | NBT      | SBT      | SBR  |     |  |
| Lane Configurations    | ሻ      | 7     | *         | <b>↑</b> | <u> </u> | 7    |     |  |
| Traffic Vol, veh/h     | 400    | 80    | 60        | 800      | 640      | 320  |     |  |
| Future Vol, veh/h      | 400    | 80    | 60        | 800      | 640      | 320  |     |  |
| Conflicting Peds, #/hr |        | 0     | 00        | 000      | 040      | 0    |     |  |
| Sign Control           | Stop   | Stop  | Free      | Free     | Free     | Free |     |  |
| RT Channelized         | 310p   | Stop  | -         | None     | -        | None |     |  |
| Storage Length         | 0      | 90    | 70        | -        | -        | 100  |     |  |
| Veh in Median Storag   |        | -     | -         | 0        | 0        | 100  |     |  |
| Grade, %               | 0      | -     | -         | 0        | 0        | -    |     |  |
| Peak Hour Factor       | 95     | 95    | 95        | 95       | 95       | 95   |     |  |
| Heavy Vehicles, %      | 2      | 95    | 95        | 2        | 2        | 2    |     |  |
| Mymt Flow              | 421    | 84    | 63        | 842      | 674      | 337  |     |  |
| VIVIIIL FIOW           | 421    | 84    | 03        | 842      | 0/4      | 337  |     |  |
|                        |        |       |           |          |          |      |     |  |
| Major/Minor            | Minor2 |       | Major1    |          | Major2   |      |     |  |
| Conflicting Flow All   | 1642   | 674   | 1011      | 0        | -        | 0    |     |  |
| Stage 1                | 674    | -     | -         | -        | -        | -    |     |  |
| Stage 2                | 968    | -     | -         | -        | -        | -    |     |  |
| Critical Hdwy          | 6.42   | 6.22  | 4.12      | -        | -        | -    |     |  |
| Critical Hdwy Stg 1    | 5.42   | -     | -         | -        | -        | -    |     |  |
| Critical Hdwy Stg 2    | 5.42   | -     | -         | -        | -        | -    |     |  |
| Follow-up Hdwy         | 3.518  | 3.318 | 2.218     | -        | -        | -    |     |  |
| Pot Cap-1 Maneuver     | ~ 110  | 455   | 686       | -        | -        | -    |     |  |
| Stage 1                | 506    | -     | -         | -        | -        | -    |     |  |
| Stage 2                | ~ 368  | -     | -         | -        | -        | -    |     |  |
| Platoon blocked, %     |        |       |           | -        | -        | -    |     |  |
| Mov Cap-1 Maneuver     | ~ 100  | 455   | 686       | -        | -        | -    |     |  |
| Mov Cap-2 Maneuver     | ~ 100  | -     | -         | -        | -        | -    |     |  |
| Stage 1                | 459    | -     | -         | -        | -        | -    |     |  |
| Stage 2                | ~ 368  | -     | -         | -        | -        | -    |     |  |
|                        |        |       |           |          |          |      |     |  |
| Approach               | EB     |       | NB        |          | SB       |      |     |  |
| HCM Control Delay, \$  |        |       | 0.8       |          | 0        |      |     |  |
| HCM LOS                | F      |       | 0.0       |          | U        |      |     |  |
| 12 200                 |        |       |           |          |          |      |     |  |
| Minor Lane/Major Mvi   | mt     | NBL   | NDT       | EBLn1 E  | בחום:    | SBT  | SBR |  |
|                        | m      |       |           |          |          |      | אטכ |  |
| Capacity (veh/h)       |        | 686   | -         | 100      | 455      | -    | -   |  |
| HCM Cantral Dalay (    |        | 0.092 |           | 4.211    |          | -    | -   |  |
| HCM Control Delay (s   | 5)     | 10.8  | <b>\$</b> | 1531.5   | 14.7     | -    | -   |  |
| HCM Lane LOS           | -1     | В     | -         | F        | В        | -    | -   |  |
| HCM 95th %tile Q(vel   | 1)     | 0.3   | -         | 43.7     | 0.7      | -    | -   |  |
|                        |        |       |           |          |          |      |     |  |
| Notes                  |        |       |           |          |          |      |     |  |

|                                | ۶    | <b>→</b> | *          | •    | <b>←</b> | 4    | 1     | <b>†</b> | ~    | <b>&gt;</b> | Ţ     | √    |
|--------------------------------|------|----------|------------|------|----------|------|-------|----------|------|-------------|-------|------|
| Movement                       | EBL  | EBT      | EBR        | WBL  | WBT      | WBR  | NBL   | NBT      | NBR  | SBL         | SBT   | SBR  |
| Lane Configurations            | 1    | <b>†</b> | 7          | ሻ    | <b>₽</b> |      | ሻ     | <b>↑</b> | 7    |             | 4     |      |
| Traffic Volume (veh/h)         | 220  | 880      | 700        | 170  | 440      | 50   | 610   | 390      | 220  | 60          | 320   | 150  |
| Future Volume (veh/h)          | 220  | 880      | 700        | 170  | 440      | 50   | 610   | 390      | 220  | 60          | 320   | 150  |
| Initial Q (Qb), veh            | 0    | 0        | 0          | 0    | 0        | 0    | 0     | 0        | 0    | 0           | 0     | 0    |
| Ped-Bike Adj(A_pbT)            | 1.00 |          | 0.99       | 1.00 |          | 0.99 | 1.00  |          | 0.99 | 1.00        |       | 0.99 |
| Parking Bus, Adj               | 1.00 | 1.00     | 1.00       | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00        | 1.00  | 1.00 |
| Work Zone On Approach          |      | No       |            |      | No       |      |       | No       |      |             | No    |      |
| Adj Sat Flow, veh/h/ln         | 1870 | 1870     | 1870       | 1870 | 1870     | 1870 | 1870  | 1870     | 1870 | 1870        | 1870  | 1870 |
| Adj Flow Rate, veh/h           | 232  | 926      | 482        | 179  | 463      | 50   | 642   | 411      | 47   | 63          | 337   | 146  |
| Peak Hour Factor               | 0.95 | 0.95     | 0.95       | 0.95 | 0.95     | 0.95 | 0.95  | 0.95     | 0.95 | 0.95        | 0.95  | 0.95 |
| Percent Heavy Veh, %           | 2    | 2        | 2          | 2    | 2        | 2    | 2     | 2        | 2    | 2           | 2     | 2    |
| Cap, veh/h                     | 257  | 575      | 483        | 205  | 461      | 50   | 424   | 446      | 374  | 32          | 174   | 75   |
| Arrive On Green                | 0.14 | 0.31     | 0.31       | 0.12 | 0.28     | 0.28 | 0.24  | 0.24     | 0.24 | 0.16        | 0.16  | 0.16 |
| Sat Flow, veh/h                | 1781 | 1870     | 1572       | 1781 | 1657     | 179  | 1781  | 1870     | 1568 | 204         | 1092  | 473  |
| Grp Volume(v), veh/h           | 232  | 926      | 482        | 179  | 0        | 513  | 642   | 411      | 47   | 546         | 0     | 0    |
| Grp Sat Flow(s),veh/h/ln       | 1781 | 1870     | 1572       | 1781 | 0        | 1836 | 1781  | 1870     | 1568 | 1770        | 0     | 0    |
| Q Serve(g_s), s                | 16.1 | 38.7     | 38.6       | 12.4 | 0.0      | 35.0 | 30.0  | 27.0     | 3.0  | 20.0        | 0.0   | 0.0  |
| Cycle Q Clear(g_c), s          | 16.1 | 38.7     | 38.6       | 12.4 | 0.0      | 35.0 | 30.0  | 27.0     | 3.0  | 20.0        | 0.0   | 0.0  |
| Prop In Lane                   | 1.00 |          | 1.00       | 1.00 |          | 0.10 | 1.00  |          | 1.00 | 0.12        |       | 0.27 |
| Lane Grp Cap(c), veh/h         | 257  | 575      | 483        | 205  | 0        | 511  | 424   | 446      | 374  | 281         | 0     | 0    |
| V/C Ratio(X)                   | 0.90 | 1.61     | 1.00       | 0.87 | 0.00     | 1.00 | 1.51  | 0.92     | 0.13 | 1.94        | 0.00  | 0.00 |
| Avail Cap(c_a), veh/h          | 283  | 575      | 483        | 277  | 0        | 511  | 424   | 446      | 374  | 281         | 0     | 0    |
| HCM Platoon Ratio              | 1.00 | 1.00     | 1.00       | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00        | 1.00  | 1.00 |
| Upstream Filter(I)             | 1.00 | 1.00     | 1.00       | 1.00 | 0.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00        | 0.00  | 0.00 |
| Uniform Delay (d), s/veh       | 53.0 | 43.6     | 43.6       | 54.8 | 0.0      | 45.4 | 47.9  | 46.8     | 37.6 | 52.9        | 0.0   | 0.0  |
| Incr Delay (d2), s/veh         | 26.7 | 283.3    | 40.4       | 16.1 | 0.0      | 41.0 | 242.5 | 24.2     | 0.1  | 436.7       | 0.0   | 0.0  |
| Initial Q Delay(d3),s/veh      | 0.0  | 0.0      | 0.0        | 0.0  | 0.0      | 0.0  | 0.0   | 0.0      | 0.0  | 0.0         | 0.0   | 0.0  |
| %ile BackOfQ(50%),veh/ln       | 8.9  | 62.4     | 19.8       | 6.4  | 0.0      | 21.3 | 41.4  | 15.2     | 1.1  | 42.9        | 0.0   | 0.0  |
| Unsig. Movement Delay, s/veh   |      |          |            |      |          |      |       |          |      |             |       |      |
| LnGrp Delay(d),s/veh           | 79.7 | 326.9    | 84.0       | 70.9 | 0.0      | 86.5 | 290.4 | 71.0     | 37.7 | 489.7       | 0.0   | 0.0  |
| LnGrp LOS                      | Ε    | F        | F          | Ε    | Α        | F    | F     | Ε        | D    | F           | Α     | Α    |
| Approach Vol, veh/h            |      | 1640     |            |      | 692      |      |       | 1100     |      |             | 546   |      |
| Approach Delay, s/veh          |      | 220.5    |            |      | 82.5     |      |       | 197.6    |      |             | 489.7 |      |
| Approach LOS                   |      | F        |            |      | F        |      |       | F        |      |             | F     |      |
| Timer - Assigned Phs           | 1    | 2        |            | 4    | 5        | 6    |       | 8        |      |             |       |      |
| Phs Duration (G+Y+Rc), s       | 20.3 | 44.7     |            | 25.1 | 24.0     | 41.0 |       | 35.8     |      |             |       |      |
| Change Period (Y+Rc), s        | 5.8  | 6.0      |            | 5.1  | 5.8      | 6.0  |       | 5.8      |      |             |       |      |
| Max Green Setting (Gmax), s    | 19.6 | 30.0     |            | 20.0 | 20.0     | 35.0 |       | 30.0     |      |             |       |      |
| Max Q Clear Time (g_c+l1), s   | 14.4 | 40.7     |            | 22.0 | 18.1     | 37.0 |       | 32.0     |      |             |       |      |
| Green Ext Time (p_c), s        | 0.1  | 0.0      |            | 0.0  | 0.1      | 0.0  |       | 0.0      |      |             |       |      |
| Intersection Summary           |      |          |            |      |          |      |       |          |      |             |       |      |
|                                |      |          | 227.1      |      |          |      |       |          |      |             |       |      |
| HCM 6th Ctrl Delay HCM 6th LOS |      |          | 227.1<br>F |      |          |      |       |          |      |             |       |      |
|                                |      |          | Г          |      |          |      |       |          |      |             |       |      |
| Notes                          |      |          |            |      |          |      |       |          |      |             |       |      |

|                           | ۶     | <b>→</b> | •    | •    | <b>←</b> | •     | •    | †        | <u> </u> | <b>\</b> | ļ       | 4    |  |
|---------------------------|-------|----------|------|------|----------|-------|------|----------|----------|----------|---------|------|--|
| Movement                  | EBL   | EBT      | EBR  | WBL  | WBT      | WBR   | NBL  | NBT      | NBR      | SBL      | SBT     | SBR  |  |
| Lane Configurations       | 7     | <b>^</b> | 7    | ች    | €        |       |      | <b>^</b> | 7        | *        | <b></b> | 7    |  |
| Traffic Volume (veh/h)    | 100   | 230      | 560  | 30   | 130      | 50    | 340  | 750      | 30       | 70       | 560     | 70   |  |
| Future Volume (veh/h)     | 100   | 230      | 560  | 30   | 130      | 50    | 340  | 750      | 30       | 70       | 560     | 70   |  |
| Initial Q (Qb), veh       | 0     | 0        | 0    | 0    | 0        | 0     | 0    | 0        | 0        | 0        | 0       | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00  |          | 1.00 | 1.00 |          | 1.00  | 1.00 |          | 1.00     | 1.00     |         | 1.00 |  |
| Parking Bus, Adj          | 1.00  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00     | 1.00     | 1.00    | 1.00 |  |
| Work Zone On Approac      | ch    | No       |      |      | No       |       |      | No       |          |          | No      |      |  |
| Adj Sat Flow, veh/h/ln    | 1870  | 1870     | 1870 | 1870 | 1870     | 1870  | 1870 | 1870     | 1870     | 1870     | 1870    | 1870 |  |
| Adj Flow Rate, veh/h      | 105   | 242      | 212  | 32   | 137      | 38    | 358  | 789      | 14       | 74       | 589     | 21   |  |
| Peak Hour Factor          | 0.95  | 0.95     | 0.95 | 0.95 | 0.95     | 0.95  | 0.95 | 0.95     | 0.95     | 0.95     | 0.95    | 0.95 |  |
| Percent Heavy Veh, %      | 2     | 2        | 2    | 2    | 2        | 2     | 2    | 2        | 2        | 2        | 2       | 2    |  |
| Cap, veh/h                | 133   | 336      | 285  | 45   | 170      | 47    | 392  | 938      | 795      | 95       | 626     | 530  |  |
| Arrive On Green           | 0.07  | 0.18     | 0.18 | 0.03 | 0.12     | 0.12  | 0.22 | 0.50     | 0.50     | 0.05     | 0.33    | 0.33 |  |
| Sat Flow, veh/h           | 1781  | 1870     | 1585 | 1781 | 1409     | 391   | 1781 | 1870     | 1585     | 1781     | 1870    | 1585 |  |
| Grp Volume(v), veh/h      | 105   | 242      | 212  | 32   | 0        | 175   | 358  | 789      | 14       | 74       | 589     | 21   |  |
| Grp Sat Flow(s),veh/h/li  | n1781 | 1870     | 1585 | 1781 | 0        | 1800  | 1781 | 1870     | 1585     | 1781     | 1870    | 1585 |  |
| Q Serve(g_s), s           | 4.9   | 10.2     | 10.6 | 1.5  | 0.0      | 8.0   | 16.5 | 30.6     | 0.4      | 3.4      | 25.7    | 8.0  |  |
| Cycle Q Clear(q_c), s     | 4.9   | 10.2     | 10.6 | 1.5  | 0.0      | 8.0   | 16.5 | 30.6     | 0.4      | 3.4      | 25.7    | 8.0  |  |
| Prop In Lane              | 1.00  |          | 1.00 | 1.00 |          | 0.22  | 1.00 |          | 1.00     | 1.00     |         | 1.00 |  |
| Lane Grp Cap(c), veh/h    |       | 336      | 285  | 45   | 0        | 217   | 392  | 938      | 795      | 95       | 626     | 530  |  |
| V/C Ratio(X)              | 0.79  | 0.72     | 0.74 | 0.72 | 0.00     | 0.81  | 0.91 | 0.84     | 0.02     | 0.78     | 0.94    | 0.04 |  |
| Avail Cap(c_a), veh/h     | 254   | 890      | 754  | 254  | 0        | 557   | 424  | 938      | 795      | 212      | 668     | 566  |  |
| HCM Platoon Ratio         | 1.00  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00     | 1.00     | 1.00    | 1.00 |  |
| Upstream Filter(I)        | 1.00  | 1.00     | 1.00 | 1.00 | 0.00     | 1.00  | 1.00 | 1.00     | 1.00     | 1.00     | 1.00    | 1.00 |  |
| Uniform Delay (d), s/vel  |       | 32.5     | 32.6 | 40.7 | 0.0      | 36.0  | 32.0 | 18.1     | 10.5     | 39.3     | 27.2    | 18.9 |  |
| Incr Delay (d2), s/veh    | 3.8   | 1.1      | 1.5  | 7.7  | 0.0      | 2.7   | 21.9 | 6.6      | 0.0      | 5.1      | 20.4    | 0.0  |  |
| Initial Q Delay(d3),s/veh |       | 0.0      | 0.0  | 0.0  | 0.0      | 0.0   | 0.0  | 0.0      | 0.0      | 0.0      | 0.0     | 0.0  |  |
| %ile BackOfQ(50%),vel     |       | 4.5      | 4.0  | 0.8  | 0.0      | 3.6   | 9.1  | 13.4     | 0.1      | 1.6      | 14.2    | 0.3  |  |
| Unsig. Movement Delay     |       |          |      |      |          |       |      |          |          |          |         |      |  |
| LnGrp Delay(d),s/veh      | 42.1  | 33.6     | 34.1 | 48.4 | 0.0      | 38.7  | 53.8 | 24.7     | 10.5     | 44.3     | 47.6    | 18.9 |  |
| LnGrp LOS                 | D     | С        | С    | D    | А        | D     | D    | С        | В        | D        | D       | В    |  |
| Approach Vol, veh/h       |       | 559      |      |      | 207      |       |      | 1161     |          |          | 684     |      |  |
| Approach Delay, s/veh     |       | 35.4     |      |      | 40.2     |       |      | 33.5     |          |          | 46.3    |      |  |
| Approach LOS              |       | D        |      |      | D        |       |      | С        |          |          | D       |      |  |
| Timer - Assigned Phs      | 1     | 2        | 3    | 4    | 5        | 6     | 7    | 8        |          |          |         |      |  |
| Phs Duration (G+Y+Rc)     | s6.7  | 20.5     | 23.6 | 33.2 | 11.7     | 15.5  | 9.6  | 47.2     |          |          |         |      |  |
| Change Period (Y+Rc),     |       | 5.4      | 5.1  | 5.1  | 5.4      | * 5.4 | 5.1  | 5.1      |          |          |         |      |  |
| Max Green Setting (Gm     |       | 40.0     | 20.0 | 30.0 | 12.0     | * 26  | 10.0 | 30.0     |          |          |         |      |  |
| Max Q Clear Time (g_c     |       | 12.6     | 18.5 | 27.7 | 6.9      | 10.0  | 5.4  | 32.6     |          |          |         |      |  |
| Green Ext Time (p_c), s   |       | 0.5      | 0.0  | 0.4  | 0.9      | 0.3   | 0.0  | 0.0      |          |          |         |      |  |
|                           | 5 0.0 | 0.5      | 0.0  | 0.4  | 0.0      | 0.3   | 0.0  | 0.0      |          |          |         |      |  |
| Intersection Summary      |       |          |      |      |          |       |      |          |          |          |         |      |  |
| HCM 6th Ctrl Delay        |       |          | 37.8 |      |          |       |      |          |          |          |         |      |  |
| HCM 6th LOS               |       |          | D    |      |          |       |      |          |          |          |         |      |  |
|                           |       |          |      |      |          |       |      |          |          |          |         |      |  |

| Intersection           |             |           |          |         |        |          |          |           |        |             |         |          |            |
|------------------------|-------------|-----------|----------|---------|--------|----------|----------|-----------|--------|-------------|---------|----------|------------|
| Int Delay, s/veh       | 687.6       |           |          |         |        |          |          |           |        |             |         |          |            |
| Movement               | EBL         | EBT       | EBR      | WBL     | WBT    | WBR      | NBL      | NBT       | NBR    | SBL         | SBT     | SBR      |            |
| Lane Configurations    | LDL         | 4         | LDI      | VVDL    | 4      | WDIX     | ሻ        | <b>1</b>  | 7      | ODL         | 4       | ODIC     |            |
| Traffic Vol, veh/h     | 20          | 20        | 30       | 100     | 20     | 60       | 30       | 920       | 170    | 50          | 990     | 50       |            |
| Future Vol, veh/h      | 20          | 20        | 30       | 100     | 20     | 60       | 30       | 920       | 170    | 50          | 990     | 50       |            |
| Conflicting Peds, #/hr | 0           | 0         | 0        | 0       | 0      | 0        | 0        | 0         | 0      | 0           | 0       | 0        |            |
| Sign Control           | Stop        | Stop      | Stop     | Stop    | Stop   | Stop     | Free     | Free      | Free   | Free        | Free    | Free     |            |
| RT Channelized         | 310p        | Siup<br>- | None     | 310p    | 310p   | None     | -        | -         | None   | -           | -       | None     |            |
| Storage Length         |             | -         | INOLIC   | -       | -      | INOLIC   | 50       |           | 270    |             |         | NOTIC    |            |
| Veh in Median Storage  |             | 0         |          |         | 0      | -        | -        | 0         | 270    | _           | 0       | -        |            |
| Grade, %               | 5, π -      | 0         | -        | -       | 0      | -        | -        | 0         | -      |             | 0       |          |            |
| Peak Hour Factor       | 95          | 95        | 95       | 95      | 95     | 95       | 95       | 95        | 95     | 95          | 95      | 95       |            |
| Heavy Vehicles, %      | 2           | 2         | 2        | 2       | 2      | 2        | 2        | 2         | 2      | 2           | 2       | 2        |            |
| Mvmt Flow              | 21          | 21        | 32       | 105     | 21     | 63       | 32       | 968       | 179    | 53          | 1042    | 53       |            |
| IVIVIIIL FIOW          | 21          | 21        | 32       | 103     | 21     | 03       | 32       | 900       | 1/9    | 33          | 1042    | 55       |            |
|                        |             |           |          |         |        |          |          |           |        |             |         |          |            |
|                        | Minor2      |           |          | Minor1  |        | 1        | Major1   |           | 1      | Major2      |         |          |            |
| Conflicting Flow All   | 2339        | 2386      | 1069     | 2233    | 2233   | 968      | 1095     | 0         | 0      | 1147        | 0       | 0        |            |
| Stage 1                | 1175        | 1175      | -        | 1032    | 1032   | -        | -        | -         | -      | -           | -       | -        |            |
| Stage 2                | 1164        | 1211      | -        | 1201    | 1201   | -        | -        | -         | -      | -           | -       | -        |            |
| Critical Hdwy          | 7.12        | 6.52      | 6.22     | 7.12    | 6.52   | 6.22     | 4.12     | -         | -      | 4.12        | -       | -        |            |
| Critical Hdwy Stg 1    | 6.12        | 5.52      | -        | 6.12    | 5.52   | -        | -        | -         | -      | -           | -       | -        |            |
| Critical Hdwy Stg 2    | 6.12        | 5.52      | -        | 6.12    | 5.52   | -        | -        | -         | -      | -           | -       | -        |            |
| Follow-up Hdwy         | 3.518       | 4.018     | 3.318    | 3.518   | 4.018  | 3.318    | 2.218    | -         | -      | 2.218       | -       | -        |            |
| Pot Cap-1 Maneuver     | 26          | 34        | 269      | ~ 30    | 43     | 308      | 637      | -         | -      | 609         | -       | -        |            |
| Stage 1                | 233         | 265       | -        | 281     | 310    | -        | -        | -         | -      | -           | -       | -        |            |
| Stage 2                | 237         | 255       | -        | 226     | 258    | -        | -        | -         | -      | -           | -       | -        |            |
| Platoon blocked, %     |             |           |          |         |        |          |          | -         | -      |             | -       | -        |            |
| Mov Cap-1 Maneuver     | ~ 8         | 25        | 269      | ~ 6     | 32     | 308      | 637      | -         | -      | 609         | -       | -        |            |
| Mov Cap-2 Maneuver     | ~ 8         | 25        | -        | ~ 6     | 32     | -        | -        | -         | -      | -           | -       | -        |            |
| Stage 1                | 221         | 205       | -        | 267     | 295    | -        | -        | -         | -      | -           | -       | -        |            |
| Stage 2                | 166         | 242       | -        | 139     | 200    | -        | -        | -         | -      | -           | -       | -        |            |
|                        |             |           |          |         |        |          |          |           |        |             |         |          |            |
| Approach               | EB          |           |          | WB      |        |          | NB       |           |        | SB          |         |          |            |
| HCM Control Delay, \$  |             |           |          | \$ 8805 |        |          | 0.3      |           |        | 0.5         |         |          |            |
| HCM LOS                | 1300.0<br>F |           | •        | F 0000  |        |          | 0.5      |           |        | 0.3         |         |          |            |
| IICIVI LUS             | Г           |           |          | Г       |        |          |          |           |        |             |         |          |            |
|                        |             |           |          |         |        |          |          |           |        |             |         |          |            |
| Minor Lane/Major Mvm   | nt          | NBL       | NBT      | NBR     | EBLn1V | VBLn1    | SBL      | SBT       | SBR    |             |         |          |            |
| Capacity (veh/h)       |             | 637       | -        | -       | 21     | 10       | 609      | -         | -      |             |         |          |            |
| HCM Lane V/C Ratio     |             | 0.05      | -        | -       | 3.509  | 18.947   | 0.086    | -         | -      |             |         |          |            |
| HCM Control Delay (s)  |             | 10.9      | -        | \$      | 1508.6 | \$ 8805  | 11.5     | 0         | -      |             |         |          |            |
| HCM Lane LOS           |             | В         | -        | -       | F      | F        | В        | Α         | -      |             |         |          |            |
| HCM 95th %tile Q(veh   | )           | 0.2       | -        | -       | 9.5    | 25.2     | 0.3      | -         | -      |             |         |          |            |
| Notes                  |             |           |          |         |        |          |          |           |        |             |         |          |            |
|                        | nacity      | ¢. D.     | alay aya | oods 2  | 00c    | L. Com   | nutation | Not D     | ofinod | *, <b>\</b> | maları  | volumo i | in plataan |
| ~: Volume exceeds ca   | pacity      | ⊅; D(     | elay exc | eeus 3  | 005    | +. CUIII | putation | ו ואטנ טו | enneu  | : All       | majui \ | volume I | in platoon |

|                              | ۶    | <b>→</b> | •    | •    | <b>←</b> | •    | 1    | <b>†</b> | ~    | <b>&gt;</b> | ţ        | 1    |
|------------------------------|------|----------|------|------|----------|------|------|----------|------|-------------|----------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations          |      | 4        |      |      | र्स      | 7    | ሻ    | <b>↑</b> | 7    | ሻ           | <b>†</b> | 7    |
| Traffic Volume (veh/h)       | 20   | 20       | 20   | 190  | 20       | 150  | 40   | 890      | 190  | 100         | 920      | 20   |
| Future Volume (veh/h)        | 20   | 20       | 20   | 190  | 20       | 150  | 40   | 890      | 190  | 100         | 920      | 20   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0           | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 0.99 | 0.99 |          | 0.99 | 1.00 |          | 0.99 | 1.00        |          | 0.99 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No       |      |             | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870        | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 21   | 21       | 4    | 200  | 21       | 62   | 42   | 937      | 132  | 105         | 968      | 10   |
| Peak Hour Factor             | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 | 0.95        | 0.95     | 0.95 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    | 2           | 2        | 2    |
| Cap, veh/h                   | 108  | 89       | 11   | 345  | 26       | 411  | 57   | 830      | 699  | 135         | 911      | 768  |
| Arrive On Green              | 0.26 | 0.26     | 0.26 | 0.26 | 0.26     | 0.26 | 0.03 | 0.44     | 0.44 | 0.08        | 0.49     | 0.49 |
| Sat Flow, veh/h              | 115  | 340      | 43   | 932  | 98       | 1570 | 1781 | 1870     | 1576 | 1781        | 1870     | 1577 |
| Grp Volume(v), veh/h         | 46   | 0        | 0    | 221  | 0        | 62   | 42   | 937      | 132  | 105         | 968      | 10   |
| Grp Sat Flow(s),veh/h/ln     | 499  | 0        | 0    | 1030 | 0        | 1570 | 1781 | 1870     | 1576 | 1781        | 1870     | 1577 |
| Q Serve(g_s), s              | 0.4  | 0.0      | 0.0  | 0.0  | 0.0      | 2.1  | 1.6  | 30.0     | 3.4  | 3.9         | 32.9     | 0.2  |
| Cycle Q Clear(g_c), s        | 15.2 | 0.0      | 0.0  | 14.8 | 0.0      | 2.1  | 1.6  | 30.0     | 3.4  | 3.9         | 32.9     | 0.2  |
| Prop In Lane                 | 0.46 |          | 0.09 | 0.90 |          | 1.00 | 1.00 |          | 1.00 | 1.00        |          | 1.00 |
| Lane Grp Cap(c), veh/h       | 208  | 0        | 0    | 371  | 0        | 411  | 57   | 830      | 699  | 135         | 911      | 768  |
| V/C Ratio(X)                 | 0.22 | 0.00     | 0.00 | 0.60 | 0.00     | 0.15 | 0.73 | 1.13     | 0.19 | 0.78        | 1.06     | 0.01 |
| Avail Cap(c_a), veh/h        | 208  | 0        | 0    | 524  | 0        | 580  | 316  | 830      | 699  | 316         | 911      | 768  |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |
| Uniform Delay (d), s/veh     | 20.1 | 0.0      | 0.0  | 23.9 | 0.0      | 19.2 | 32.4 | 18.8     | 11.4 | 30.7        | 17.3     | 9.0  |
| Incr Delay (d2), s/veh       | 0.2  | 0.0      | 0.0  | 0.6  | 0.0      | 0.1  | 6.4  | 73.2     | 0.0  | 3.6         | 47.9     | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0         | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.5  | 0.0      | 0.0  | 3.3  | 0.0      | 0.7  | 0.8  | 27.8     | 1.1  | 1.7         | 23.7     | 0.1  |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |          |      |             |          |      |
| LnGrp Delay(d),s/veh         | 20.3 | 0.0      | 0.0  | 24.5 | 0.0      | 19.2 | 38.9 | 92.0     | 11.5 | 34.3        | 65.2     | 9.0  |
| LnGrp LOS                    | С    | Α        | Α    | С    | Α        | В    | D    | F        | В    | С           | F        | А    |
| Approach Vol, veh/h          |      | 46       |      |      | 283      |      |      | 1111     |      |             | 1083     |      |
| Approach Delay, s/veh        |      | 20.3     |      |      | 23.3     |      |      | 80.4     |      |             | 61.7     |      |
| Approach LOS                 |      | С        |      |      | С        |      |      | F        |      |             | Е        |      |
| Timer - Assigned Phs         |      | 2        | 3    | 4    |          | 6    | 7    | 8        |      |             |          |      |
| Phs Duration (G+Y+Rc), s     |      | 22.3     | 7.3  | 38.0 |          | 22.3 | 10.2 | 35.1     |      |             |          |      |
| Change Period (Y+Rc), s      |      | 4.6      | 5.1  | 5.1  |          | 4.6  | 5.1  | 5.1      |      |             |          |      |
| Max Green Setting (Gmax), s  |      | 12.0     | 12.0 | 30.0 |          | 25.0 | 12.0 | 30.0     |      |             |          |      |
| Max Q Clear Time (q_c+l1), s |      | 17.2     | 3.6  | 34.9 |          | 16.8 | 5.9  | 32.0     |      |             |          |      |
| Green Ext Time (p_c), s      |      | 0.0      | 0.0  | 0.0  |          | 0.6  | 0.0  | 0.0      |      |             |          |      |
| Intersection Summary         |      |          |      |      |          |      |      |          |      |             |          |      |
| HCM 6th Ctrl Delay           |      |          | 64.9 |      |          |      |      |          |      |             |          |      |
| HCM 6th LOS                  |      |          | E    |      |          |      |      |          |      |             |          |      |
| Notes                        |      |          |      |      |          |      |      |          |      |             |          |      |

| Intersection                           |             |            |            |               |                |              |                      |                                  |
|----------------------------------------|-------------|------------|------------|---------------|----------------|--------------|----------------------|----------------------------------|
| Int Delay, s/veh                       | 18.7        |            |            |               |                |              |                      |                                  |
| Movement                               | EBL         | EBT        | WBT        | WBR           | SBL            | SBR          |                      |                                  |
|                                        | EDL         |            |            |               |                |              |                      |                                  |
| Lane Configurations Traffic Vol, veh/h | EΩ          | 270        | 270        | <b>/10</b>    | 200            | <b>*</b>     |                      |                                  |
| Future Vol, veh/h                      | 50<br>50    | 270<br>270 | 270<br>270 | 610<br>610    | 380<br>380     | 80           |                      |                                  |
| ·                                      |             | 0          | 0          | 010           |                | 0            |                      |                                  |
| Conflicting Peds, #/hr                 | Free        | Free       | Free       |               | O Ctop         |              |                      |                                  |
| Sign Control RT Channelized            |             | None       |            | Free<br>Yield | Stop           | Stop<br>None |                      |                                  |
|                                        | -           | None -     | -          | 150           | 90             | 0            |                      |                                  |
| Storage Length<br>Veh in Median Storag |             | 0          | 0          | 130           | 0              | -            |                      |                                  |
| Grade, %                               | C, # -<br>- | 0          | 0          | -             | 0              | -            |                      |                                  |
| Peak Hour Factor                       | 95          | 95         | 95         | 95            | 95             | 95           |                      |                                  |
| Heavy Vehicles, %                      | 2           | 2          | 2          | 2             | 2              | 2            |                      |                                  |
| Mvmt Flow                              | 53          | 284        | 284        | 642           | 400            | 84           |                      |                                  |
| IVIVIIIL I IOW                         | 00          | 204        | 204        | 042           | 400            | 04           |                      |                                  |
| D. 4. (D. 6)                           | N4 1 4      |            | 4 1 0      |               | A' 0           |              |                      |                                  |
| Major/Minor                            | Major1      |            | Major2     |               | Minor2         | 20.4         |                      |                                  |
| Conflicting Flow All                   | 284         | 0          | -          | 0             | 674            | 284          |                      |                                  |
| Stage 1                                | -           | -          | -          | -             | 284            | -            |                      |                                  |
| Stage 2                                | 4 10        | -          | -          | -             | 390            | -            |                      |                                  |
| Critical Hdwy                          | 4.12        | -          | -          | -             | 6.42           | 6.22         |                      |                                  |
| Critical Hdwy Stg 1                    | -           | -          | -          | -             | 5.42           | -            |                      |                                  |
| Critical Hdwy Stg 2                    | - 2.210     | -          | -          | -             | 5.42           | 2 210        |                      |                                  |
| Follow-up Hdwy                         | 2.218       | -          | -          | -             | 3.518          |              |                      |                                  |
| Pot Cap-1 Maneuver                     | 1278        | -          | -          | -             | 420            | 755          |                      |                                  |
| Stage 1                                | -           | -          | -          | -             | 764            | -            |                      |                                  |
| Stage 2                                | -           | -          | -          | -             | 684            | -            |                      |                                  |
| Platoon blocked, %                     | 1270        | -          | -          | -             | 200            | 755          |                      |                                  |
| Mov Cap-1 Maneuver                     |             | -          | -          |               | ~ 399<br>~ 399 | 755          |                      |                                  |
| Mov Cap-2 Maneuver                     |             | -          | -          | -             | ~ 399          | -            |                      |                                  |
| Stage 1                                | -           | -          | -          | -             | 684            | -            |                      |                                  |
| Stage 2                                | -           | -          | -          | -             | 004            | -            |                      |                                  |
| A                                      | ED          |            | WD         |               | CD             |              |                      |                                  |
| Approach                               | EB          |            | WB<br>0    |               | SB             |              |                      |                                  |
| HCM Control Delay, s                   | 1.2         |            | U          |               | 66.6<br>F      |              |                      |                                  |
| HCM LOS                                |             |            |            |               | r              |              |                      |                                  |
| Minor Long / Maior M                   | t           | EDI        | EDT        | MDT           | MDD            | CDI 1 (      | 201 2                |                                  |
| Minor Lane/Major Mvi                   | nt          | EBL        | EBT        | WBT           | MRK:           | SBLn1 S      |                      |                                  |
| Capacity (veh/h)                       |             | 1278       | -          | -             | -              | 399          | 755                  |                                  |
| HCM Carabal Dalay                      | ,           | 0.041      | -          | -             | -              | 1.003        |                      |                                  |
| HCM Control Delay (s                   | 5)          | 7.9        | 0          | -             | -              | 78.4         | 10.4                 |                                  |
| HCM Lane LOS                           | <b>-</b> \  | A          | А          | -             | -              | F            | В                    |                                  |
| HCM 95th %tile Q(vel                   | n)          | 0.1        | -          | -             | -              | 12.3         | 0.4                  |                                  |
| Notes                                  |             |            |            |               |                |              |                      |                                  |
| ~: Volume exceeds ca                   | apacity     | \$: De     | elay exc   | ceeds 3       | 00s            | +: Com       | putation Not Defined | d *: All major volume in platoon |

|                                         | ۶     | <b>→</b>  | •            | •           | <b>←</b>  | •         | 1           | <b>†</b>  | ~            | <b>/</b>     | <b>+</b> | ✓           |
|-----------------------------------------|-------|-----------|--------------|-------------|-----------|-----------|-------------|-----------|--------------|--------------|----------|-------------|
| Movement                                | EBL   | EBT       | EBR          | WBL         | WBT       | WBR       | NBL         | NBT       | NBR          | SBL          | SBT      | SBR         |
| Lane Configurations                     |       | र्स       | 7            |             | 4         |           | ሻ           | <b>₽</b>  |              | ሻ            | <b>₽</b> |             |
| Traffic Volume (veh/h)                  | 40    | 40        | 130          | 240         | 70        | 20        | 160         | 630       | 110          | 20           | 570      | 50          |
| Future Volume (veh/h)                   | 40    | 40        | 130          | 240         | 70        | 20        | 160         | 630       | 110          | 20           | 570      | 50          |
| Initial Q (Qb), veh                     | 0     | 0         | 0            | 0           | 0         | 0         | 0           | 0         | 0            | 0            | 0        | 0           |
| Ped-Bike Adj(A_pbT)                     | 1.00  |           | 0.99         | 0.99        |           | 0.99      | 1.00        |           | 0.99         | 1.00         |          | 0.99        |
| Parking Bus, Adj                        | 1.00  | 1.00      | 1.00         | 1.00        | 1.00      | 1.00      | 1.00        | 1.00      | 1.00         | 1.00         | 1.00     | 1.00        |
| Work Zone On Approach                   |       | No        |              |             | No        |           |             | No        |              |              | No       |             |
| Adj Sat Flow, veh/h/ln                  | 1870  | 1870      | 1870         | 1870        | 1870      | 1870      | 1870        | 1870      | 1870         | 1870         | 1870     | 1870        |
| Adj Flow Rate, veh/h                    | 42    | 42        | 22           | 253         | 74        | 19        | 168         | 663       | 114          | 21           | 600      | 51          |
| Peak Hour Factor                        | 0.95  | 0.95      | 0.95         | 0.95        | 0.95      | 0.95      | 0.95        | 0.95      | 0.95         | 0.95         | 0.95     | 0.95        |
| Percent Heavy Veh, %                    | 2     | 2         | 2            | 2           | 2         | 2         | 2           | 2         | 2            | 2            | 2        | 2           |
| Cap, veh/h                              | 236   | 212       | 359          | 289         | 58        | 15        | 294         | 755       | 130          | 102          | 643      | 55          |
| Arrive On Green                         | 0.23  | 0.23      | 0.23         | 0.23        | 0.23      | 0.23      | 0.17        | 0.49      | 0.49         | 0.06         | 0.38     | 0.38        |
| Sat Flow, veh/h                         | 694   | 927       | 1568         | 871         | 255       | 65        | 1781        | 1554      | 267          | 1781         | 1699     | 144         |
| Grp Volume(v), veh/h                    | 84    | 0         | 22           | 346         | 0         | 0         | 168         | 0         | 777          | 21           | 0        | 651         |
| Grp Sat Flow(s), veh/h/ln               | 1621  | 0         | 1568         | 1191        | 0         | 0         | 1781        | 0         | 1821         | 1781         | 0        | 1843        |
| Q Serve(g_s), s                         | 0.0   | 0.0       | 0.8          | 13.4        | 0.0       | 0.0       | 6.1         | 0.0       | 26.7         | 0.8          | 0.0      | 23.7        |
| Cycle Q Clear(g_c), s                   | 2.6   | 0.0       | 0.8          | 16.0        | 0.0       | 0.0       | 6.1         | 0.0       | 26.7         | 0.8          | 0.0      | 23.7        |
| Prop In Lane                            | 0.50  | 0         | 1.00         | 0.73        | 0         | 0.05      | 1.00        | 0         | 0.15         | 1.00         | 0        | 0.08        |
| Lane Grp Cap(c), veh/h                  | 448   | 0         | 359          | 362         | 0         | 0         | 294         | 0         | 885          | 102          | 0        | 698         |
| V/C Ratio(X)                            | 0.19  | 0.00      | 0.06         | 0.96<br>362 | 0.00      | 0.00      | 0.57        | 0.00      | 0.88         | 0.21<br>1274 | 0.00     | 0.93<br>698 |
| Avail Cap(c_a), veh/h HCM Platoon Ratio | 1195  | 0<br>1.00 | 1121         | 1.00        | 0<br>1.00 | 0<br>1.00 | 408<br>1.00 | 0<br>1.00 | 1302<br>1.00 |              | 1.00     | 1.00        |
| Upstream Filter(I)                      | 1.00  | 0.00      | 1.00<br>1.00 | 1.00        | 0.00      | 0.00      | 1.00        | 0.00      | 1.00         | 1.00         | 0.00     | 1.00        |
| Uniform Delay (d), s/veh                | 21.8  | 0.00      | 21.1         | 29.7        | 0.00      | 0.00      | 26.9        | 0.00      | 16.1         | 31.4         | 0.00     | 20.9        |
| Incr Delay (d2), s/veh                  | 0.2   | 0.0       | 0.1          | 35.9        | 0.0       | 0.0       | 1.7         | 0.0       | 4.9          | 1.0          | 0.0      | 19.5        |
| Initial Q Delay(d3),s/veh               | 0.2   | 0.0       | 0.0          | 0.0         | 0.0       | 0.0       | 0.0         | 0.0       | 0.0          | 0.0          | 0.0      | 0.0         |
| %ile BackOfQ(50%),veh/ln                | 1.1   | 0.0       | 0.3          | 9.2         | 0.0       | 0.0       | 2.5         | 0.0       | 9.9          | 0.3          | 0.0      | 12.3        |
| Unsig. Movement Delay, s/veh            |       | 0.0       | 0.5          | 7.2         | 0.0       | 0.0       | 2.0         | 0.0       | 7.7          | 0.5          | 0.0      | 12.0        |
| LnGrp Delay(d),s/veh                    | 22.0  | 0.0       | 21.1         | 65.6        | 0.0       | 0.0       | 28.6        | 0.0       | 21.0         | 32.4         | 0.0      | 40.4        |
| LnGrp LOS                               | C     | Α         | C            | E           | A         | A         | C           | A         | C C          | C            | A        | D           |
| Approach Vol, veh/h                     |       | 106       |              |             | 346       |           |             | 945       |              |              | 672      |             |
| Approach Delay, s/veh                   |       | 21.8      |              |             | 65.6      |           |             | 22.4      |              |              | 40.1     |             |
| Approach LOS                            |       | C C       |              |             | E         |           |             | C         |              |              | D        |             |
|                                         | 1     |           |              |             |           | ,         |             |           |              |              |          |             |
| Timer - Assigned Phs                    | 1/ 2  | 2         |              | 21.4        | 5         | 6         |             | 8         |              |              |          |             |
| Phs Duration (G+Y+Rc), s                | 16.2  | 32.3      |              | 21.4        | 8.7       | 39.8      |             | 21.4      |              |              |          |             |
| Change Period (Y+Rc), s                 | * 4.7 | 5.8       |              | 5.4         | * 4.7     | 5.8       |             | 5.4       |              |              |          |             |
| Max Green Setting (Gmax), s             | * 16  | 25.0      |              | 16.0        | * 50      | 50.0      |             | 50.0      |              |              |          |             |
| Max Q Clear Time (g_c+l1), s            | 8.1   | 25.7      |              | 18.0        | 2.8       | 28.7      |             | 4.6       |              |              |          |             |
| Green Ext Time (p_c), s                 | 0.2   | 0.0       |              | 0.0         | 0.0       | 5.2       |             | 0.5       |              |              |          |             |
| Intersection Summary                    |       |           |              |             |           |           |             |           |              |              |          |             |
| HCM 6th Ctrl Delay                      |       |           | 35.3         |             |           |           |             |           |              |              |          |             |
| HCM 6th LOS                             |       |           | D            |             |           |           |             |           |              |              |          |             |

| Intersection           |        |         |          |         |      |          |          |          |             |        |       |        |
|------------------------|--------|---------|----------|---------|------|----------|----------|----------|-------------|--------|-------|--------|
|                        | 1721.4 |         |          |         |      |          |          |          |             |        |       |        |
| Movement               | EBL    | EBT     | EBR      | WBL     | WBT  | WBR      | NBL      | NBT      | NBR         | SBL    | SBT   | SBR    |
| Lane Configurations    | *      | f)      |          | *       | f)   |          |          | 4        |             |        | र्स   | 7      |
| Traffic Vol, veh/h     | 70     | 680     | 20       | 30      | 550  | 450      | 20       | 30       | 30          | 470    | 30    | 40     |
| Future Vol, veh/h      | 70     | 680     | 20       | 30      | 550  | 450      | 20       | 30       | 30          | 470    | 30    | 40     |
| Conflicting Peds, #/hr | 0      | 0       | 0        | 0       | 0    | 0        | 0        | 0        | 0           | 0      | 0     | 0      |
| Sign Control           | Free   | Free    | Free     | Free    | Free | Free     | Stop     | Stop     | Stop        |        | Stop  | Stop   |
| RT Channelized         | -      | -       | None     | -       | _    | None     | -        | -        | None        | -      |       | None   |
| Storage Length         | 100    | -       | -        | 70      | -    | -        | -        | -        | -           | -      | -     | 60     |
| Veh in Median Storage  |        | 0       | _        | -       | 0    | -        | -        | 0        | -           | -      | 0     | -      |
| Grade, %               | -      | 0       | _        | -       | 0    | -        | -        | 0        | -           | -      | 0     | _      |
| Peak Hour Factor       | 95     | 95      | 95       | 95      | 95   | 95       | 95       | 95       | 95          | 95     | 95    | 95     |
| Heavy Vehicles, %      | 2      | 2       | 2        | 2       | 2    | 2        | 2        | 2        | 2           | 2      | 2     | 2      |
| Mvmt Flow              | 74     | 716     | 21       | 32      | 579  | 474      | 21       | 32       | 32          | 495    | 32    | 42     |
|                        |        |         |          |         |      |          |          |          |             |        |       |        |
| Major/Minor            | Major1 |         |          | Major2  |      |          | Minor1   |          |             | Minor2 |       |        |
| Conflicting Flow All   | 1053   | 0       | 0        | 737     | 0    | 0        | 1792     | 1992     | 727         | 1787   | 1765  | 816    |
| Stage 1                | -      | -       | -        | -       | -    | -        | 875      | 875      | -           |        | 880   | -      |
| Stage 2                | _      | _       | _        | _       | _    | _        | 917      | 1117     | _           |        | 885   | _      |
| Critical Hdwy          | 4.12   | _       | -        | 4.12    | -    | _        | 7.12     | 6.52     | 6.22        | 7.12   | 6.52  | 6.22   |
| Critical Hdwy Stg 1    | -      | _       | _        | -       | _    | _        | 6.12     | 5.52     | -           | 6.12   | 5.52  | -      |
| Critical Hdwy Stg 2    | _      | _       | -        | _       | -    | _        | 6.12     | 5.52     | _           | 6.12   | 5.52  | _      |
| Follow-up Hdwy         | 2.218  | _       | _        | 2.218   | _    | _        | 3.518    | 4.018    | 3 318       |        | 4.018 | 3 318  |
| Pot Cap-1 Maneuver     | 661    | _       | -        | 869     | -    | _        | 63       | 61       | 424         | ~ 63   | 84    | 377    |
| Stage 1                | -      | _       | _        | -       | _    | _        | 344      | 367      |             | ~ 342  | 365   | -      |
| Stage 2                | _      | _       | -        | _       | -    | _        | 326      | 283      |             | ~ 330  | 363   | _      |
| Platoon blocked, %     |        | _       | _        |         | _    | _        | 020      | 200      |             | 000    | 000   |        |
| Mov Cap-1 Maneuver     | 661    | _       | _        | 869     | _    | _        | 33       | 52       | 424         | ~ 27   | 72    | 377    |
| Mov Cap-2 Maneuver     |        | _       | _        | -       | _    | _        | 33       | 52       | - 12 1      |        | 72    | -      |
| Stage 1                | _      | _       | _        | _       | _    | _        | 305      | 326      | _           | ~ 304  | 351   | -      |
| Stage 2                | _      | _       | _        | _       | _    | _        | 254      | 273      |             | ~ 245  | 322   | _      |
| olago 2                |        |         |          |         |      |          | 201      | 2.70     |             | 210    | ULL   |        |
| Approach               | EB     |         |          | WB      |      |          | NB       |          |             | SB     |       |        |
| HCM Control Delay, s   |        |         |          | 0.3     |      | \$       | 328.1    |          | \$          | 7663.9 |       |        |
| HCM LOS                | •      |         |          | 0.5     |      | Ψ        | F        |          | Ψ           | F      |       |        |
| TIOW EOS               |        |         |          |         |      |          | '        |          |             | '      |       |        |
| Minor Lane/Major Mvr   | nt I   | NBLn1   | EBL      | EBT     | EBR  | WBL      | WBT      | WBR :    | SBLn1       | SBLn2  |       |        |
| Capacity (veh/h)       |        | 64      | 661      |         |      | 869      |          |          | 28          | 377    |       |        |
| HCM Lane V/C Ratio     |        | 1.316   | 0.111    | _       | _    | 0.036    | _        | _ ^      |             | 0.112  |       |        |
| HCM Control Delay (s   | ) \$   | 328.1   | 11.1     | _       | _    | 9.3      | -        |          | 3275.8      |        |       |        |
| HCM Lane LOS           | ν Ψ    | F 520.1 | В        | _       | _    | 7.3<br>A | _        | φ (<br>- | 5275.0<br>F | C      |       |        |
| HCM 95th %tile Q(veh   | າ)     | 7       | 0.4      | _       | _    | 0.1      | _        |          | 65.3        |        |       |        |
| ·                      | 7      |         | J. 7     |         |      | 0.1      |          |          | 00.0        | - U,-T |       |        |
| Notes                  |        |         |          |         |      |          |          |          |             |        |       |        |
| ~: Volume exceeds ca   | pacity | \$: De  | elay exc | eeds 30 | JUS  | +: Com   | putation | n Not D  | efined      | *: Al  | major | volume |

|                                                       | ۶    | <b>→</b>     | •            | •          | <b>—</b>    | •    | •             | †     | ~    | <b>/</b> | <b>+</b> | ✓    |
|-------------------------------------------------------|------|--------------|--------------|------------|-------------|------|---------------|-------|------|----------|----------|------|
| Movement                                              | EBL  | EBT          | EBR          | WBL        | WBT         | WBR  | NBL           | NBT   | NBR  | SBL      | SBT      | SBR  |
| Lane Configurations                                   |      | र्स          | 7            | 7          | f)          |      | 7             | f)    | 7    |          | 4        |      |
| Traffic Volume (veh/h)                                | 0    | 510          | 670          | 430        | 390         | 0    | 640           | 0     | 190  | 0        | 0        | 0    |
| Future Volume (veh/h)                                 | 0    | 510          | 670          | 430        | 390         | 0    | 640           | 0     | 190  | 0        | 0        | 0    |
| Initial Q (Qb), veh                                   | 0    | 0            | 0            | 0          | 0           | 0    | 0             | 0     | 0    | 0        | 0        | 0    |
| Ped-Bike Adj(A_pbT)                                   | 1.00 |              | 1.00         | 1.00       |             | 1.00 | 1.00          |       | 1.00 | 1.00     |          | 1.00 |
| Parking Bus, Adj                                      | 1.00 | 1.00         | 1.00         | 1.00       | 1.00        | 1.00 | 1.00          | 1.00  | 1.00 | 1.00     | 1.00     | 1.00 |
| Work Zone On Approach                                 |      | No           |              |            | No          |      |               | No    |      |          | No       |      |
| Adj Sat Flow, veh/h/ln                                | 1870 | 1870         | 1870         | 1870       | 1870        | 1870 | 1870          | 1870  | 1870 | 1870     | 1870     | 1870 |
| Adj Flow Rate, veh/h                                  | 0    | 537          | 407          | 453        | 411         | 0    | 674           | 0     | 127  | 0        | 0        | 0    |
| Peak Hour Factor                                      | 0.95 | 0.95         | 0.95         | 0.95       | 0.95        | 0.95 | 0.95          | 0.95  | 0.95 | 0.95     | 0.95     | 0.95 |
| Percent Heavy Veh, %                                  | 2    | 2            | 2            | 2          | 2           | 2    | 2             | 2     | 2    | 2        | 2        | 2    |
| Cap, veh/h                                            | 0    | 482          | 409          | 536        | 563         | 0    | 574           | 0     | 1022 | 0        | 2        | 0    |
| Arrive On Green                                       | 0.00 | 0.26         | 0.26         | 0.30       | 0.30        | 0.00 | 0.32          | 0.00  | 0.32 | 0.00     | 0.00     | 0.00 |
| Sat Flow, veh/h                                       | 0    | 1870         | 1585         | 1781       | 1870        | 0    | 1781          | 0     | 3170 | 0        | 1870     | 0    |
| Grp Volume(v), veh/h                                  | 0    | 537          | 407          | 453        | 411         | 0    | 674           | 0     | 127  | 0        | 0        | 0    |
| Grp Sat Flow(s), veh/h/ln                             | 0    | 1870         | 1585         | 1781       | 1870        | 0    | 1781          | 0     | 1585 | 0        | 1870     | 0    |
| Q Serve(g_s), s                                       | 0.0  | 20.0         | 19.9         | 18.5       | 15.3        | 0.0  | 25.0          | 0.0   | 2.2  | 0.0      | 0.0      | 0.0  |
| Cycle Q Clear(g_c), s                                 | 0.0  | 20.0         | 19.9         | 18.5       | 15.3        | 0.0  | 25.0          | 0.0   | 2.2  | 0.0      | 0.0      | 0.0  |
| Prop In Lane                                          | 0.00 | 100          | 1.00         | 1.00       | F./.0       | 0.00 | 1.00          | 0     | 1.00 | 0.00     | 0        | 0.00 |
| Lane Grp Cap(c), veh/h                                | 0    | 482          | 409          | 536        | 563         | 0    | 574           | 0     | 1022 | 0        | 2        | 0    |
| V/C Ratio(X)                                          | 0.00 | 1.11         | 1.00         | 0.84       | 0.73        | 0.00 | 1.17          | 0.00  | 0.12 | 0.00     | 0.00     | 0.00 |
| Avail Cap(c_a), veh/h                                 | 0    | 482          | 409          | 689        | 724         | 0    | 574           | 0     | 1022 | 0        | 193      | 0    |
| HCM Platoon Ratio                                     | 1.00 | 1.00         | 1.00         | 1.00       | 1.00        | 1.00 | 1.00          | 1.00  | 1.00 | 1.00     | 1.00     | 1.00 |
| Upstream Filter(I)                                    | 0.00 | 1.00         | 1.00         | 1.00       | 1.00        | 0.00 | 1.00          | 0.00  | 1.00 | 0.00     | 0.00     | 0.00 |
| Uniform Delay (d), s/veh                              | 0.0  | 28.8<br>75.6 | 28.7<br>43.2 | 25.4       | 24.3<br>2.7 | 0.0  | 26.3<br>95.4  | 0.0   | 18.5 | 0.0      | 0.0      | 0.0  |
| Incr Delay (d2), s/veh                                | 0.0  | 0.0          | 0.0          | 7.6<br>0.0 | 0.0         | 0.0  | 0.0           | 0.0   | 0.1  | 0.0      | 0.0      | 0.0  |
| Initial Q Delay(d3),s/veh<br>%ile BackOfQ(50%),veh/ln | 0.0  | 18.5         | 12.0         | 8.4        | 6.7         | 0.0  | 25.1          | 0.0   | 0.0  | 0.0      | 0.0      | 0.0  |
| Unsig. Movement Delay, s/veh                          | 0.0  | 10.3         | 12.0         | 0.4        | 0.7         | 0.0  | 23.1          | 0.0   | 0.0  | 0.0      | 0.0      | 0.0  |
| LnGrp Delay(d),s/veh                                  | 0.0  | 104.4        | 72.0         | 33.0       | 27.0        | 0.0  | 121.7         | 0.0   | 18.6 | 0.0      | 0.0      | 0.0  |
| LnGrp LOS                                             | Α    | 104.4<br>F   | 72.0<br>E    | 33.0<br>C  | 27.0<br>C   | Α    | 121. <i>1</i> | Α     | В    | 0.0<br>A | Α        | Α    |
| Approach Vol, veh/h                                   |      | 944          | <u> </u>     |            | 864         |      | <u> </u>      | 801   | ь    |          | 0        |      |
| Approach Delay, s/veh                                 |      | 90.4         |              |            | 30.2        |      |               | 105.3 |      |          | 0.0      |      |
| Approach LOS                                          |      | 70.4<br>F    |              |            | 30.2<br>C   |      |               | F     |      |          | 0.0      |      |
| •                                                     |      |              |              |            | C           |      |               |       |      |          |          |      |
| Timer - Assigned Phs                                  |      | 2            |              | 4          |             | 6    |               | 8     |      |          |          |      |
| Phs Duration (G+Y+Rc), s                              |      | 0.0          |              | 23.2       |             | 28.0 |               | 26.3  |      |          |          |      |
| Change Period (Y+Rc), s                               |      | 3.0          |              | 3.2        |             | 3.0  |               | 3.0   |      |          |          |      |
| Max Green Setting (Gmax), s                           |      | 8.0          |              | 20.0       |             | 25.0 |               | 30.0  |      |          |          |      |
| Max Q Clear Time (g_c+l1), s                          |      | 0.0          |              | 22.0       |             | 27.0 |               | 20.5  |      |          |          |      |
| Green Ext Time (p_c), s                               |      | 0.0          |              | 0.0        |             | 0.0  |               | 2.9   |      |          |          |      |
| Intersection Summary                                  |      |              |              |            |             |      |               |       |      |          |          |      |
| HCM 6th Ctrl Delay                                    |      |              | 75.0         |            |             |      |               |       |      |          |          |      |
| HCM 6th LOS                                           |      |              | E            |            |             |      |               |       |      |          |          |      |

User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for turning movement.

|                                         | <b>→</b> | •    | •    | •    | <b>1</b> | /    |
|-----------------------------------------|----------|------|------|------|----------|------|
| Movement                                | EBT      | EBR  | WBL  | WBT  | NBL      | NBR  |
| Lane Configurations                     | <b>^</b> | 7    | ሻ    | 414  | ች        | 77   |
| Traffic Volume (veh/h)                  | 210      | 280  | 440  | 400  | 280      | 780  |
| Future Volume (veh/h)                   | 210      | 280  | 440  | 400  | 280      | 780  |
| Initial Q (Qb), veh                     | 0        | 0    | 0    | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT)                     |          | 1.00 | 1.00 |      | 1.00     | 1.00 |
| Parking Bus, Adj                        | 1.00     | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach                   |          | 1.00 | 1.00 | No   | No       | 1.00 |
|                                         | 1870     | 1870 | 1870 | 1870 | 1870     | 1870 |
| Adj Flow Rate, veh/h                    | 221      | 48   | 493  | 379  | 295      | 453  |
| , , , , , , , , , , , , , , , , , , , , | 0.95     | 0.95 | 0.95 | 0.95 | 0.95     | 0.95 |
|                                         | 0.93     | 0.93 | 0.93 | 0.93 | 0.93     | 0.93 |
| Percent Heavy Veh, %                    |          |      |      |      |          |      |
| Cap, veh/h                              | 500      | 223  | 1084 | 569  | 454      | 1560 |
|                                         | 0.14     | 0.14 | 0.30 | 0.30 | 0.25     | 0.25 |
| ·                                       | 3647     | 1585 | 3563 | 1870 | 1781     | 2790 |
| Grp Volume(v), veh/h                    | 221      | 48   | 493  | 379  | 295      | 453  |
| Grp Sat Flow(s), veh/h/ln               |          | 1585 | 1781 | 1870 | 1781     | 1395 |
| Q Serve(g_s), s                         | 2.0      | 0.9  | 3.9  | 6.2  | 5.2      | 3.0  |
| Cycle Q Clear(g_c), s                   | 2.0      | 0.9  | 3.9  | 6.2  | 5.2      | 3.0  |
| Prop In Lane                            |          | 1.00 | 1.00 |      | 1.00     | 1.00 |
| Lane Grp Cap(c), veh/h                  | 500      | 223  | 1084 | 569  | 454      | 1560 |
|                                         | 0.44     | 0.22 | 0.45 | 0.67 | 0.65     | 0.29 |
| . ,                                     | 2032     | 906  | 1528 | 802  | 713      | 1965 |
|                                         | 1.00     | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 |
|                                         | 1.00     | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 |
| Uniform Delay (d), s/veh                |          | 13.3 | 9.8  | 10.6 | 11.6     | 4.1  |
| Incr Delay (d2), s/veh                  | 0.6      | 0.5  | 0.3  | 1.4  | 1.6      | 0.1  |
| Initial Q Delay(d3),s/veh               |          | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh                   |          | 0.0  | 1.2  | 2.1  | 1.7      | 1.2  |
| ,                                       |          |      | 1.2  | Z. I | 1.7      | 1.2  |
| Unsig. Movement Delay,                  |          |      | 10.1 | 12.0 | 12.2     | 4.2  |
| 1 3 . ,                                 | 14.4     | 13.8 | 10.1 | 12.0 | 13.2     |      |
| LnGrp LOS                               | В        | В    | В    | В    | В        | A    |
| Approach Vol, veh/h                     | 269      |      |      | 872  | 748      |      |
|                                         | 14.3     |      |      | 10.9 | 7.7      |      |
| Approach LOS                            | В        |      |      | В    | Α        |      |
| Timer - Assigned Phs                    |          | 2    |      |      |          | 6    |
| Phs Duration (G+Y+Rc),                  | c        | 8.4  |      |      |          | 14.1 |
| ,                                       |          |      |      |      |          |      |
| Change Period (Y+Rc), s                 |          | 3.5  |      |      |          | 3.5  |
| Max Green Setting (Gma                  |          | 20.0 |      |      |          | 15.0 |
| Max Q Clear Time (g_c+                  | -11), S  | 4.0  |      |      |          | 8.2  |
| Green Ext Time (p_c), s                 |          | 1.3  |      |      |          | 2.5  |
| Intersection Summary                    |          |      |      |      |          |      |
| HCM 6th Ctrl Delay                      |          |      | 10.1 |      |          |      |
| HCM 6th LOS                             |          |      | В    |      |          |      |
| TIONI UNI LUS                           |          |      | ט    |      |          |      |
| Notes                                   |          |      |      |      |          |      |

| •                                                                                                                                                | <b>→</b>            | •                          | •                   | <b>←</b> | •                  | 4                  | †                     | /    | <b>&gt;</b> | ţ        | 4    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------|---------------------|----------|--------------------|--------------------|-----------------------|------|-------------|----------|------|--|
| Movement EBL                                                                                                                                     | EBT                 | EBR                        | WBL                 | WBT      | WBR                | NBL                | NBT                   | NBR  | SBL         | SBT      | SBR  |  |
| Lane Configurations                                                                                                                              | 4                   | 7                          | ሻ                   | f)       |                    | ሻ                  | <b>^</b>              | 7    | ሻ           | <b>^</b> | 7    |  |
| Traffic Volume (veh/h) 520                                                                                                                       | 70                  | 400                        | 60                  | 120      | 70                 | 390                | 680                   | 50   | 40          | 580      | 330  |  |
| Future Volume (veh/h) 520                                                                                                                        | 70                  | 400                        | 60                  | 120      | 70                 | 390                | 680                   | 50   | 40          | 580      | 330  |  |
| Initial Q (Qb), veh 0                                                                                                                            | 0                   | 0                          | 0                   | 0        | 0                  | 0                  | 0                     | 0    | 0           | 0        | 0    |  |
| Ped-Bike Adj(A_pbT) 1.00                                                                                                                         |                     | 0.99                       | 1.00                |          | 1.00               | 1.00               |                       | 0.99 | 1.00        |          | 0.99 |  |
| Parking Bus, Adj 1.00                                                                                                                            | 1.00                | 1.00                       | 1.00                | 1.00     | 1.00               | 1.00               | 1.00                  | 1.00 | 1.00        | 1.00     | 1.00 |  |
| Work Zone On Approach                                                                                                                            | No                  |                            |                     | No       |                    |                    | No                    |      |             | No       |      |  |
| Adj Sat Flow, veh/h/ln 1870                                                                                                                      | 1870                | 1870                       | 1870                | 1870     | 1870               | 1870               | 1870                  | 1870 | 1870        | 1870     | 1870 |  |
| Adj Flow Rate, veh/h 600                                                                                                                         | 0                   | 77                         | 63                  | 126      | 47                 | 411                | 716                   | 18   | 42          | 611      | 67   |  |
| Peak Hour Factor 0.95                                                                                                                            | 0.95                | 0.95                       | 0.95                | 0.95     | 0.95               | 0.95               | 0.95                  | 0.95 | 0.95        | 0.95     | 0.95 |  |
| Percent Heavy Veh, % 2                                                                                                                           | 2                   | 2                          | 2                   | 2        | 2                  | 2                  | 2                     | 2    | 2           | 2        | 2    |  |
| Cap, veh/h 699                                                                                                                                   | 0                   | 309                        | 214                 | 156      | 58                 | 391                | 1358                  | 602  | 55          | 701      | 310  |  |
| Arrive On Green 0.20                                                                                                                             | 0.00                | 0.20                       | 0.12                | 0.12     | 0.12               | 0.22               | 0.38                  | 0.38 | 0.03        | 0.20     | 0.20 |  |
| Sat Flow, veh/h 3563                                                                                                                             | 0                   | 1573                       | 1781                | 1299     | 484                | 1781               | 3554                  | 1575 | 1781        | 3554     | 1573 |  |
| Grp Volume(v), veh/h 600                                                                                                                         | 0                   | 77                         | 63                  | 0        | 173                | 411                | 716                   | 18   | 42          | 611      | 67   |  |
| Grp Sat Flow(s),veh/h/ln1781                                                                                                                     | 0                   | 1573                       | 1781                | 0        | 1783               | 1781               | 1777                  | 1575 | 1781        | 1777     | 1573 |  |
| Q Serve(g_s), s 12.6                                                                                                                             | 0.0                 | 3.2                        | 2.5                 | 0.0      | 7.3                | 17.0               | 12.1                  | 0.6  | 1.8         | 12.9     | 2.8  |  |
| Cycle Q Clear(g_c), s 12.6                                                                                                                       | 0.0                 | 3.2                        | 2.5                 | 0.0      | 7.3                | 17.0               | 12.1                  | 0.6  | 1.8         | 12.9     | 2.8  |  |
| Prop In Lane 1.00                                                                                                                                |                     | 1.00                       | 1.00                |          | 0.27               | 1.00               |                       | 1.00 | 1.00        |          | 1.00 |  |
| Lane Grp Cap(c), veh/h 699                                                                                                                       | 0                   | 309                        | 214                 | 0        | 214                | 391                | 1358                  | 602  | 55          | 701      | 310  |  |
| V/C Ratio(X) 0.86                                                                                                                                | 0.00                | 0.25                       | 0.29                | 0.00     | 0.81               | 1.05               | 0.53                  | 0.03 | 0.77        | 0.87     | 0.22 |  |
| Avail Cap(c_a), veh/h 827                                                                                                                        | 0                   | 365                        | 230                 | 0        | 230                | 391                | 1358                  | 602  | 230         | 733      | 325  |  |
| HCM Platoon Ratio 1.00                                                                                                                           | 1.00                | 1.00                       | 1.00                | 1.00     | 1.00               | 1.00               | 1.00                  | 1.00 | 1.00        | 1.00     | 1.00 |  |
| Upstream Filter(I) 1.00                                                                                                                          | 0.00                | 1.00                       | 1.00                | 0.00     | 1.00               | 1.00               | 1.00                  | 1.00 | 1.00        | 1.00     | 1.00 |  |
| Uniform Delay (d), s/veh 30.1                                                                                                                    | 0.0                 | 26.3                       | 31.1                | 0.0      | 33.2               | 30.3               | 18.5                  | 15.0 | 37.3        | 30.2     | 26.1 |  |
| Incr Delay (d2), s/veh 7.0                                                                                                                       | 0.0                 | 0.2                        | 0.3                 | 0.0      | 16.2               | 59.9               | 0.2                   | 0.0  | 8.1         | 10.2     | 0.1  |  |
| Initial Q Delay(d3),s/veh 0.0                                                                                                                    | 0.0                 | 0.0                        | 0.0                 | 0.0      | 0.0                | 0.0                | 0.0                   | 0.0  | 0.0         | 0.0      | 0.0  |  |
| %ile BackOfQ(50%),veh/lr5.9                                                                                                                      | 0.0                 | 1.2                        | 1.1                 | 0.0      | 4.1                | 13.4               | 4.6                   | 0.2  | 0.9         | 6.1      | 1.0  |  |
| Unsig. Movement Delay, s/veh                                                                                                                     |                     |                            |                     |          |                    |                    |                       |      |             |          |      |  |
| LnGrp Delay(d),s/veh 37.1                                                                                                                        | 0.0                 | 26.5                       | 31.4                | 0.0      | 49.4               | 90.2               | 18.7                  | 15.0 | 45.4        | 40.4     | 26.2 |  |
| LnGrp LOS D                                                                                                                                      | Α                   | С                          | С                   | A        | D                  | F                  | В                     | В    | D           | D        | С    |  |
| Approach Vol, veh/h                                                                                                                              | 677                 |                            |                     | 236      |                    |                    | 1145                  |      |             | 720      |      |  |
| Approach Delay, s/veh                                                                                                                            | 35.9                |                            |                     | 44.6     |                    |                    | 44.3                  |      |             | 39.3     |      |  |
| Approach LOS                                                                                                                                     | D                   |                            |                     | D        |                    |                    | D                     |      |             | D        |      |  |
| Timer - Assigned Phs                                                                                                                             | 2                   | 3                          | 4                   |          | 6                  | 7                  | 8                     |      |             |          |      |  |
| Phs Duration (G+Y+Rc), s                                                                                                                         | 20.3                | 22.1                       | 20.7                |          | 14.4               | 7.8                | 35.0                  |      |             |          |      |  |
|                                                                                                                                                  | 5.1                 |                            |                     |          |                    |                    |                       |      |             |          |      |  |
|                                                                                                                                                  |                     |                            |                     |          |                    |                    |                       |      |             |          |      |  |
|                                                                                                                                                  | 14.6                |                            |                     |          | 9.3                | 3.8                |                       |      |             |          |      |  |
| Green Ext Time (p_c), s                                                                                                                          | 0.4                 | 0.0                        | 0.3                 |          | 0.0                | 0.0                | 1.9                   |      |             |          |      |  |
| Intersection Summary                                                                                                                             |                     |                            |                     |          |                    |                    |                       |      |             |          |      |  |
|                                                                                                                                                  |                     | 41.0                       |                     |          |                    |                    |                       |      |             |          |      |  |
| HCM 6th LOS                                                                                                                                      |                     | D                          |                     |          |                    |                    |                       |      |             |          |      |  |
| Change Period (Y+Rc), s Max Green Setting (Gmax), s Max Q Clear Time (g_c+l1), s Green Ext Time (p_c), s Intersection Summary HCM 6th Ctrl Delay | 5.1<br>18.0<br>14.6 | 5.1<br>17.0<br>19.0<br>0.0 | 5.4<br>16.0<br>14.9 |          | 5.1<br>10.0<br>9.3 | 5.4<br>10.0<br>3.8 | * 5.4<br>* 24<br>14.1 |      |             |          |      |  |

Notes

User approved pedestrian interval to be less than phase max green.

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection              |      |  |  |  |
|---------------------------|------|--|--|--|
| Intersection Delay, s/veh | 13.5 |  |  |  |
| Intersection LOS          | В    |  |  |  |

| Movement                | EBL    | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|-------------------------|--------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations     |        | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h      | 60     | 20   | 220  | 20   | 20   | 20   | 160  | 180  | 20   | 20   | 140  | 70   |  |
| Future Vol, veh/h       | 60     | 20   | 220  | 20   | 20   | 20   | 160  | 180  | 20   | 20   | 140  | 70   |  |
| Peak Hour Factor        | 0.95   | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |  |
| Heavy Vehicles, %       | 2      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow               | 63     | 21   | 232  | 21   | 21   | 21   | 168  | 189  | 21   | 21   | 147  | 74   |  |
| Number of Lanes         | 0      | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                | EB     |      |      | WB   |      |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach       | WB     |      |      | EB   |      |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes          | 1      |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Le | eft SB |      |      | NB   |      |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left  | 1      |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Ri | ghtNB  |      |      | SB   |      |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right | 1      |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay       | 13     |      |      | 9.9  |      |      | 15.6 |      |      | 11.6 |      |      |  |
| HCM LOS                 | В      |      |      | Α    |      |      | С    |      |      | В    |      |      |  |

| Lane                   | NBLn1 | EBLn1\ | WBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 44%   | 20%    | 33%   | 9%    |
| Vol Thru, %            | 50%   | 7%     | 33%   | 61%   |
| Vol Right, %           | 6%    | 73%    | 33%   | 30%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 360   | 300    | 60    | 230   |
| LT Vol                 | 160   | 60     | 20    | 20    |
| Through Vol            | 180   | 20     | 20    | 140   |
| RT Vol                 | 20    | 220    | 20    | 70    |
| Lane Flow Rate         | 379   | 316    | 63    | 242   |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.573 | 0.467  | 0.107 | 0.366 |
| Departure Headway (Hd) | 5.445 | 5.322  | 6.089 | 5.447 |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Cap                    | 659   | 673    | 585   | 659   |
| Service Time           | 3.495 | 3.378  | 4.168 | 3.505 |
| HCM Lane V/C Ratio     | 0.575 | 0.47   | 0.108 | 0.367 |
| HCM Control Delay      | 15.6  | 13     | 9.9   | 11.6  |
| HCM Lane LOS           | С     | В      | А     | В     |
| HCM 95th-tile Q        | 3.6   | 2.5    | 0.4   | 1.7   |

| Intersection                      |        |          |          |          |      |          |            |              |           |            |              |            |              |
|-----------------------------------|--------|----------|----------|----------|------|----------|------------|--------------|-----------|------------|--------------|------------|--------------|
| Int Delay, s/veh                  | 91.5   |          |          |          |      |          |            |              |           |            |              |            |              |
| Movement                          | EBL    | EBT      | EBR      | WBL      | WBT  | WBR      | NBL        | NBT          | NBR       | SBL        | SBT          | SBR        |              |
| Lane Configurations               | ሻ      | <b>1</b> | LDIN     | VVDL     | 4    | WDIX     | NDL        | 4            | NDI       | JDL        | 4            | JUIN       |              |
| Traffic Vol, veh/h                | 60     | 330      | 130      | 80       | 390  | 150      | 30         | 90           | 30        | 80         | 60           | 40         |              |
| Future Vol, veh/h                 | 60     | 330      | 130      | 80       | 390  | 150      | 30         | 90           | 30        | 80         | 60           | 40         |              |
| Conflicting Peds, #/hr            | 0      | 0        | 0        | 0        | 0    | 0        | 0          | 0            | 0         | 0          | 0            | 0          |              |
| Sign Control                      | Free   | Free     | Free     | Free     | Free | Free     | Stop       | Stop         | Stop      | Stop       | Stop         | Stop       |              |
| RT Channelized                    | -      | -        | None     | -        | -    | None     | -          | -            | None      | -          | -            | None       |              |
| Storage Length                    | 100    | _        | -        | _        | _    | -        | _          | _            | -         | _          | _            | -          |              |
| Veh in Median Storage             |        | 0        | -        | -        | 0    | -        | -          | 0            | -         | -          | 0            | -          |              |
| Grade, %                          | -      | 0        | _        | _        | 0    | _        | _          | 0            | _         |            | 0            | _          |              |
| Peak Hour Factor                  | 95     | 95       | 95       | 95       | 95   | 95       | 95         | 95           | 95        | 95         | 95           | 95         |              |
| Heavy Vehicles, %                 | 2      | 2        | 2        | 2        | 2    | 2        | 2          | 2            | 2         | 2          | 2            | 2          |              |
| Mvmt Flow                         | 63     | 347      | 137      | 84       | 411  | 158      | 32         | 95           | 32        | 84         | 63           | 42         |              |
|                                   |        |          |          |          |      |          |            |              |           |            |              | · <u>-</u> |              |
| Major/Minor                       | Major1 |          |          | Majora   |      |          | Minor1     |              |           | Minor2     |              |            |              |
|                                   | Major1 | ^        |          | Major2   | 0    |          |            | 1270         |           |            | 12/0         | 400        |              |
| Conflicting Flow All              | 569    | 0        | 0        | 484      | 0    | 0        | 1253       | 1279         | 416       | 1263       | 1268         | 490        |              |
| Stage 1                           | -      | -        | -        | -        | -    | -        | 542<br>711 | 542<br>737   | -         | 658<br>605 | 658<br>610   | -          |              |
| Stage 2                           | 112    | -        | -        | 112      | -    | -        |            |              | -<br>4 22 |            | 6.52         | 4 22       |              |
| Critical Hdwy                     | 4.12   | -        | -        | 4.12     | -    | -        | 7.12       | 6.52         | 6.22      | 7.12       |              | 6.22       |              |
| Critical Hdwy Stg 1               | -      | -        | -        | -        | -    | -        | 6.12       | 5.52<br>5.52 | -         | 6.12       | 5.52<br>5.52 | -          |              |
| Critical Hdwy Stg 2               | 2 210  | -        | -        | 2.218    | -    | -        | 3.518      |              | 3.318     | 3.518      | 4.018        | 3.318      |              |
| Follow-up Hdwy Pot Cap-1 Maneuver | 2.218  | -        | -        | 1079     | -    | -        | 149        | 166          | 637       | 147        | 168          | 578        |              |
|                                   | 1003   | -        | -        | 10/9     | -    | -        | 525        | 520          | 037       | 453        | 461          | 370        |              |
| Stage 1<br>Stage 2                | -      | -        | -        | -        | -    | -        | 424        | 425          | -         | 485        | 485          | -          |              |
| Platoon blocked, %                | -      | -        | -        | -        | -    | -        | 424        | 423          | -         | 400        | 400          | -          |              |
| Mov Cap-1 Maneuver                | 1003   | -        | -        | 1079     | -    | -        | 78         | 137          | 637       | ~ 55       | 139          | 578        |              |
| Mov Cap-1 Maneuver                | 1003   | -        |          | 10/7     | _    | -        | 78         | 137          | - 037     | ~ 55       | 139          | 576        |              |
| Stage 1                           | -      | -        | -        | -        | -    | -        | 492        | 487          | -         | 424        | 407          | -          |              |
| Stage 2                           | -      | _        |          | _        |      |          | 293        | 375          | -         | 348        | 454          | -          |              |
| Jiayt Z                           | -      | _        | _        | -        |      | _        | ۷73        | 373          | _         | 340        | 404          |            |              |
| A                                 |        |          |          | MD       |      |          | ND         |              |           | 0.5        |              |            |              |
| Approach                          | EB     |          |          | WB       |      |          | NB         |              | _         | SB         |              |            |              |
| HCM Control Delay, s              | 1      |          |          | 1.1      |      |          | 183.9      |              | \$        | 587.6      |              |            |              |
| HCM LOS                           |        |          |          |          |      |          | F          |              |           | F          |              |            |              |
|                                   |        |          |          |          |      |          |            |              |           |            |              |            |              |
| Minor Lane/Major Mvn              | nt     | NBLn1    | EBL      | EBT      | EBR  | WBL      | WBT        | WBR:         | SBLn1     |            |              |            |              |
| Capacity (veh/h)                  |        | 138      | 1003     | -        | -    | 1079     | -          | -            | 92        |            |              |            |              |
| HCM Lane V/C Ratio                |        | 1.144    | 0.063    | -        | -    | 0.078    | -          | -            | 2.059     |            |              |            |              |
| HCM Control Delay (s)             | )      | 183.9    | 8.8      | -        | -    | 8.6      | 0          | -\$          | 587.6     |            |              |            |              |
| HCM Lane LOS                      |        | F        | Α        | -        | -    | Α        | Α          | -            | F         |            |              |            |              |
| HCM 95th %tile Q(veh              | 1)     | 9        | 0.2      | -        | -    | 0.3      | -          | -            | 16.5      |            |              |            |              |
| Notes                             |        |          |          |          |      |          |            |              |           |            |              |            |              |
| ~: Volume exceeds ca              | nacity | \$· Da   | elav evo | eeds 30  | nns  | +: Com   | nutation   | n Not D      | efined    | *· ∆II     | maiory       | /olume i   | in platoon   |
| . Volume exceeds ca               | pacity | ψ. D     | Jay CAC  | iccus si | 303  | i. Cuili | putation   | TNULD        | ciiiicu   | . 📶        | major        | volunie    | iii piatooii |

|                                   | ۶          | <b>→</b> | •        | •          | <b>←</b> | 4        | 1          | <b>†</b>      | <i>&gt;</i> | <b>&gt;</b> | <del> </del> | 1          |
|-----------------------------------|------------|----------|----------|------------|----------|----------|------------|---------------|-------------|-------------|--------------|------------|
| Movement                          | EBL        | EBT      | EBR      | WBL        | WBT      | WBR      | NBL        | NBT           | NBR         | SBL         | SBT          | SBR        |
| Lane Configurations               |            | 4        |          |            | 4        |          |            | 4             |             | ሻ           | <b>₽</b>     |            |
| Traffic Volume (veh/h)            | 50         | 190      | 80       | 30         | 260      | 560      | 60         | 910           | 30          | 380         | 410          | 50         |
| Future Volume (veh/h)             | 50         | 190      | 80       | 30         | 260      | 560      | 60         | 910           | 30          | 380         | 410          | 50         |
| Initial Q (Qb), veh               | 0          | 0        | 0        | 0          | 0        | 0        | 0          | 0             | 0           | 0           | 0            | 0          |
| Ped-Bike Adj(A_pbT)               | 1.00       |          | 0.99     | 1.00       |          | 0.99     | 1.00       |               | 1.00        | 1.00        |              | 0.99       |
| Parking Bus, Adj                  | 1.00       | 1.00     | 1.00     | 1.00       | 1.00     | 1.00     | 1.00       | 1.00          | 1.00        | 1.00        | 1.00         | 1.00       |
| Work Zone On Approach             |            | No       |          |            | No       |          |            | No            |             |             | No           |            |
| Adj Sat Flow, veh/h/ln            | 1870       | 1870     | 1870     | 1870       | 1870     | 1870     | 1870       | 1870          | 1870        | 1870        | 1870         | 1870       |
| Adj Flow Rate, veh/h              | 53         | 200      | 67       | 32         | 274      | 492      | 63         | 958           | 30          | 400         | 432          | 47         |
| Peak Hour Factor                  | 0.95       | 0.95     | 0.95     | 0.95       | 0.95     | 0.95     | 0.95       | 0.95          | 0.95        | 0.95        | 0.95         | 0.95       |
| Percent Heavy Veh, %              | 2          | 2        | 2        | 2          | 2        | 2        | 2          | 2             | 2           | 2           | 2            | 2          |
| Cap, veh/h                        | 102        | 351      | 106      | 63         | 223      | 381      | 28         | 418           | 13          | 318         | 295          | 32         |
| Arrive On Green                   | 0.37       | 0.37     | 0.37     | 0.37       | 0.37     | 0.37     | 0.25       | 0.25          | 0.25        | 0.18        | 0.18         | 0.18       |
| Sat Flow, veh/h                   | 127        | 940      | 283      | 37         | 597      | 1019     | 111        | 1691          | 53          | 1781        | 1655         | 180        |
| Grp Volume(v), veh/h              | 320        | 0        | 0        | 798        | 0        | 0        | 1051       | 0             | 0           | 400         | 0            | 479        |
| Grp Sat Flow(s), veh/h/ln         | 1350       | 0        | 0        | 1653       | 0        | 0        | 1855       | 0             | 0           | 1781        | 0            | 1835       |
| Q Serve(g_s), s                   | 0.0        | 0.0      | 0.0      | 16.1       | 0.0      | 0.0      | 19.0       | 0.0           | 0.0         | 13.7        | 0.0          | 13.7       |
| Cycle Q Clear(g_c), s             | 11.3       | 0.0      | 0.0      | 28.7       | 0.0      | 0.0      | 19.0       | 0.0           | 0.0         | 13.7        | 0.0          | 13.7       |
| Prop In Lane                      | 0.17       |          | 0.21     | 0.04       |          | 0.62     | 0.06       |               | 0.03        | 1.00        |              | 0.10       |
| Lane Grp Cap(c), veh/h            | 559        | 0        | 0        | 667        | 0        | 0        | 459        | 0             | 0           | 318         | 0            | 327        |
| V/C Ratio(X)                      | 0.57       | 0.00     | 0.00     | 1.20       | 0.00     | 0.00     | 2.29       | 0.00          | 0.00        | 1.26        | 0.00         | 1.46       |
| Avail Cap(c_a), veh/h             | 559        | 0        | 0        | 667        | 0        | 0        | 459        | 0             | 0           | 318         | 0            | 327        |
| HCM Platoon Ratio                 | 1.00       | 1.00     | 1.00     | 1.00       | 1.00     | 1.00     | 1.00       | 1.00          | 1.00        | 1.00        | 1.00         | 1.00       |
| Upstream Filter(I)                | 1.00       | 0.00     | 0.00     | 1.00       | 0.00     | 0.00     | 1.00       | 0.00          | 0.00        | 1.00        | 0.00         | 1.00       |
| Uniform Delay (d), s/veh          | 18.3       | 0.0      | 0.0      | 25.0       | 0.0      | 0.0      | 28.9       | 0.0           | 0.0         | 31.6        | 0.0          | 31.6       |
| Incr Delay (d2), s/veh            | 0.9        | 0.0      | 0.0      | 102.8      | 0.0      | 0.0      | 587.3      | 0.0           | 0.0         | 139.5       | 0.0          | 224.6      |
| Initial Q Delay(d3),s/veh         | 0.0<br>4.1 | 0.0      | 0.0      | 0.0        | 0.0      | 0.0      | 0.0        | 0.0           | 0.0         | 0.0<br>17.9 | 0.0          | 0.0        |
| %ile BackOfQ(50%),veh/ln          |            | 0.0      | 0.0      | 30.2       | 0.0      | 0.0      | 83.1       | 0.0           | 0.0         | 17.9        | 0.0          | 26.2       |
| Unsig. Movement Delay, s/veh      | 19.3       | 0.0      | 0.0      | 127.8      | 0.0      | 0.0      | 616.2      | 0.0           | 0.0         | 171.0       | 0.0          | 256.2      |
| LnGrp Delay(d),s/veh<br>LnGrp LOS | 19.3<br>B  | 0.0<br>A | 0.0<br>A | 127.8<br>F | 0.0<br>A | 0.0<br>A | 616.2<br>F | 0.0<br>A      | 0.0<br>A    | 171.0<br>F  | 0.0<br>A     | 230.2<br>F |
| Approach Vol, veh/h               | В          | 320      | A        | Г          | 798      | A        | Г          |               | A           | Г           |              | Г          |
|                                   |            | 19.3     |          |            | 127.8    |          |            | 1051<br>616.2 |             |             | 879<br>217.4 |            |
| Approach LOS                      |            | _        |          |            | _        |          |            | _             |             |             | _            |            |
| Approach LOS                      |            | В        |          |            | F        |          |            | F             |             |             | F            |            |
| Timer - Assigned Phs              |            | 2        |          | 4          |          | 6        |            | 8             |             |             |              |            |
| Phs Duration (G+Y+Rc), s          |            | 23.6     |          | 34.1       |          | 19.1     |            | 34.1          |             |             |              |            |
| Change Period (Y+Rc), s           |            | 4.6      |          | * 5.4      |          | 5.4      |            | 5.4           |             |             |              |            |
| Max Green Setting (Gmax), s       |            | 19.0     |          | * 24       |          | 13.7     |            | 28.7          |             |             |              |            |
| Max Q Clear Time (g_c+l1), s      |            | 21.0     |          | 13.3       |          | 15.7     |            | 30.7          |             |             |              |            |
| Green Ext Time (p_c), s           |            | 0.0      |          | 0.7        |          | 0.0      |            | 0.0           |             |             |              |            |
| Intersection Summary              |            |          |          |            |          |          |            |               |             |             |              |            |
| HCM 6th Ctrl Delay                |            |          | 310.7    |            |          |          |            |               |             |             |              |            |
| HCM 6th LOS                       |            |          | F        |            |          |          |            |               |             |             |              |            |

|                           | •       | •    | <b>†</b> | /     | -    | ţ        |
|---------------------------|---------|------|----------|-------|------|----------|
| Movement                  | WBL     | WBR  | NBT      | NBR   | SBL  | SBT      |
| Lane Configurations       | *       | 7    | <b>†</b> | 7     | *    | <b>†</b> |
| Traffic Volume (veh/h)    | 440     | 30   | 710      | 910   | 30   | 330      |
| Future Volume (veh/h)     | 440     | 30   | 710      | 910   | 30   | 330      |
| Initial Q (Qb), veh       | 0       | 0    | 0        | 0     | 0    | 0        |
| Ped-Bike Adj(A_pbT)       | 1.00    | 1.00 | U        | 1.00  | 1.00 | U        |
| Parking Bus, Adj          | 1.00    | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     |
| Work Zone On Approac      |         | 1.00 | No       | 1.00  | 1.00 | No       |
| Adj Sat Flow, veh/h/ln    | 1870    | 1870 | 1870     | 1870  | 1870 | 1870     |
| Adj Flow Rate, veh/h      | 463     | 8    | 747      | 958   | 32   | 347      |
| Peak Hour Factor          | 0.95    | 0.95 | 0.95     | 0.95  | 0.95 | 0.95     |
|                           |         |      |          |       |      |          |
| Percent Heavy Veh, %      | 2       | 2    | 2        | 2     | 2    | 2        |
| Cap, veh/h                | 506     | 450  | 823      | 698   | 48   | 1043     |
| Arrive On Green           | 0.28    | 0.28 | 0.44     | 0.44  | 0.03 | 0.56     |
| Sat Flow, veh/h           | 1781    | 1585 | 1870     | 1585  | 1781 | 1870     |
| Grp Volume(v), veh/h      | 463     | 8    | 747      | 958   | 32   | 347      |
| Grp Sat Flow(s), veh/h/li | n1781   | 1585 | 1870     | 1585  | 1781 | 1870     |
| Q Serve(g_s), s           | 17.1    | 0.2  | 25.4     | 30.0  | 1.2  | 6.9      |
| Cycle Q Clear(g_c), s     | 17.1    | 0.2  | 25.4     | 30.0  | 1.2  | 6.9      |
| Prop In Lane              | 1.00    | 1.00 |          | 1.00  | 1.00 |          |
| Lane Grp Cap(c), veh/h    | 506     | 450  | 823      | 698   | 48   | 1043     |
| V/C Ratio(X)              | 0.92    | 0.02 | 0.91     | 1.37  | 0.67 | 0.33     |
| Avail Cap(c_a), veh/h     | 784     | 698  | 823      | 698   | 314  | 1043     |
| HCM Platoon Ratio         | 1.00    | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     |
| Upstream Filter(I)        | 1.00    | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     |
| Uniform Delay (d), s/vel  |         | 17.6 | 17.8     | 19.1  | 32.9 | 8.2      |
| Incr Delay (d2), s/veh    | 7.9     | 0.0  | 13.4     | 177.0 | 6.0  | 0.2      |
|                           |         | 0.0  | 0.0      |       |      | 0.0      |
| Initial Q Delay(d3),s/veh |         |      |          | 0.0   | 0.0  |          |
| %ile BackOfQ(50%),vel     |         | 0.1  | 12.1     | 43.3  | 0.6  | 2.2      |
| Unsig. Movement Delay     |         |      | 24.0     | 10/ 1 | 20.0 | 0.0      |
| LnGrp Delay(d),s/veh      | 31.5    | 17.6 | 31.2     | 196.1 | 38.9 | 8.3      |
| LnGrp LOS                 | С       | В    | С        | F     | D    | A        |
| Approach Vol, veh/h       | 471     |      | 1705     |       |      | 379      |
| Approach Delay, s/veh     |         |      | 123.9    |       |      | 10.8     |
| Approach LOS              | С       |      | F        |       |      | В        |
| Timer - Assigned Phs      | 1       | 2    |          | 4     |      | 6        |
| Phs Duration (G+Y+Rc)     | ), s8.0 | 36.2 |          | 23.9  |      | 44.2     |
| Change Period (Y+Rc),     |         | 6.2  |          | 4.6   |      | 6.2      |
| Max Green Setting (Gm     |         | 30.0 |          | 30.0  |      | 30.0     |
| Max Q Clear Time (g_c     |         | 32.0 |          | 19.1  |      | 8.9      |
| Green Ext Time (p_c), s   |         | 0.0  |          | 0.2   |      | 0.6      |
| 4 - 7                     | 5 0.0   | 0.0  |          | U.Z   |      | 0.0      |
| Intersection Summary      |         |      |          |       |      |          |
| HCM 6th Ctrl Delay        |         |      | 90.0     |       |      |          |
| HCM 6th LOS               |         |      | F        |       |      |          |
|                           |         |      |          |       |      |          |
| Notes                     |         |      |          |       |      |          |

| Intersection           |        |       |       |        |                 |         |        |       |        |        |       |        |
|------------------------|--------|-------|-------|--------|-----------------|---------|--------|-------|--------|--------|-------|--------|
| Int Delay, s/veh       | 1.5    |       |       |        |                 |         |        |       |        |        |       |        |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT             | WBR     | NBL    | NBT   | NBR    | SBL    | SBT   | SBR    |
| Lane Configurations    | T T    | 1€    | LDIK  | VVDL   | WB1<br><b>}</b> | אטוי    | NDL    | 4     | NDK    | JUL    | 4     | JUK    |
| Traffic Vol, veh/h     | 30     | 420   | 0     | 0      | 510             | 30      | 0      | 0     | 0      | 30     | 0     | 30     |
| Future Vol, veh/h      | 30     | 420   | 0     | 0      | 510             | 30      | 0      | 0     | 0      | 30     | 0     | 30     |
| Conflicting Peds, #/hr | 0      | 0     | 0     | 0      | 0               | 0       | 0      | 0     | 0      | 0      | 0     | 0      |
| Sign Control           | Free   | Free  | Free  | Free   | Free            | Free    | Stop   | Stop  | Stop   | Stop   | Stop  | Stop   |
| RT Channelized         | -      | -     | None  | -      | -               | None    | - Jiup | Jiop  | None   | -<br>- | 310p  | None   |
| Storage Length         | 90     | _     | -     | 90     | _               | NOTIC - |        |       | NOTIC  |        |       | INOTIC |
| Veh in Median Storage  |        | 0     | _     | -      | 0               | _       |        | 0     | -      | _      | 0     | -      |
| Grade, %               | -      | 0     | _     | _      | 0               | _       | _      | 0     | _      | _      | 0     | _      |
| Peak Hour Factor       | 95     | 95    | 95    | 95     | 95              | 95      | 95     | 95    | 95     | 95     | 95    | 95     |
| Heavy Vehicles, %      | 2      | 2     | 2     | 2      | 2               | 2       | 2      | 2     | 2      | 2      | 2     | 2      |
| Mvmt Flow              | 32     | 442   | 0     | 0      | 537             | 32      | 0      | 0     | 0      | 32     | 0     | 32     |
| IVIVIIICI IOVV         | UL     | 174   | - 0   | U      | 001             | - 02    | 0      | J     |        | - 02   | - 0   | JZ     |
|                        |        |       |       |        |                 |         |        |       |        |        |       |        |
|                        | Major1 |       |       | Major2 |                 |         | Minor1 |       |        | Minor2 |       |        |
| Conflicting Flow All   | 569    | 0     | 0     | 442    | 0               | 0       | 1075   | 1075  | 442    | 1059   | 1059  | 553    |
| Stage 1                | -      | -     | -     | -      | -               | -       | 506    | 506   | -      | 553    | 553   | -      |
| Stage 2                | -      | -     | -     | -      | -               | -       | 569    | 569   | -      | 506    | 506   | -      |
| Critical Hdwy          | 4.12   | -     | -     | 4.12   | -               | -       | 7.12   | 6.52  | 6.22   | 7.12   | 6.52  | 6.22   |
| Critical Hdwy Stg 1    | -      | -     | -     | -      | -               | -       | 6.12   | 5.52  | -      | 6.12   | 5.52  | -      |
| Critical Hdwy Stg 2    | -      | -     | -     | -      | -               | -       | 6.12   | 5.52  | -      | 6.12   | 5.52  | -      |
| Follow-up Hdwy         | 2.218  | -     | -     | 2.218  | -               | -       | 3.518  | 4.018 | 3.318  | 3.518  | 4.018 | 3.318  |
| Pot Cap-1 Maneuver     | 1003   | -     | -     | 1118   | -               | -       | 197    | 220   | 615    | 202    | 224   | 533    |
| Stage 1                | -      | -     | -     | -      | -               | -       | 549    | 540   | -      | 517    | 514   | -      |
| Stage 2                | -      | -     | -     | -      | -               | -       | 507    | 506   | -      | 549    | 540   | -      |
| Platoon blocked, %     | 1005   | -     | -     |        | -               | -       |        |       |        |        |       | =05    |
| Mov Cap-1 Maneuver     | 1003   | -     | -     | 1118   | -               | -       | 181    | 213   | 615    | 197    | 217   | 533    |
| Mov Cap-2 Maneuver     | -      | -     | -     | -      | -               | -       | 181    | 213   | -      | 197    | 217   | -      |
| Stage 1                | -      | -     | -     | -      | -               | -       | 531    | 523   | -      | 500    | 514   | -      |
| Stage 2                | -      | -     | -     | -      | -               | -       | 477    | 506   | -      | 531    | 523   | -      |
|                        |        |       |       |        |                 |         |        |       |        |        |       |        |
| Approach               | EB     |       |       | WB     |                 |         | NB     |       |        | SB     |       |        |
| HCM Control Delay, s   | 0.6    |       |       | 0      |                 |         | 0      |       |        | 21     |       |        |
| HCM LOS                | - 0.3  |       |       |        |                 |         | A      |       |        | C      |       |        |
|                        |        |       |       |        |                 |         | - 1    |       |        |        |       |        |
| Minor Lane/Major Mvm   | nt N   | NBLn1 | EBL   | EBT    | EBR             | WBL     | WBT    | WBR   | SRI n1 |        |       |        |
|                        | rc I   |       |       |        |                 |         | VVDI   |       |        |        |       |        |
| Capacity (veh/h)       |        |       | 1003  | -      | -               | 1118    | -      | -     | 200    |        |       |        |
| HCM Control Dolay (c)  |        | -     | 0.031 | -      | -               | -       | -      |       | 0.219  |        |       |        |
| HCM Long LOS           |        | 0     | 8.7   | -      | -               | 0       | -      | -     | 21     |        |       |        |
| HCM Lane LOS           | ١      | А     | A     | -      | -               | A       | -      | -     | С      |        |       |        |
| HCM 95th %tile Q(veh)  | )      | -     | 0.1   | -      | -               | 0       | -      | -     | 8.0    |        |       |        |

|                              | •         | <b>→</b> | •         | •     | <b>←</b> | •     | 4         | <b>†</b>   | /    | <b>&gt;</b> | ļ          | 4    |
|------------------------------|-----------|----------|-----------|-------|----------|-------|-----------|------------|------|-------------|------------|------|
| Movement                     | EBL       | EBT      | EBR       | WBL   | WBT      | WBR   | NBL       | NBT        | NBR  | SBL         | SBT        | SBR  |
| Lane Configurations          | ,         | ĵ»       |           | ¥     | £        |       | Ţ         | <b>↑</b> } |      | *           | <b>↑</b> ↑ |      |
| Traffic Volume (veh/h)       | 130       | 390      | 70        | 80    | 420      | 270   | 80        | 280        | 120  | 270         | 290        | 130  |
| Future Volume (veh/h)        | 130       | 390      | 70        | 80    | 420      | 270   | 80        | 280        | 120  | 270         | 290        | 130  |
| Initial Q (Qb), veh          | 0         | 0        | 0         | 0     | 0        | 0     | 0         | 0          | 0    | 0           | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00      |          | 1.00      | 1.00  |          | 1.00  | 1.00      |            | 0.98 | 1.00        |            | 0.99 |
| Parking Bus, Adj             | 1.00      | 1.00     | 1.00      | 1.00  | 1.00     | 1.00  | 1.00      | 1.00       | 1.00 | 1.00        | 1.00       | 1.00 |
| Work Zone On Approach        |           | No       |           |       | No       |       |           | No         |      |             | No         |      |
| Adj Sat Flow, veh/h/ln       | 1870      | 1870     | 1870      | 1870  | 1870     | 1870  | 1870      | 1870       | 1870 | 1870        | 1870       | 1870 |
| Adj Flow Rate, veh/h         | 137       | 411      | 69        | 84    | 442      | 265   | 84        | 295        | 81   | 284         | 305        | 90   |
| Peak Hour Factor             | 0.95      | 0.95     | 0.95      | 0.95  | 0.95     | 0.95  | 0.95      | 0.95       | 0.95 | 0.95        | 0.95       | 0.95 |
| Percent Heavy Veh, %         | 2         | 2        | 2         | 2     | 2        | 2     | 2         | 2          | 2    | 2           | 2          | 2    |
| Cap, veh/h                   | 214       | 565      | 95        | 193   | 383      | 230   | 193       | 431        | 116  | 318         | 613        | 178  |
| Arrive On Green              | 0.12      | 0.36     | 0.36      | 0.11  | 0.35     | 0.35  | 0.11      | 0.16       | 0.16 | 0.18        | 0.23       | 0.23 |
| Sat Flow, veh/h              | 1781      | 1560     | 262       | 1781  | 1093     | 656   | 1781      | 2757       | 742  | 1781        | 2711       | 785  |
| Grp Volume(v), veh/h         | 137       | 0        | 480       | 84    | 0        | 707   | 84        | 188        | 188  | 284         | 198        | 197  |
| Grp Sat Flow(s), veh/h/ln    | 1781      | 0        | 1822      | 1781  | 0        | 1749  | 1781      | 1777       | 1722 | 1781        | 1777       | 1719 |
| Q Serve(g_s), s              | 6.5       | 0.0      | 20.2      | 3.9   | 0.0      | 31.0  | 3.9       | 8.8        | 9.1  | 13.8        | 8.6        | 8.9  |
| Cycle Q Clear(g_c), s        | 6.5       | 0.0      | 20.2      | 3.9   | 0.0      | 31.0  | 3.9       | 8.8        | 9.1  | 13.8        | 8.6        | 8.9  |
| Prop In Lane                 | 1.00      | 0.0      | 0.14      | 1.00  | 0.0      | 0.37  | 1.00      | 0.0        | 0.43 | 1.00        | 0.0        | 0.46 |
| Lane Grp Cap(c), veh/h       | 214       | 0        | 660       | 193   | 0        | 613   | 193       | 278        | 269  | 318         | 402        | 389  |
| V/C Ratio(X)                 | 0.64      | 0.00     | 0.73      | 0.43  | 0.00     | 1.15  | 0.43      | 0.68       | 0.70 | 0.89        | 0.49       | 0.51 |
| Avail Cap(c_a), veh/h        | 524       | 0.00     | 660       | 524   | 0.00     | 613   | 222       | 542        | 526  | 322         | 542        | 525  |
| HCM Platoon Ratio            | 1.00      | 1.00     | 1.00      | 1.00  | 1.00     | 1.00  | 1.00      | 1.00       | 1.00 | 1.00        | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00      | 0.00     | 1.00      | 1.00  | 0.00     | 1.00  | 1.00      | 1.00       | 1.00 | 1.00        | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 37.1      | 0.0      | 24.4      | 36.9  | 0.0      | 28.7  | 36.9      | 35.2       | 35.3 | 35.5        | 29.8       | 29.9 |
| Incr Delay (d2), s/veh       | 3.2       | 0.0      | 4.0       | 1.5   | 0.0      | 86.5  | 1.5       | 2.9        | 3.3  | 25.2        | 0.9        | 1.0  |
| Initial Q Delay(d3),s/veh    | 0.0       | 0.0      | 0.0       | 0.0   | 0.0      | 0.0   | 0.0       | 0.0        | 0.0  | 0.0         | 0.0        | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 2.9       | 0.0      | 8.6       | 1.7   | 0.0      | 26.6  | 1.7       | 3.8        | 3.9  | 8.0         | 3.6        | 3.7  |
| Unsig. Movement Delay, s/veh |           | 0.0      | 0.0       | 1.7   | 0.0      | 20.0  | 1.7       | 3.0        | J. 7 | 0.0         | 3.0        | 3.7  |
| LnGrp Delay(d),s/veh         | 40.3      | 0.0      | 28.5      | 38.4  | 0.0      | 115.2 | 38.4      | 38.1       | 38.6 | 60.7        | 30.7       | 30.9 |
| LnGrp LOS                    | 40.3<br>D | Α        | 20.5<br>C | D     | Α        | F     | J0.4<br>D | J0.1       | J0.0 | 60.7<br>E   | C          | C    |
| Approach Vol, veh/h          | U         | 617      | C         | D     | 791      | ı     | D         | 460        | D    | <u> </u>    | 679        |      |
|                              |           |          |           |       | 107.1    |       |           | 38.3       |      |             | 43.3       |      |
| Approach LOS                 |           | 31.1     |           |       | 107.1    |       |           |            |      |             |            |      |
| Approach LOS                 |           | С        |           |       | F        |       |           | D          |      |             | D          |      |
| Timer - Assigned Phs         | 1         | 2        | 3         | 4     | 5        | 6     | 7         | 8          |      |             |            |      |
| Phs Duration (G+Y+Rc), s     | 13.6      | 25.0     | 14.6      | 35.2  | 19.8     | 18.8  | 13.6      | 36.2       |      |             |            |      |
| Change Period (Y+Rc), s      | 4.0       | 5.0      | 4.0       | * 4.2 | 4.0      | 5.0   | 4.0       | * 4.2      |      |             |            |      |
| Max Green Setting (Gmax), s  | 11.0      | 27.0     | 26.0      | * 31  | 16.0     | 27.0  | 26.0      | * 31       |      |             |            |      |
| Max Q Clear Time (g_c+I1), s | 5.9       | 10.9     | 8.5       | 33.0  | 15.8     | 11.1  | 5.9       | 22.2       |      |             |            |      |
| Green Ext Time (p_c), s      | 0.1       | 2.0      | 0.3       | 0.0   | 0.0      | 1.7   | 0.2       | 1.8        |      |             |            |      |
| Intersection Summary         |           |          |           |       |          |       |           |            |      |             |            |      |
| HCM 6th Ctrl Delay           |           |          | 59.3      |       |          |       |           |            |      |             |            |      |
| HCM 6th LOS                  |           |          | E         |       |          |       |           |            |      |             |            |      |
| Notes                        |           |          |           |       |          |       |           |            |      |             |            |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

## ATTACHMENT C-4 CUMULATIVE WITH PROGRAM CONDITIONS OUPUTS



| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 50   | 20   | 218  | 20   | 20   | 20   | 138  | 30   | 20   | 20   | 30   | 30   |
| Future Vol, veh/h          | 50   | 20   | 218  | 20   | 20   | 20   | 138  | 30   | 20   | 20   | 30   | 30   |
| Peak Hour Factor           | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 53   | 21   | 229  | 21   | 21   | 21   | 145  | 32   | 21   | 21   | 32   | 32   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 9.8  |      |      | 8.4  |      |      | 9.8  |      |      | 8.5  |      |      |
| HCM LOS                    | А    |      |      | Α    |      |      | Α    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 73%   | 17%   | 33%   | 25%   |  |
| Vol Thru, %            | 16%   | 7%    | 33%   | 38%   |  |
| Vol Right, %           | 11%   | 76%   | 33%   | 38%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 188   | 288   | 60    | 80    |  |
| LT Vol                 | 138   | 50    | 20    | 20    |  |
| Through Vol            | 30    | 20    | 20    | 30    |  |
| RT Vol                 | 20    | 218   | 20    | 30    |  |
| Lane Flow Rate         | 198   | 303   | 63    | 84    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.271 | 0.361 | 0.085 | 0.113 |  |
| Departure Headway (Hd) | 4.936 | 4.292 | 4.845 | 4.834 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 724   | 837   | 735   | 736   |  |
| Service Time           | 2.99  | 2.331 | 2.903 | 2.897 |  |
| HCM Lane V/C Ratio     | 0.273 | 0.362 | 0.086 | 0.114 |  |
| HCM Control Delay      | 9.8   | 9.8   | 8.4   | 8.5   |  |
| HCM Lane LOS           | А     | Α     | Α     | Α     |  |
| HCM 95th-tile Q        | 1.1   | 1.7   | 0.3   | 0.4   |  |

|                           | ۶       | <b>→</b> | •    | <     | <b>←</b> | 4     | •    | †     | <u> </u> | <b>/</b> | <del> </del> | 4    |
|---------------------------|---------|----------|------|-------|----------|-------|------|-------|----------|----------|--------------|------|
| Movement                  | EBL     | EBT      | EBR  | WBL   | WBT      | WBR   | NBL  | NBT   | NBR      | SBL      | SBT          | SBR  |
| Lane Configurations       | ሻ       | <b>↑</b> |      |       | <b>†</b> | 7     | ሻ    | f)    |          | ሻ        | ĵ.           |      |
| Traffic Volume (veh/h)    | 95      | 520      | 0    | 0     | 540      | 158   | 20   | 42    | 40       | 224      | 0            | 60   |
| Future Volume (veh/h)     | 95      | 520      | 0    | 0     | 540      | 158   | 20   | 42    | 40       | 224      | 0            | 60   |
| Initial Q (Qb), veh       | 0       | 0        | 0    | 0     | 0        | 0     | 0    | 0     | 0        | 0        | 0            | 0    |
| Ped-Bike Adj(A_pbT)       | 1.00    |          | 1.00 | 1.00  |          | 0.99  | 0.99 |       | 0.99     | 0.99     |              | 0.99 |
| Parking Bus, Adj          | 1.00    | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00  | 1.00     | 1.00     | 1.00         | 1.00 |
| Work Zone On Approac      | h       | No       |      |       | No       |       |      | No    |          |          | No           |      |
| Adj Sat Flow, veh/h/ln    | 1870    | 1870     | 0    | 0     | 1870     | 1870  | 1870 | 1870  | 1870     | 1870     | 1870         | 1870 |
| Adj Flow Rate, veh/h      | 100     | 547      | 0    | 0     | 568      | 87    | 21   | 44    | 9        | 236      | 0            | 15   |
| Peak Hour Factor          | 0.95    | 0.95     | 0.95 | 0.95  | 0.95     | 0.95  | 0.95 | 0.95  | 0.95     | 0.95     | 0.95         | 0.95 |
| Percent Heavy Veh, %      | 2       | 2        | 0    | 0     | 2        | 2     | 2    | 2     | 2        | 2        | 2            | 2    |
| Cap, veh/h                | 415     | 1088     | 0    | 0     | 733      | 617   | 459  | 363   | 74       | 428      | 0            | 378  |
| Arrive On Green           | 0.10    | 0.58     | 0.00 | 0.00  | 0.39     | 0.39  | 0.24 | 0.24  | 0.24     | 0.24     | 0.00         | 0.24 |
| Sat Flow, veh/h           | 1781    | 1870     | 0    | 0     | 1870     | 1575  | 1384 | 1504  | 308      | 1339     | 0            | 1569 |
| Grp Volume(v), veh/h      | 100     | 547      | 0    | 0     | 568      | 87    | 21   | 0     | 53       | 236      | 0            | 15   |
| Grp Sat Flow(s),veh/h/lr  | า1781   | 1870     | 0    | 0     | 1870     | 1575  | 1384 | 0     | 1811     | 1339     | 0            | 1569 |
| Q Serve(g_s), s           | 1.5     | 9.2      | 0.0  | 0.0   | 14.1     | 1.9   | 0.6  | 0.0   | 1.2      | 8.9      | 0.0          | 0.4  |
| Cycle Q Clear(g_c), s     | 1.5     | 9.2      | 0.0  | 0.0   | 14.1     | 1.9   | 1.0  | 0.0   | 1.2      | 10.1     | 0.0          | 0.4  |
| Prop In Lane              | 1.00    |          | 0.00 | 0.00  |          | 1.00  | 1.00 |       | 0.17     | 1.00     |              | 1.00 |
| Lane Grp Cap(c), veh/h    | 415     | 1088     | 0    | 0     | 733      | 617   | 459  | 0     | 437      | 428      | 0            | 378  |
| V/C Ratio(X)              | 0.24    | 0.50     | 0.00 | 0.00  | 0.77     | 0.14  | 0.05 | 0.00  | 0.12     | 0.55     | 0.00         | 0.04 |
| Avail Cap(c_a), veh/h     | 468     | 1126     | 0    | 0     | 1478     | 1245  | 594  | 0     | 613      | 558      | 0            | 531  |
| HCM Platoon Ratio         | 1.00    | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00  | 1.00     | 1.00     | 1.00         | 1.00 |
| Upstream Filter(I)        | 1.00    | 1.00     | 0.00 | 0.00  | 1.00     | 1.00  | 1.00 | 0.00  | 1.00     | 1.00     | 0.00         | 1.00 |
| Jniform Delay (d), s/veł  |         | 6.6      | 0.0  | 0.0   | 14.1     | 10.4  | 15.8 | 0.0   | 15.8     | 19.7     | 0.0          | 15.4 |
| Incr Delay (d2), s/veh    | 0.3     | 0.4      | 0.0  | 0.0   | 1.8      | 0.1   | 0.0  | 0.0   | 0.1      | 1.1      | 0.0          | 0.0  |
| Initial Q Delay(d3),s/veh |         | 0.0      | 0.0  | 0.0   | 0.0      | 0.0   | 0.0  | 0.0   | 0.0      | 0.0      | 0.0          | 0.0  |
| %ile BackOfQ(50%),vel     |         | 2.8      | 0.0  | 0.0   | 5.5      | 0.6   | 0.2  | 0.0   | 0.5      | 2.7      | 0.0          | 0.1  |
| Jnsig. Movement Delay     |         |          |      |       |          |       |      |       |          |          |              |      |
| LnGrp Delay(d),s/veh      | 9.3     | 6.9      | 0.0  | 0.0   | 15.9     | 10.5  | 15.9 | 0.0   | 15.9     | 20.8     | 0.0          | 15.5 |
| LnGrp LOS                 | Α       | Α        | Α    | Α     | В        | В     | В    | Α     | В        | С        | Α            | В    |
| Approach Vol, veh/h       |         | 647      |      |       | 655      |       |      | 74    |          |          | 251          |      |
| Approach Delay, s/veh     |         | 7.3      |      |       | 15.2     |       |      | 15.9  |          |          | 20.5         |      |
| Approach LOS              |         | Α        |      |       | В        |       |      | В     |          |          | С            |      |
| Timer - Assigned Phs      |         | 2        |      | 4     | 5        | 6     |      | 8     |          |          |              |      |
| Phs Duration (G+Y+Rc)     | , S     | 35.6     |      | 17.5  | 10.1     | 25.5  |      | 17.5  |          |          |              |      |
| Change Period (Y+Rc),     |         | * 4.7    |      | * 4.7 | * 4.7    | * 4.7 |      | * 4.7 |          |          |              |      |
| Max Green Setting (Gm     |         | * 32     |      | * 18  | * 7      | * 42  |      | * 18  |          |          |              |      |
| Max Q Clear Time (g_c-    | +I1), s | 11.2     |      | 12.1  | 3.5      | 16.1  |      | 3.2   |          |          |              |      |
| Green Ext Time (p_c), s   |         | 3.8      |      | 0.4   | 0.1      | 4.6   |      | 0.2   |          |          |              |      |
| Intersection Summary      |         |          |      |       |          |       |      |       |          |          |              |      |
| HCM 6th Ctrl Delay        |         |          | 12.9 |       |          |       |      |       |          |          |              |      |
| HCM 6th LOS               |         |          | В    |       |          |       |      |       |          |          |              |      |
| Notes                     |         |          |      |       |          |       |      |       |          |          |              |      |

# 3: Gravenstein Hwy/Old River Rd & River Rd

|                           | ۶      | <b>→</b> | •    | •     | <b>←</b> | •     | 1     | †     | <b>/</b> | <b>/</b> | ţ    | ✓    |
|---------------------------|--------|----------|------|-------|----------|-------|-------|-------|----------|----------|------|------|
| Movement                  | EBL    | EBT      | EBR  | WBL   | WBT      | WBR   | NBL   | NBT   | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations       |        | <b>^</b> | 7    | ች     | 1→       |       |       | f)    |          |          | 4    |      |
| Traffic Volume (veh/h)    | 0      | 545      | 239  | 40    | 500      | 20    | 178   | 50    | 120      | 20       | 40   | 20   |
| Future Volume (veh/h)     | 0      | 545      | 239  | 40    | 500      | 20    | 178   | 50    | 120      | 20       | 40   | 20   |
| Initial Q (Qb), veh       | 0      | 0        | 0    | 0     | 0        | 0     | 0     | 0     | 0        | 0        | 0    | 0    |
| Ped-Bike Adj(A_pbT)       | 1.00   |          | 0.99 | 1.00  |          | 1.00  | 0.99  |       | 1.00     | 1.00     |      | 0.99 |
| Parking Bus, Adj          | 1.00   | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00  | 1.00  | 1.00     | 1.00     | 1.00 | 1.00 |
| Work Zone On Approach     | h      | No       |      |       | No       |       |       | No    |          |          | No   |      |
| Adj Sat Flow, veh/h/ln    | 0      | 1870     | 1870 | 1870  | 1870     | 1870  | 1870  | 1870  | 1870     | 1870     | 1870 | 1870 |
| Adj Flow Rate, veh/h      | 0      | 574      | 194  | 42    | 526      | 19    | 187   | 53    | 26       | 21       | 42   | 4    |
| Peak Hour Factor          | 0.95   | 0.95     | 0.95 | 0.95  | 0.95     | 0.95  | 0.95  | 0.95  | 0.95     | 0.95     | 0.95 | 0.95 |
| Percent Heavy Veh, %      | 0      | 2        | 2    | 2     | 2        | 2     | 2     | 2     | 2        | 2        | 2    | 2    |
| Cap, veh/h                | 0      | 737      | 621  | 399   | 1046     | 38    | 449   | 240   | 118      | 170      | 265  | 21   |
| Arrive On Green           | 0.00   | 0.39     | 0.39 | 0.08  | 0.58     | 0.58  | 0.20  | 0.20  | 0.20     | 0.20     | 0.20 | 0.20 |
| Sat Flow, veh/h           | 0      | 1870     | 1575 | 1781  | 1794     | 65    | 1345  | 1185  | 581      | 308      | 1312 | 103  |
| Grp Volume(v), veh/h      | 0      | 574      | 194  | 42    | 0        | 545   | 187   | 0     | 79       | 67       | 0    | 0    |
| Grp Sat Flow(s), veh/h/ln | n 0    | 1870     | 1575 | 1781  | 0        | 1858  | 1345  | 0     | 1766     | 1722     | 0    | 0    |
| Q Serve(g_s), s           | 0.0    | 11.8     | 3.7  | 0.5   | 0.0      | 7.6   | 3.9   | 0.0   | 1.6      | 0.0      | 0.0  | 0.0  |
| Cycle Q Clear(g_c), s     | 0.0    | 11.8     | 3.7  | 0.5   | 0.0      | 7.6   | 5.2   | 0.0   | 1.6      | 1.3      | 0.0  | 0.0  |
| Prop In Lane              | 0.00   |          | 1.00 | 1.00  |          | 0.03  | 1.00  |       | 0.33     | 0.31     |      | 0.06 |
| Lane Grp Cap(c), veh/h    |        | 737      | 621  | 399   | 0        | 1084  | 449   | 0     | 357      | 456      | 0    | 0    |
| V/C Ratio(X)              | 0.00   | 0.78     | 0.31 | 0.11  | 0.00     | 0.50  | 0.42  | 0.00  | 0.22     | 0.15     | 0.00 | 0.00 |
| Avail Cap(c_a), veh/h     | 0      | 1023     | 861  | 617   | 0        | 1084  | 1096  | 0     | 1207     | 498      | 0    | 0    |
| HCM Platoon Ratio         | 1.00   | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00  | 1.00  | 1.00     | 1.00     | 1.00 | 1.00 |
| Upstream Filter(I)        | 0.00   | 1.00     | 1.00 | 1.00  | 0.00     | 1.00  | 1.00  | 0.00  | 1.00     | 1.00     | 0.00 | 0.00 |
| Uniform Delay (d), s/veh  |        | 11.6     | 9.2  | 7.4   | 0.0      | 5.4   | 15.9  | 0.0   | 14.6     | 14.5     | 0.0  | 0.0  |
| Incr Delay (d2), s/veh    | 0.0    | 2.6      | 0.3  | 0.1   | 0.0      | 0.4   | 0.6   | 0.0   | 0.3      | 0.1      | 0.0  | 0.0  |
| Initial Q Delay(d3),s/veh |        | 0.0      | 0.0  | 0.0   | 0.0      | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh     |        | 4.4      | 1.1  | 0.1   | 0.0      | 2.0   | 1.6   | 0.0   | 0.6      | 0.5      | 0.0  | 0.0  |
| Unsig. Movement Delay     |        |          |      |       |          |       | 4 / - |       | 4.5      | 4        |      |      |
| LnGrp Delay(d),s/veh      | 0.0    | 14.2     | 9.5  | 7.6   | 0.0      | 5.8   | 16.5  | 0.0   | 14.9     | 14.6     | 0.0  | 0.0  |
| LnGrp LOS                 | A      | В        | A    | A     | A        | A     | В     | A     | В        | В        | A    | A    |
| Approach Vol, veh/h       |        | 768      |      |       | 587      |       |       | 266   |          |          | 67   |      |
| Approach Delay, s/veh     |        | 13.0     |      |       | 5.9      |       |       | 16.0  |          |          | 14.6 |      |
| Approach LOS              |        | В        |      |       | Α        |       |       | В     |          |          | В    |      |
| Timer - Assigned Phs      | 1      | 2        |      | 4     |          | 6     |       | 8     |          |          |      |      |
| Phs Duration (G+Y+Rc)     | , s8.3 | 22.0     |      | 13.6  |          | 30.3  |       | 13.6  |          |          |      |      |
| Change Period (Y+Rc),     |        | * 4.7    |      | * 4.7 |          | * 4.7 |       | * 4.7 |          |          |      |      |
| Max Green Setting (Gm.    |        | * 24     |      | * 10  |          | * 24  |       | * 30  |          |          |      |      |
| Max Q Clear Time (g_c+    |        | 13.8     |      | 3.3   |          | 9.6   |       | 7.2   |          |          |      |      |
| Green Ext Time (p_c), s   |        | 3.4      |      | 0.1   |          | 3.3   |       | 1.0   |          |          |      |      |
| Intersection Summary      |        |          |      |       |          |       |       |       |          |          |      |      |
| HCM 6th Ctrl Delay        |        |          | 11.1 |       |          |       |       |       |          |          |      |      |
| HCM 6th LOS               |        |          | В    |       |          |       |       |       |          |          |      |      |
| Notes                     |        |          | U    |       |          |       |       |       |          |          |      |      |

| Intersection                 |        |           |          |            |               |        |
|------------------------------|--------|-----------|----------|------------|---------------|--------|
| Int Delay, s/veh             | 13.8   |           |          |            |               |        |
| Movement                     | EBL    | EBR       | NBL      | NBT        | SBT           | SBR    |
| Lane Configurations          | *      | 7         | *        | <b>†</b>   | <b>†</b>      | 7      |
| Traffic Vol, veh/h           | 182    | 40        | 40       | 194        | 866           | 408    |
| Future Vol, veh/h            | 182    | 40        | 40       | 194        | 866           | 408    |
| Conflicting Peds, #/hr       | 0      | 0         | 0        | 0          | 0             | 0      |
| Sign Control                 | Stop   | Stop      | Free     | Free       | Free          | Free   |
| RT Channelized               | -      | Stop      | -        | None       | -             | None   |
| Storage Length               | 0      | 90        | 70       | -          | -             | 100    |
| Veh in Median Storage        | e, # 0 | -         | -        | 0          | 0             | -      |
| Grade, %                     | 0      | -         | -        | 0          | 0             | -      |
| Peak Hour Factor             | 95     | 95        | 95       | 95         | 95            | 95     |
| Heavy Vehicles, %            | 2      | 2         | 2        | 2          | 2             | 2      |
| Mvmt Flow                    | 192    | 42        | 42       | 204        | 912           | 429    |
|                              |        |           |          |            |               |        |
| Major/Minor                  | Minor2 | ı         | Major1   | N          | Major2        |        |
|                              | 1200   | 912       | 1341     | 0          | viajui z<br>- | 0      |
| Conflicting Flow All Stage 1 | 912    | 912       | 1341     | -          | -             | -      |
| Stage 2                      | 288    | -         | -        | -          | -             | -      |
| Critical Hdwy                | 6.42   | 6.22      | 4.12     |            | -             | -      |
| Critical Hdwy Stg 1          | 5.42   | 0.22      | 4.12     | -          | _             | -      |
| Critical Hdwy Stg 2          | 5.42   | -         | -        | <u>-</u>   | -             | -      |
| Follow-up Hdwy               | 3.518  | 3.318     |          | -          | -             | -      |
| Pot Cap-1 Maneuver           | 204    | 332       | 514      | -          | -             | -      |
| Stage 1                      | 392    | JJZ       | 314      | -          | _             | -      |
| Stage 2                      | 761    | -         | -        | -          | -             | -      |
| Platoon blocked, %           | 701    | -         | -        | _          |               | _      |
| Mov Cap-1 Maneuver           | 107    | 332       | 514      | <u>-</u>   | -             | -      |
| Mov Cap-1 Maneuver           |        | 332       | 314      | -          | -             | -      |
| Stage 1                      | 360    | -         | -        | -          |               |        |
| Stage 2                      | 761    | -         | _        | _          | _             | _      |
| Stage 2                      | 701    | -         | -        | -          | -             | -      |
|                              |        |           |          |            |               |        |
| Approach                     | EB     |           | NB       |            | SB            |        |
| HCM Control Delay, s         | 104.9  |           | 2.2      |            | 0             |        |
| HCM LOS                      | F      |           |          |            |               |        |
|                              |        |           |          |            |               |        |
| Minor Lane/Major Mvn         | nt     | NBL       | NRT      | EBLn1 E    | FBI n2        | SBT    |
| Capacity (veh/h)             |        | 514       | וטו      | 187        | 332           | - 301  |
| HCM Lane V/C Ratio           |        | 0.082     |          | 1.024      |               | -      |
| HCM Control Delay (s)        | )      | 12.6      |          | 124.1      | 17.4          | -      |
| HCM Lane LOS                 |        | 12.0<br>B |          | 124.1<br>F | 17.4<br>C     | -      |
| HCM 95th %tile Q(veh         | 1)     | 0.3       |          | 8.8        | 0.4           |        |
| · ·                          | '/     | 0.5       |          | 0.0        | 0.4           |        |
| Notes                        |        |           |          |            |               |        |
| ~: Volume exceeds ca         | pacity | \$: De    | elay exc | ceeds 30   | 00s           | +: Com |

|                              | ۶        | <b>→</b>  | •     | •    | <b>←</b> | 4     | 1     | <b>†</b> | ~    | <b>&gt;</b> | ţ     | 4    |
|------------------------------|----------|-----------|-------|------|----------|-------|-------|----------|------|-------------|-------|------|
| Movement                     | EBL      | EBT       | EBR   | WBL  | WBT      | WBR   | NBL   | NBT      | NBR  | SBL         | SBT   | SBR  |
| Lane Configurations          | ሻ        |           | 7     | ሻ    | ₽        |       | ሻ     | <b>•</b> | 7    |             | 4     |      |
| Traffic Volume (veh/h)       | 81       | 341       | 210   | 232  | 623      | 30    | 720   | 181      | 161  | 40          | 282   | 266  |
| Future Volume (veh/h)        | 81       | 341       | 210   | 232  | 623      | 30    | 720   | 181      | 161  | 40          | 282   | 266  |
| Initial Q (Qb), veh          | 0        | 0         | 0     | 0    | 0        | 0     | 0     | 0        | 0    | 0           | 0     | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00     |           | 0.99  | 1.00 |          | 0.99  | 1.00  |          | 0.99 | 1.00        |       | 0.99 |
| Parking Bus, Adj             | 1.00     | 1.00      | 1.00  | 1.00 | 1.00     | 1.00  | 1.00  | 1.00     | 1.00 | 1.00        | 1.00  | 1.00 |
| Work Zone On Approach        |          | No        |       |      | No       |       |       | No       |      |             | No    |      |
| Adj Sat Flow, veh/h/ln       | 1870     | 1870      | 1870  | 1870 | 1870     | 1870  | 1870  | 1870     | 1870 | 1870        | 1870  | 1870 |
| Adj Flow Rate, veh/h         | 85       | 359       | 41    | 244  | 656      | 31    | 758   | 191      | 35   | 42          | 297   | 255  |
| Peak Hour Factor             | 0.95     | 0.95      | 0.95  | 0.95 | 0.95     | 0.95  | 0.95  | 0.95     | 0.95 | 0.95        | 0.95  | 0.95 |
| Percent Heavy Veh, %         | 2        | 2         | 2     | 2    | 2        | 2     | 2     | 2        | 2    | 2           | 2     | 2    |
| Cap, veh/h                   | 108      | 407       | 341   | 272  | 542      | 26    | 466   | 489      | 410  | 21          | 150   | 129  |
| Arrive On Green              | 0.06     | 0.22      | 0.22  | 0.15 | 0.31     | 0.31  | 0.26  | 0.26     | 0.26 | 0.17        | 0.17  | 0.17 |
| Sat Flow, veh/h              | 1781     | 1870      | 1567  | 1781 | 1771     | 84    | 1781  | 1870     | 1570 | 122         | 862   | 740  |
| Grp Volume(v), veh/h         | 85       | 359       | 41    | 244  | 0        | 687   | 758   | 191      | 35   | 594         | 0     | 0    |
| Grp Sat Flow(s), veh/h/ln    | 1781     | 1870      | 1567  | 1781 | 0        | 1854  | 1781  | 1870     | 1570 | 1724        | 0     | 0    |
| Q Serve(g_s), s              | 5.4      | 21.3      | 2.4   | 15.4 | 0.0      | 35.1  | 30.0  | 9.6      | 1.9  | 20.0        | 0.0   | 0.0  |
| Cycle Q Clear(g_c), s        | 5.4      | 21.3      | 2.4   | 15.4 | 0.0      | 35.1  | 30.0  | 9.6      | 1.9  | 20.0        | 0.0   | 0.0  |
| Prop In Lane                 | 1.00     |           | 1.00  | 1.00 |          | 0.05  | 1.00  |          | 1.00 | 0.07        |       | 0.43 |
| Lane Grp Cap(c), veh/h       | 108      | 407       | 341   | 272  | 0        | 567   | 466   | 489      | 410  | 300         | 0     | 0    |
| V/C Ratio(X)                 | 0.79     | 0.88      | 0.12  | 0.90 | 0.00     | 1.21  | 1.63  | 0.39     | 0.09 | 1.98        | 0.00  | 0.00 |
| Avail Cap(c_a), veh/h        | 310      | 489       | 409   | 310  | 0        | 567   | 466   | 489      | 410  | 300         | 0     | 0    |
| HCM Platoon Ratio            | 1.00     | 1.00      | 1.00  | 1.00 | 1.00     | 1.00  | 1.00  | 1.00     | 1.00 | 1.00        | 1.00  | 1.00 |
| Upstream Filter(I)           | 1.00     | 1.00      | 1.00  | 1.00 | 0.00     | 1.00  | 1.00  | 1.00     | 1.00 | 1.00        | 0.00  | 0.00 |
| Uniform Delay (d), s/veh     | 53.2     | 43.5      | 36.1  | 47.7 | 0.0      | 39.8  | 42.4  | 34.9     | 32.0 | 47.4        | 0.0   | 0.0  |
| Incr Delay (d2), s/veh       | 4.7      | 13.5      | 0.1   | 23.3 | 0.0      | 110.5 | 292.4 | 0.2      | 0.0  | 451.9       | 0.0   | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0      | 0.0       | 0.0   | 0.0  | 0.0      | 0.0   | 0.0   | 0.0      | 0.0  | 0.0         | 0.0   | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 2.5      | 11.0      | 0.9   | 8.5  | 0.0      | 32.8  | 50.4  | 4.3      | 0.7  | 46.1        | 0.0   | 0.0  |
| Unsig. Movement Delay, s/veh |          |           | 0.7   | 0.0  | 0.0      | 02.0  | 0011  |          | 0.7  | 1011        | 0.0   | 0.0  |
| LnGrp Delay(d),s/veh         | 57.9     | 57.0      | 36.1  | 71.1 | 0.0      | 150.4 | 334.8 | 35.1     | 32.1 | 499.3       | 0.0   | 0.0  |
| LnGrp LOS                    | E        | E         | D     | E    | A        | F     | F     | D        | C    | F           | A     | A    |
| Approach Vol, veh/h          |          | 485       |       |      | 931      | •     | •     | 984      |      | •           | 594   |      |
| Approach Delay, s/veh        |          | 55.4      |       |      | 129.6    |       |       | 265.8    |      |             | 499.3 |      |
| Approach LOS                 |          | 55.4<br>E |       |      | F        |       |       | F        |      |             | F     |      |
|                              | 1        |           |       |      |          | ,     |       |          |      |             |       |      |
| Timer - Assigned Phs         | <u> </u> | 2         |       | 4    | 5        | 6     |       | 8        |      |             |       |      |
| Phs Duration (G+Y+Rc), s     | 22.9     | 31.0      |       | 25.1 | 12.8     | 41.1  |       | 35.8     |      |             |       |      |
| Change Period (Y+Rc), s      | 5.4      | 6.0       |       | 5.1  | 5.8      | 6.0   |       | 5.8      |      |             |       |      |
| Max Green Setting (Gmax), s  | 20.0     | 30.0      |       | 20.0 | 20.0     | 30.0  |       | 30.0     |      |             |       |      |
| Max Q Clear Time (g_c+l1), s | 17.4     | 23.3      |       | 22.0 | 7.4      | 37.1  |       | 32.0     |      |             |       |      |
| Green Ext Time (p_c), s      | 0.1      | 0.7       |       | 0.0  | 0.1      | 0.0   |       | 0.0      |      |             |       |      |
| Intersection Summary         |          |           |       |      |          |       |       |          |      |             |       |      |
| HCM 6th Ctrl Delay           |          |           | 235.7 |      |          |       |       |          |      |             |       |      |
| HCM 6th LOS                  |          |           | F     |      |          |       |       |          |      |             |       |      |
| Notes                        |          |           |       |      |          |       |       |          |      |             |       |      |

|                           | ۶        | <b>→</b> | •     | •    | <b>←</b> | •     | 4    | †        | <b>/</b> | <b>/</b> | ļ        | 4    |  |
|---------------------------|----------|----------|-------|------|----------|-------|------|----------|----------|----------|----------|------|--|
| Movement                  | EBL      | EBT      | EBR   | WBL  | WBT      | WBR   | NBL  | NBT      | NBR      | SBL      | SBT      | SBR  |  |
| Lane Configurations       | ň        | <b>↑</b> | 7     | ሻ    | f)       |       | ሻ    | <b>↑</b> | 7        | ሻ        | <b>†</b> | 7    |  |
| Traffic Volume (veh/h)    | 40       | 160      | 362   | 40   | 311      | 40    | 374  | 204      | 20       | 40       | 856      | 80   |  |
| Future Volume (veh/h)     | 40       | 160      | 362   | 40   | 311      | 40    | 374  | 204      | 20       | 40       | 856      | 80   |  |
| Initial Q (Qb), veh       | 0        | 0        | 0     | 0    | 0        | 0     | 0    | 0        | 0        | 0        | 0        | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00     |          | 0.99  | 1.00 |          | 0.99  | 1.00 |          | 0.99     | 1.00     |          | 0.99 |  |
| Parking Bus, Adj          | 1.00     | 1.00     | 1.00  | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |  |
| Work Zone On Approach     |          | No       |       |      | No       |       |      | No       |          |          | No       |      |  |
|                           | 1870     | 1870     | 1870  | 1870 | 1870     | 1870  | 1870 | 1870     | 1870     | 1870     | 1870     | 1870 |  |
| Adj Flow Rate, veh/h      | 42       | 168      | 66    | 42   | 327      | 37    | 394  | 215      | 9        | 42       | 901      | 25   |  |
| Peak Hour Factor          | 0.95     | 0.95     | 0.95  | 0.95 | 0.95     | 0.95  | 0.95 | 0.95     | 0.95     | 0.95     | 0.95     | 0.95 |  |
| Percent Heavy Veh, %      | 2        | 2        | 2     | 2    | 2        | 2     | 2    | 2        | 2        | 2        | 2        | 2    |  |
| Cap, veh/h                | 53       | 431      | 361   | 53   | 366      | 41    | 375  | 929      | 784      | 53       | 591      | 497  |  |
| Arrive On Green           | 0.03     | 0.23     | 0.23  | 0.03 | 0.22     | 0.22  | 0.21 | 0.50     | 0.50     | 0.03     | 0.32     | 0.32 |  |
|                           | 1781     | 1870     | 1568  | 1781 | 1649     | 187   | 1781 | 1870     | 1577     | 1781     | 1870     | 1573 |  |
| Grp Volume(v), veh/h      | 42       | 168      | 66    | 42   | 0        | 364   | 394  | 215      | 9        | 42       | 901      | 25   |  |
| Grp Sat Flow(s), veh/h/ln |          | 1870     | 1568  | 1781 | 0        | 1835  | 1781 | 1870     | 1577     | 1781     | 1870     | 1573 |  |
| Q Serve(g_s), s           | 2.2      | 7.2      | 3.2   | 2.2  | 0.0      | 18.3  | 20.0 | 6.2      | 0.3      | 2.2      | 30.0     | 1.0  |  |
| Cycle Q Clear(g_c), s     | 2.2      | 7.2      | 3.2   | 2.2  | 0.0      | 18.3  | 20.0 | 6.2      | 0.3      | 2.2      | 30.0     | 1.0  |  |
| Prop In Lane              | 1.00     |          | 1.00  | 1.00 |          | 0.10  | 1.00 |          | 1.00     | 1.00     |          | 1.00 |  |
| Lane Grp Cap(c), veh/h    |          | 431      | 361   | 53   | 0        | 408   | 375  | 929      | 784      | 53       | 591      | 497  |  |
| V/C Ratio(X)              | 0.79     | 0.39     | 0.18  | 0.79 | 0.00     | 0.89  | 1.05 | 0.23     | 0.01     | 0.79     | 1.52     | 0.05 |  |
| Avail Cap(c_a), veh/h     | 225      | 788      | 661   | 225  | 0        | 503   | 375  | 929      | 784      | 188      | 591      | 497  |  |
| HCM Platoon Ratio         | 1.00     | 1.00     | 1.00  | 1.00 | 1.00     | 1.00  | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |  |
| Upstream Filter(I)        | 1.00     | 1.00     | 1.00  | 1.00 | 0.00     | 1.00  | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |  |
| Uniform Delay (d), s/veh  |          | 30.9     | 29.3  | 45.7 | 0.0      | 35.8  | 37.5 | 13.6     | 12.1     | 45.8     | 32.5     | 22.6 |  |
| Incr Delay (d2), s/veh    | 9.3      | 0.2      | 0.1   | 9.2  | 0.0      | 14.0  | 60.1 | 0.0      | 0.0      |          | 244.5    | 0.0  |  |
| Initial Q Delay(d3),s/veh |          | 0.0      | 0.0   | 0.0  | 0.0      | 0.0   | 0.0  | 0.0      | 0.0      | 0.0      | 0.0      | 0.0  |  |
| %ile BackOfQ(50%),veh     |          | 3.2      | 1.2   | 1.1  | 0.0      | 9.7   | 14.7 | 2.5      | 0.1      | 1.1      | 53.0     | 0.4  |  |
| Unsig. Movement Delay     |          |          |       |      |          |       |      |          |          |          |          |      |  |
| LnGrp Delay(d),s/veh      | 55.1     | 31.1     | 29.4  | 54.9 | 0.0      | 49.8  | 97.6 | 13.6     | 12.1     | 55.1     | 276.9    | 22.6 |  |
| LnGrp LOS                 | <u>E</u> | С        | С     | D    | <u>A</u> | D     | F    | В        | В        | <u>E</u> | <u> </u> | С    |  |
| Approach Vol, veh/h       |          | 276      |       |      | 406      |       |      | 618      |          |          | 968      |      |  |
| Approach Delay, s/veh     |          | 34.3     |       |      | 50.3     |       |      | 67.1     |          |          | 260.7    |      |  |
| Approach LOS              |          | С        |       |      | D        |       |      | Е        |          |          | F        |      |  |
| Timer - Assigned Phs      | 1        | 2        | 3     | 4    | 5        | 6     | 7    | 8        |          |          |          |      |  |
| Phs Duration (G+Y+Rc)     | , s7.4   | 27.3     | 25.1  | 35.1 | 8.2      | 26.5  | 7.9  | 52.3     |          |          |          |      |  |
| Change Period (Y+Rc),     |          | 5.4      | 5.1   | 5.1  | 5.4      | * 5.4 | 5.1  | 5.1      |          |          |          |      |  |
| Max Green Setting (Gm.    |          | 40.0     | 20.0  | 30.0 | 12.0     | * 26  | 10.0 | 30.0     |          |          |          |      |  |
| Max Q Clear Time (g_c+    |          | 9.2      | 22.0  | 32.0 | 4.2      | 20.3  | 4.2  | 8.2      |          |          |          |      |  |
| Green Ext Time (p_c), s   |          | 0.3      | 0.0   | 0.0  | 0.0      | 0.5   | 0.0  | 0.4      |          |          |          |      |  |
| Intersection Summary      |          |          |       |      |          |       |      |          |          |          |          |      |  |
| HCM 6th Ctrl Delay        |          |          | 142.8 |      |          |       |      |          |          |          |          |      |  |
| HCM 6th LOS               |          |          | F     |      |          |       |      |          |          |          |          |      |  |

| Intersection                      |        |              |          |              |              |                  |          |           |        |          |         |           |             |
|-----------------------------------|--------|--------------|----------|--------------|--------------|------------------|----------|-----------|--------|----------|---------|-----------|-------------|
| Int Delay, s/veh                  | 275    |              |          |              |              |                  |          |           |        |          |         |           |             |
| Movement                          | EBL    | EBT          | EBR      | WBL          | WBT          | WBR              | NBL      | NBT       | NBR    | SBL      | SBT     | SBR       |             |
| Lane Configurations               | LDL    | 4            | LDI      | VVDL         | 4            | WDIX             | <u> </u> | <u> </u>  | 7      | JDL      | 4       | JDIC      |             |
| Traffic Vol, veh/h                | 60     | 20           | 30       | 182          | 20           | 20               | 20       | 437       | 110    | 30       | 1108    | 30        |             |
| Future Vol, veh/h                 | 60     | 20           | 30       | 182          | 20           | 20               | 20       | 437       | 110    | 30       | 1108    | 30        |             |
| Conflicting Peds, #/hr            | 0      | 0            | 0        | 0            | 0            | 0                | 0        | 0         | 0      | 0        | 0       | 0         |             |
| Sign Control                      | Stop   | Stop         | Stop     | Stop         | Stop         | Stop             | Free     | Free      | Free   | Free     | Free    | Free      |             |
| RT Channelized                    | -<br>- | -<br>-       | None     | -<br>-       | -<br>-       | None             | -        | -         | None   | -        | -       | None      |             |
| Storage Length                    | _      | _            | -        | _            | _            | -                | 50       | _         | 270    | _        | _       | -         |             |
| Veh in Median Storage             | . # -  | 0            | _        | _            | 0            | _                | -        | 0         |        | _        | 0       | _         |             |
| Grade, %                          | -      | 0            | _        | _            | 0            | _                | _        | 0         | _      | _        | 0       | _         |             |
| Peak Hour Factor                  | 95     | 95           | 95       | 95           | 95           | 95               | 95       | 95        | 95     | 95       | 95      | 95        |             |
| Heavy Vehicles, %                 | 2      | 2            | 2        | 2            | 2            | 2                | 2        | 2         | 2      | 2        | 2       | 2         |             |
| Mvmt Flow                         | 63     | 21           | 32       | 192          | 21           | 21               | 21       | 460       | 116    | 32       | 1166    | 32        |             |
|                                   |        |              |          |              |              |                  |          |           |        |          |         |           |             |
| Major/Minor                       | Minera |              |          | Nine 1       |              |                  | Moler1   |           |        | Anic - 2 |         |           |             |
|                                   | Minor2 | 10/4         |          | Minor1       | 17/4         |                  | Major1   | ^         |        | Major2   | 0       | 0         |             |
| Conflicting Flow All              | 1827   | 1864         | 1182     | 1775         | 1764         | 460              | 1198     | 0         | 0      | 576      | 0       | 0         |             |
| Stage 1                           | 1246   | 1246         | -        | 502          | 502          | -                | -        | -         | -      | -        | -       | -         |             |
| Stage 2                           | 581    | 618          | - / 22   | 1273         | 1262         | -<br>/ <u>11</u> | 410      | -         | -      | 112      | -       | -         |             |
| Critical Hdwy                     | 7.12   | 6.52<br>5.52 | 6.22     | 7.12<br>6.12 | 6.52<br>5.52 | 6.22             | 4.12     | -         | -      | 4.12     | -       | -         |             |
| Critical Edwy Stg 1               | 6.12   | 5.52         | -        | 6.12         | 5.52         | -                | -        | -         | -      | -        | -       | -         |             |
| Critical Hdwy Stg 2               | 3.518  | 4.018        | 3.318    | 3.518        | 4.018        | 3.318            | 2.218    | -         | -      | 2.218    | -       | -         |             |
| Follow-up Hdwy Pot Cap-1 Maneuver | ~ 59   | 73           | 231      | ~ 64         | 4.016        | 601              | 583      | -         | -      | 997      | -       | -         |             |
| Stage 1                           | 213    | 246          | 231      | 552          | 542          | 001              | 303      | -         | -      | 771      | -       | -         |             |
| Stage 2                           | 499    | 481          |          | 205          | 241          |                  |          |           | _      |          |         |           |             |
| Platoon blocked, %                | 477    | 401          |          | 203          | 241          |                  | _        | _         |        | _        | _       | _         |             |
| Mov Cap-1 Maneuver                | ~ 40   | 64           | 231      | ~ 37         | 73           | 601              | 583      | _         | -      | 997      | _       | _         |             |
| Mov Cap 1 Maneuver                | ~ 40   | 64           | 201      | ~ 37         | 73           | -                | -        | _         | _      |          | _       | _         |             |
| Stage 1                           | 205    | 222          | _        | 532          | 522          | -                | _        | _         | -      | -        | -       | _         |             |
| Stage 2                           | 445    | 464          |          | ~ 145        | 218          | _                | -        | -         | -      | -        | -       | -         |             |
| Jugo 2                            | 7 10   | .07          |          | . 10         | 210          |                  |          |           |        |          |         |           |             |
| A norse self                      | ED     |              |          | MID          |              |                  | ND       |           |        | CD       |         |           |             |
| Approach                          | EB     |              |          | WB           |              |                  | NB       |           |        | SB       |         |           |             |
| HCM Control Delay, s\$            | 634.3  |              | \$ 2     | 2244.1       |              |                  | 0.4      |           |        | 0.2      |         |           |             |
| HCM LOS                           | F      |              |          | F            |              |                  |          |           |        |          |         |           |             |
|                                   |        |              |          |              |              |                  |          |           |        |          |         |           |             |
| Minor Lane/Major Mvm              | nt     | NBL          | NBT      | NBR          | EBLn1V       | WBLn1            | SBL      | SBT       | SBR    |          |         |           |             |
| Capacity (veh/h)                  |        | 583          | -        | -            | 57           | 42               | 997      | -         | -      |          |         |           |             |
| HCM Lane V/C Ratio                |        | 0.036        | -        |              |              | 5.564            | 0.032    | -         | -      |          |         |           |             |
| HCM Control Delay (s)             |        | 11.4         | -        | -\$          | 634.\$2      | 2244.1           | 8.7      | 0         | -      |          |         |           |             |
| HCM Lane LOS                      |        | В            | -        | -            | F            | F                | Α        | Α         | -      |          |         |           |             |
| HCM 95th %tile Q(veh)             | )      | 0.1          | -        | -            | 11.2         | 27.2             | 0.1      | -         | -      |          |         |           |             |
| Notes                             |        |              |          |              |              |                  |          |           |        |          |         |           |             |
| ~: Volume exceeds cap             | nacity | \$· De       | elay exc | reeds 3      | 00s          | +: Com           | putation | Not D     | efined | *· ΔII   | maiory  | /olume i  | in platoon  |
| . Volumo exceeda ca               | pacity | ψ, D(        | July CAL | ocus J       | 003          |                  | patation | ו ואטנ טי | omicu  | . /\     | major v | Joiding 1 | ii piatooii |

|                              | ۶    | <b>→</b> | *    | •    | <b>←</b> | 4    | 4    | <b>†</b> | ~    | <b>/</b> | <del> </del> | ✓    |
|------------------------------|------|----------|------|------|----------|------|------|----------|------|----------|--------------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL      | SBT          | SBR  |
| Lane Configurations          |      | 4        |      |      | 4        | 7    | ሻ    | <b>↑</b> | 7    | 7        | <b>↑</b>     | 7    |
| Traffic Volume (veh/h)       | 30   | 20       | 30   | 209  | 20       | 57   | 20   | 411      | 154  | 244      | 956          | 20   |
| Future Volume (veh/h)        | 30   | 20       | 30   | 209  | 20       | 57   | 20   | 411      | 154  | 244      | 956          | 20   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0        | 0            | 0    |
| Ped-Bike Adj(A_pbT)          | 0.99 |          | 0.99 | 0.99 |          | 0.99 | 1.00 |          | 0.99 | 1.00     |              | 0.99 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00         | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No       |      |          | No           |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870     | 1870         | 1870 |
| Adj Flow Rate, veh/h         | 32   | 21       | 7    | 220  | 21       | 13   | 21   | 433      | 51   | 257      | 1006         | 10   |
| Peak Hour Factor             | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 | 0.95     | 0.95         | 0.95 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    | 2        | 2            | 2    |
| Cap, veh/h                   | 128  | 71       | 14   | 379  | 26       | 403  | 35   | 624      | 525  | 304      | 907          | 764  |
| Arrive On Green              | 0.26 | 0.26     | 0.26 | 0.26 | 0.26     | 0.26 | 0.02 | 0.33     | 0.33 | 0.17     | 0.48         | 0.48 |
| Sat Flow, veh/h              | 149  | 276      | 56   | 1043 | 100      | 1570 | 1781 | 1870     | 1573 | 1781     | 1870         | 1577 |
| Grp Volume(v), veh/h         | 60   | 0        | 0    | 241  | 0        | 13   | 21   | 433      | 51   | 257      | 1006         | 10   |
| Grp Sat Flow(s),veh/h/ln     | 481  | 0        | 0    | 1143 | 0        | 1570 | 1781 | 1870     | 1573 | 1781     | 1870         | 1577 |
| Q Serve(g_s), s              | 0.5  | 0.0      | 0.0  | 0.0  | 0.0      | 0.4  | 0.7  | 12.4     | 1.4  | 8.7      | 30.0         | 0.2  |
| Cycle Q Clear(g_c), s        | 13.4 | 0.0      | 0.0  | 13.0 | 0.0      | 0.4  | 0.7  | 12.4     | 1.4  | 8.7      | 30.0         | 0.2  |
| Prop In Lane                 | 0.53 |          | 0.12 | 0.91 |          | 1.00 | 1.00 |          | 1.00 | 1.00     |              | 1.00 |
| Lane Grp Cap(c), veh/h       | 213  | 0        | 0    | 405  | 0        | 403  | 35   | 624      | 525  | 304      | 907          | 764  |
| V/C Ratio(X)                 | 0.28 | 0.00     | 0.00 | 0.60 | 0.00     | 0.03 | 0.60 | 0.69     | 0.10 | 0.85     | 1.11         | 0.01 |
| Avail Cap(c_a), veh/h        | 213  | 0        | 0    | 612  | 0        | 634  | 345  | 907      | 762  | 345      | 907          | 764  |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00         | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00         | 1.00 |
| Uniform Delay (d), s/veh     | 18.7 | 0.0      | 0.0  | 21.9 | 0.0      | 17.2 | 30.1 | 17.9     | 14.2 | 24.9     | 15.9         | 8.3  |
| Incr Delay (d2), s/veh       | 0.3  | 0.0      | 0.0  | 0.5  | 0.0      | 0.0  | 6.0  | 0.5      | 0.0  | 14.2     | 64.7         | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0          | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.6  | 0.0      | 0.0  | 3.2  | 0.0      | 0.1  | 0.4  | 4.8      | 0.4  | 4.5      | 26.4         | 0.1  |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |          |      |          |              |      |
| LnGrp Delay(d),s/veh         | 19.0 | 0.0      | 0.0  | 22.5 | 0.0      | 17.3 | 36.1 | 18.4     | 14.2 | 39.1     | 80.7         | 8.3  |
| LnGrp LOS                    | В    | Α        | Α    | С    | Α        | В    | D    | В        | В    | D        | F            | Α    |
| Approach Vol, veh/h          |      | 60       |      |      | 254      |      |      | 505      |      |          | 1273         |      |
| Approach Delay, s/veh        |      | 19.0     |      |      | 22.2     |      |      | 18.7     |      |          | 71.7         |      |
| Approach LOS                 |      | В        |      |      | С        |      |      | В        |      |          | Е            |      |
| Timer - Assigned Phs         |      | 2        | 3    | 4    |          | 6    | 7    | 8        |      |          |              |      |
| Phs Duration (G+Y+Rc), s     |      | 20.5     | 6.3  | 35.1 |          | 20.5 | 15.7 | 25.7     |      |          |              |      |
| Change Period (Y+Rc), s      |      | 4.6      | 5.1  | 5.1  |          | 4.6  | 5.1  | 5.1      |      |          |              |      |
| Max Green Setting (Gmax), s  |      | 12.0     | 12.0 | 30.0 |          | 25.0 | 12.0 | 30.0     |      |          |              |      |
| Max Q Clear Time (g_c+l1), s |      | 15.4     | 2.7  | 32.0 |          | 15.0 | 10.7 | 14.4     |      |          |              |      |
| Green Ext Time (p_c), s      |      | 0.0      | 0.0  | 0.0  |          | 0.7  | 0.0  | 1.2      |      |          |              |      |
| Intersection Summary         |      |          |      |      |          |      |      |          |      |          |              |      |
| HCM 6th Ctrl Delay           |      |          | 51.4 |      |          |      |      |          |      |          |              |      |
| HCM 6th LOS                  |      |          | D D  |      |          |      |      |          |      |          |              |      |
| Notes                        |      |          |      |      |          |      |      |          |      |          |              |      |

| Intersection                           |         |                   |                 |               |              |              |                      |                                |
|----------------------------------------|---------|-------------------|-----------------|---------------|--------------|--------------|----------------------|--------------------------------|
| Int Delay, s/veh                       | 143.7   |                   |                 |               |              |              |                      |                                |
| Movement                               | EBL     | EBT               | WBT             | WBR           | SBL          | SBR          |                      |                                |
|                                        | LDL     |                   |                 | VVDIX         | JDL          | 3DK          |                      |                                |
| Lane Configurations Traffic Vol, veh/h | 105     | <b>र्स</b><br>375 | <b>↑</b><br>225 | 236           | <b>1</b> 512 | <b>1</b> 43  |                      |                                |
| Future Vol, veh/h                      | 105     | 375               | 225             | 236           | 512          | 43           |                      |                                |
|                                        |         | 0                 | 0               | 230           | 0            | 43           |                      |                                |
| Conflicting Peds, #/hr                 |         | Free              | Free            |               |              |              |                      |                                |
| Sign Control RT Channelized            | Free    | None              |                 | Free<br>Yield | Stop         | Stop<br>None |                      |                                |
|                                        | -       | None -            | -               | 150           | 90           | 0            |                      |                                |
| Storage Length                         |         | 0                 | 0               |               | 0            |              |                      |                                |
| Veh in Median Storag                   |         |                   |                 | -             |              | -            |                      |                                |
| Grade, %                               | 95      | 95                | 95              | -<br>0E       | 95           | -<br>95      |                      |                                |
| Peak Hour Factor                       |         | 95<br>2           | 95              | 95            |              | 95<br>2      |                      |                                |
| Heavy Vehicles, % Mvmt Flow            | 111     |                   |                 | 249           | 520          | 45           |                      |                                |
| IVIVITIL FIOW                          | 111     | 395               | 237             | 248           | 539          | 45           |                      |                                |
|                                        |         |                   |                 |               |              |              |                      |                                |
| Major/Minor                            | Major1  |                   | Major2          |               | Minor2       | 000          |                      |                                |
| Conflicting Flow All                   | 237     | 0                 | -               | 0             | 854          | 237          |                      |                                |
| Stage 1                                | -       | -                 | -               | -             | 237          | -            |                      |                                |
| Stage 2                                | -       | -                 | -               | -             | 617          | -            |                      |                                |
| Critical Hdwy                          | 4.12    | -                 | -               | -             | 6.42         | 6.22         |                      |                                |
| Critical Hdwy Stg 1                    | -       | -                 | -               | -             | 5.42         | -            |                      |                                |
| Critical Hdwy Stg 2                    | -       | -                 | -               | -             | 5.42         | -            |                      |                                |
| Follow-up Hdwy                         | 2.218   | -                 | -               | -             | 3.518        |              |                      |                                |
| Pot Cap-1 Maneuver                     | 1330    | -                 | -               | -             | ~ 329        | 802          |                      |                                |
| Stage 1                                | -       | -                 | -               | -             | 802          | -            |                      |                                |
| Stage 2                                | -       | -                 | -               | -             | ~ 538        | -            |                      |                                |
| Platoon blocked, %                     |         | -                 | -               | -             |              |              |                      |                                |
| Mov Cap-1 Maneuver                     |         | -                 | -               | -             | ~ 294        | 802          |                      |                                |
| Mov Cap-2 Maneuver                     | -       | -                 | -               | -             | _ , ,        | -            |                      |                                |
| Stage 1                                | -       | -                 | -               | -             | 716          | -            |                      |                                |
| Stage 2                                | -       | -                 | -               | -             | ~ 538        | -            |                      |                                |
|                                        |         |                   |                 |               |              |              |                      |                                |
| Approach                               | EB      |                   | WB              |               | SB           |              |                      |                                |
| HCM Control Delay, s                   | 1.7     |                   | 0               | \$            | 385.8        |              |                      |                                |
| HCM LOS                                |         |                   |                 |               | F            |              |                      |                                |
|                                        |         |                   |                 |               |              |              |                      |                                |
| Minor Lane/Major Mvr                   | mt      | EBL               | EBT             | WBT           | WBR          | SBLn1 S      | SBLn2                |                                |
| Capacity (veh/h)                       |         | 1330              | -               |               |              | 294          | 802                  |                                |
| HCM Lane V/C Ratio                     |         | 0.083             | -               | -             | -            | 1.833        |                      |                                |
| HCM Control Delay (s                   | s)      | 8                 | 0               | -             |              | 417.4        | 9.8                  |                                |
| HCM Lane LOS                           | ,       | A                 | A               | -             | -            | F            | A                    |                                |
| HCM 95th %tile Q(veh                   | n)      | 0.3               | -               | -             | -            | 36.2         | 0.2                  |                                |
| Notes                                  |         |                   |                 |               |              |              |                      |                                |
| ~: Volume exceeds ca                   | anacity | \$. Do            | alay ovo        | cappe 2       | Nης          | +: Com       | outation Not Defined | *· All major volume in platoon |
| ~. Volume exceeds Ca                   | apacity | ⊅; D∈             | ciay exc        | ceeds 3       | 005          | +. Cum       | outation Not Defined | *: All major volume in platoon |

|                              | ۶     | <b>→</b> | *    | •    | <b>←</b> | 4    | 1    | <b>†</b> | /    | <b>/</b> | Ţ       | √    |
|------------------------------|-------|----------|------|------|----------|------|------|----------|------|----------|---------|------|
| Movement                     | EBL   | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL      | SBT     | SBR  |
| Lane Configurations          |       | 4        | 7    |      | 4        |      | 7    | ĵ⇒       |      | *        | ₽       |      |
| Traffic Volume (veh/h)       | 50    | 81       | 204  | 140  | 71       | 20   | 113  | 450      | 170  | 21       | 555     | 40   |
| Future Volume (veh/h)        | 50    | 81       | 204  | 140  | 71       | 20   | 113  | 450      | 170  | 21       | 555     | 40   |
| Initial Q (Qb), veh          | 0     | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0        | 0       | 0    |
| Ped-Bike Adj(A_pbT)          | 0.99  |          | 0.99 | 0.99 |          | 0.99 | 1.00 |          | 0.99 | 1.00     |         | 0.99 |
| Parking Bus, Adj             | 1.00  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00    | 1.00 |
| Work Zone On Approach        |       | No       |      |      | No       |      |      | No       |      |          | No      |      |
| Adj Sat Flow, veh/h/ln       | 1870  | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870     | 1870    | 1870 |
| Adj Flow Rate, veh/h         | 53    | 85       | 34   | 147  | 75       | 19   | 119  | 474      | 174  | 22       | 584     | 40   |
| Peak Hour Factor             | 0.95  | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 | 0.95     | 0.95    | 0.95 |
| Percent Heavy Veh, %         | 2     | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    | 2        | 2       | 2    |
| Cap, veh/h                   | 188   | 270      | 371  | 237  | 106      | 22   | 286  | 605      | 222  | 107      | 630     | 43   |
| Arrive On Green              | 0.24  | 0.24     | 0.24 | 0.24 | 0.24     | 0.24 | 0.16 | 0.46     | 0.46 | 0.06     | 0.36    | 0.36 |
| Sat Flow, veh/h              | 478   | 1140     | 1568 | 636  | 447      | 93   | 1781 | 1303     | 478  | 1781     | 1730    | 118  |
| Grp Volume(v), veh/h         | 138   | 0        | 34   | 241  | 0        | 0    | 119  | 0        | 648  | 22       | 0       | 624  |
| Grp Sat Flow(s), veh/h/ln    | 1619  | 0        | 1568 | 1176 | 0        | 0    | 1781 | 0        | 1781 | 1781     | 0       | 1848 |
| Q Serve(g_s), s              | 0.0   | 0.0      | 1.1  | 9.4  | 0.0      | 0.0  | 4.0  | 0.0      | 20.4 | 0.8      | 0.0     | 21.6 |
| Cycle Q Clear(g_c), s        | 4.3   | 0.0      | 1.1  | 13.7 | 0.0      | 0.0  | 4.0  | 0.0      | 20.4 | 0.8      | 0.0     | 21.6 |
| Prop In Lane                 | 0.38  |          | 1.00 | 0.61 |          | 0.08 | 1.00 |          | 0.27 | 1.00     |         | 0.06 |
| Lane Grp Cap(c), veh/h       | 458   | 0        | 371  | 365  | 0        | 0    | 286  | 0        | 827  | 107      | 0       | 673  |
| V/C Ratio(X)                 | 0.30  | 0.00     | 0.09 | 0.66 | 0.00     | 0.00 | 0.42 | 0.00     | 0.78 | 0.20     | 0.00    | 0.93 |
| Avail Cap(c_a), veh/h        | 1281  | 0        | 1179 | 371  | 0        | 0    | 429  | 0        | 1339 | 1340     | 0       | 695  |
| HCM Platoon Ratio            | 1.00  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00    | 1.00 |
| Upstream Filter(I)           | 1.00  | 0.00     | 1.00 | 1.00 | 0.00     | 0.00 | 1.00 | 0.00     | 1.00 | 1.00     | 0.00    | 1.00 |
| Uniform Delay (d), s/veh     | 20.9  | 0.0      | 19.8 | 25.6 | 0.0      | 0.0  | 25.1 | 0.0      | 15.0 | 29.7     | 0.0     | 20.3 |
| Incr Delay (d2), s/veh       | 0.4   | 0.0      | 0.1  | 4.2  | 0.0      | 0.0  | 1.0  | 0.0      | 1.7  | 0.9      | 0.0     | 18.4 |
| Initial Q Delay(d3),s/veh    | 0.0   | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0     | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 1.7   | 0.0      | 0.4  | 3.8  | 0.0      | 0.0  | 1.6  | 0.0      | 6.8  | 0.3      | 0.0     | 11.1 |
| Unsig. Movement Delay, s/veh |       | 0.0      | 10.0 | 20.0 | 0.0      | 0.0  | 2/ 1 | 0.0      | 1/7  | 20.7     | 0.0     | 20.7 |
| LnGrp Delay(d),s/veh         | 21.3  | 0.0      | 19.9 | 29.8 | 0.0      | 0.0  | 26.1 | 0.0      | 16.7 | 30.7     | 0.0     | 38.7 |
| LnGrp LOS                    | С     | A 170    | В    | С    | A 241    | A    | С    | A 7/7    | В    | С        | Α ( 4 ( | D    |
| Approach Vol, veh/h          |       | 172      |      |      | 241      |      |      | 767      |      |          | 646     |      |
| Approach Delay, s/veh        |       | 21.0     |      |      | 29.8     |      |      | 18.1     |      |          | 38.4    |      |
| Approach LOS                 |       | С        |      |      | С        |      |      | В        |      |          | D       |      |
| Timer - Assigned Phs         | 1     | 2        |      | 4    | 5        | 6    |      | 8        |      |          |         |      |
| Phs Duration (G+Y+Rc), s     | 15.4  | 30.0     |      | 21.1 | 8.7      | 36.7 |      | 21.1     |      |          |         |      |
| Change Period (Y+Rc), s      | * 4.7 | 5.8      |      | 5.4  | * 4.7    | 5.8  |      | 5.4      |      |          |         |      |
| Max Green Setting (Gmax), s  | * 16  | 25.0     |      | 16.0 | * 50     | 50.0 |      | 50.0     |      |          |         |      |
| Max Q Clear Time (g_c+I1), s | 6.0   | 23.6     |      | 15.7 | 2.8      | 22.4 |      | 6.3      |      |          |         |      |
| Green Ext Time (p_c), s      | 0.2   | 0.6      |      | 0.0  | 0.0      | 4.4  |      | 0.9      |      |          |         |      |
| Intersection Summary         |       |          |      |      |          |      |      |          |      |          |         |      |
| HCM 6th Ctrl Delay           |       |          | 27.1 |      |          |      |      |          |      |          |         |      |
| HCM 6th LOS                  |       |          | С    |      |          |      |      |          |      |          |         |      |

| Intersection           |        |        |          |          |      |        |          |         |        |             |            |          |            |
|------------------------|--------|--------|----------|----------|------|--------|----------|---------|--------|-------------|------------|----------|------------|
| Int Delay, s/veh       | 544.5  |        |          |          |      |        |          |         |        |             |            |          |            |
| Movement               | EBL    | EBT    | EBR      | WBL      | WBT  | WBR    | NBL      | NBT     | NBR    | SBL         | SBT        | SBR      |            |
| Lane Configurations    | ሻ      | 1>     | LDI      | 7        | \$   | WDIX   | NDL      | 4       | NDI    | JDL         | <u>ુકા</u> | 7        |            |
| Traffic Vol, veh/h     | 72     | 549    | 20       | 20       | 535  | 409    | 20       | 20      | 20     | 385         | 20         | 92       |            |
| Future Vol, veh/h      | 72     | 549    | 20       | 20       | 535  | 409    | 20       | 20      | 20     | 385         | 20         | 92       |            |
| Conflicting Peds, #/hr | 0      | 0      | 0        | 0        | 0    | 0      | 0        | 0       | 0      | 0           | 0          | 0        |            |
| Sign Control           | Free   | Free   | Free     | Free     | Free | Free   | Stop     | Stop    | Stop   | Stop        | Stop       | Stop     |            |
| RT Channelized         | -      | -      | None     | -        | -    | None   | -        | -       | None   |             | -          | None     |            |
| Storage Length         | 100    | -      | -        | 70       | -    | -      | -        | -       | -      | -           | -          | 60       |            |
| Veh in Median Storage  |        | 0      | -        | -        | 0    | -      | -        | 0       | -      | -           | 0          | -        |            |
| Grade, %               | -      | 0      | -        | -        | 0    | -      | -        | 0       | -      | -           | 0          | -        |            |
| Peak Hour Factor       | 95     | 95     | 95       | 95       | 95   | 95     | 95       | 95      | 95     | 95          | 95         | 95       |            |
| Heavy Vehicles, %      | 2      | 2      | 2        | 2        | 2    | 2      | 2        | 2       | 2      | 2           | 2          | 2        |            |
| Mvmt Flow              | 76     | 578    | 21       | 21       | 563  | 431    | 21       | 21      | 21     | 405         | 21         | 97       |            |
|                        |        |        |          |          |      |        |          |         |        |             |            |          |            |
| Major/Minor I          | Major1 |        | N        | Major2   |      | ı      | Minor1   |         |        | Minor2      |            |          |            |
| Conflicting Flow All   | 994    | 0      | 0        | 599      | 0    | 0      | 1621     | 1777    | 589    | 1583        | 1572       | 779      |            |
| Stage 1                | 774    | -      | -        | J77<br>- | -    | -      | 741      | 741     | -      | 821         | 821        | -        |            |
| Stage 2                |        |        | _        | _        | _    | _      | 880      | 1036    | _      | 762         | 751        | _        |            |
| Critical Hdwy          | 4.12   | _      | _        | 4.12     | _    | _      | 7.12     | 6.52    | 6.22   | 7.12        | 6.52       | 6.22     |            |
| Critical Hdwy Stg 1    | 7.12   | _      | _        | 7.12     | _    | _      | 6.12     | 5.52    | 0.22   | 6.12        | 5.52       | 0.22     |            |
| Critical Hdwy Stg 2    | _      | _      | _        | _        | _    | _      | 6.12     | 5.52    | _      | 6.12        | 5.52       | _        |            |
| Follow-up Hdwy         | 2.218  | _      | _        | 2.218    | _    | _      | 3.518    | 4.018   | 3.318  | 3.518       | 4.018      | 3.318    |            |
| Pot Cap-1 Maneuver     | 696    | -      | -        | 978      | -    | -      | 83       | 82      | 508    | ~ 88        | 110        | 396      |            |
| Stage 1                | -      | _      | -        | -        | _    | _      | 408      | 423     |        | ~ 369       | 389        | -        |            |
| Stage 2                | -      | -      | -        | -        | -    | -      | 342      | 309     |        | ~ 397       | 418        | -        |            |
| Platoon blocked, %     |        | -      | -        |          | -    | -      |          |         |        |             |            |          |            |
| Mov Cap-1 Maneuver     | 696    | -      | -        | 978      | -    | -      | 47       | 72      | 508    | ~ 59        | 96         | 396      |            |
| Mov Cap-2 Maneuver     | -      | -      | -        | -        | -    | -      | 47       | 72      | -      | ~ 59        | 96         | -        |            |
| Stage 1                | -      | -      | -        | -        | -    | -      | 364      | 377     | -      | ~ 329       | 381        | -        |            |
| Stage 2                | -      | -      | -        | -        | -    | -      | 239      | 303     | -      | ~ 320       | 372        | -        |            |
|                        |        |        |          |          |      |        |          |         |        |             |            |          |            |
| Approach               | EB     |        |          | WB       |      |        | NB       |         |        | SB          |            |          |            |
| HCM Control Delay, s   | 1.2    |        |          | 0.2      |      |        | 134.2    |         | \$     | 2350.4      |            |          |            |
| HCM LOS                | 1.2    |        |          | 0.2      |      |        | 134.Z    |         | Ψ,     | 2330.4<br>F |            |          |            |
| TIOWI LOO              |        |        |          |          |      |        | '        |         |        | '           |            |          |            |
| \d\.                   |        | UDI 4  | ED.      | CDT.     |      | MD     | MOT      | MDD     | 201 4  | CDL C       |            |          |            |
| Minor Lane/Major Mvm   | n I    | VBLn1  | EBL      | EBT      | EBR  | WBL    | WBT      | WBK :   | SBLn1  |             |            |          |            |
| Capacity (veh/h)       |        | 81     | 696      | -        | -    | 978    | -        | -       | 60     | 396         |            |          |            |
| HCM Cantrol Dalay (a)  |        |        | 0.109    | -        |      | 0.022  | -        |         | 7.105  |             |            |          |            |
| HCM Control Delay (s)  |        | 134.2  | 10.8     | -        | -    | 8.8    | -        |         | 2880.5 | 17          |            |          |            |
| HCM Lane LOS           | ١      | F      | В        | -        | -    | A      | -        | -       | F      | С           |            |          |            |
| HCM 95th %tile Q(veh)  | )      | 3.9    | 0.4      | -        | -    | 0.1    | -        | -       | 49     | 0.9         |            |          |            |
| Votes                  |        |        |          |          |      |        |          |         |        |             |            |          |            |
| : Volume exceeds cap   | pacity | \$: De | elay exc | eeds 30  | 00s  | +: Com | putation | n Not D | efined | *: All      | major v    | volume i | in platoon |

|                              | ۶    | <b>→</b> | •    | •    | <b>—</b> | •    | •     | †    | ~    | <b>/</b> | <b></b> | ✓    |
|------------------------------|------|----------|------|------|----------|------|-------|------|------|----------|---------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL   | NBT  | NBR  | SBL      | SBT     | SBR  |
| Lane Configurations          |      | र्स      | 7    | ሻ    | f)       |      | 7     | 4Î   | 7    |          | 4       |      |
| Traffic Volume (veh/h)       | 0    | 530      | 424  | 420  | 337      | 0    | 627   | 0    | 207  | 0        | 0       | 0    |
| Future Volume (veh/h)        | 0    | 530      | 424  | 420  | 337      | 0    | 627   | 0    | 207  | 0        | 0       | 0    |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0     | 0    | 0    | 0        | 0       | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00  |      | 1.00 | 1.00     |         | 1.00 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00  | 1.00 | 1.00 | 1.00     | 1.00    | 1.00 |
| Work Zone On Approach        |      | No       |      |      | No       |      |       | No   |      |          | No      |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870  | 1870 | 1870 | 1870     | 1870    | 1870 |
| Adj Flow Rate, veh/h         | 0    | 558      | 265  | 442  | 355      | 0    | 660   | 0    | 139  | 0        | 0       | 0    |
| Peak Hour Factor             | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 | 0.95  | 0.95 | 0.95 | 0.95     | 0.95    | 0.95 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2     | 2    | 2    | 2        | 2       | 2    |
| Cap, veh/h                   | 0    | 488      | 413  | 523  | 549      | 0    | 580   | 0    | 1033 | 0        | 2       | 0    |
| Arrive On Green              | 0.00 | 0.26     | 0.26 | 0.29 | 0.29     | 0.00 | 0.33  | 0.00 | 0.33 | 0.00     | 0.00    | 0.00 |
| Sat Flow, veh/h              | 0    | 1870     | 1585 | 1781 | 1870     | 0    | 1781  | 0    | 3170 | 0        | 1870    | 0    |
| Grp Volume(v), veh/h         | 0    | 558      | 265  | 442  | 355      | 0    | 660   | 0    | 139  | 0        | 0       | 0    |
| Grp Sat Flow(s),veh/h/ln     | 0    | 1870     | 1585 | 1781 | 1870     | 0    | 1781  | 0    | 1585 | 0        | 1870    | 0    |
| Q Serve(g_s), s              | 0.0  | 20.0     | 11.4 | 17.9 | 12.7     | 0.0  | 25.0  | 0.0  | 2.4  | 0.0      | 0.0     | 0.0  |
| Cycle Q Clear(g_c), s        | 0.0  | 20.0     | 11.4 | 17.9 | 12.7     | 0.0  | 25.0  | 0.0  | 2.4  | 0.0      | 0.0     | 0.0  |
| Prop In Lane                 | 0.00 |          | 1.00 | 1.00 |          | 0.00 | 1.00  |      | 1.00 | 0.00     |         | 0.00 |
| Lane Grp Cap(c), veh/h       | 0    | 488      | 413  | 523  | 549      | 0    | 580   | 0    | 1033 | 0        | 2       | 0    |
| V/C Ratio(X)                 | 0.00 | 1.14     | 0.64 | 0.85 | 0.65     | 0.00 | 1.14  | 0.00 | 0.13 | 0.00     | 0.00    | 0.00 |
| Avail Cap(c_a), veh/h        | 0    | 488      | 413  | 696  | 731      | 0    | 580   | 0    | 1033 | 0        | 195     | 0    |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00  | 1.00 | 1.00 | 1.00     | 1.00    | 1.00 |
| Upstream Filter(I)           | 0.00 | 1.00     | 1.00 | 1.00 | 1.00     | 0.00 | 1.00  | 0.00 | 1.00 | 0.00     | 0.00    | 0.00 |
| Uniform Delay (d), s/veh     | 0.0  | 28.4     | 25.2 | 25.5 | 23.6     | 0.0  | 25.9  | 0.0  | 18.2 | 0.0      | 0.0     | 0.0  |
| Incr Delay (d2), s/veh       | 0.0  | 86.9     | 3.3  | 7.3  | 1.3      | 0.0  | 81.3  | 0.0  | 0.1  | 0.0      | 0.0     | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0   | 0.0  | 0.0  | 0.0      | 0.0     | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 0.0  | 20.1     | 4.4  | 8.1  | 5.4      | 0.0  | 23.0  | 0.0  | 0.8  | 0.0      | 0.0     | 0.0  |
| Unsig. Movement Delay, s/veh | 0.0  | 445.0    | 00.5 | 00.7 | 040      | 0.0  | 107.1 | 0.0  | 10.0 | 0.0      | 0.0     | 0.0  |
| LnGrp Delay(d),s/veh         | 0.0  | 115.3    | 28.5 | 32.7 | 24.9     | 0.0  | 107.1 | 0.0  | 18.3 | 0.0      | 0.0     | 0.0  |
| LnGrp LOS                    | A    | <u>F</u> | С    | С    | <u>C</u> | A    | F_    | A    | В    | A        | A       | A    |
| Approach Vol, veh/h          |      | 823      |      |      | 797      |      |       | 799  |      |          | 0       |      |
| Approach Delay, s/veh        |      | 87.3     |      |      | 29.2     |      |       | 91.7 |      |          | 0.0     |      |
| Approach LOS                 |      | F        |      |      | С        |      |       | F    |      |          |         |      |
| Timer - Assigned Phs         |      | 2        |      | 4    |          | 6    |       | 8    |      |          |         |      |
| Phs Duration (G+Y+Rc), s     |      | 0.0      |      | 23.2 |          | 28.0 |       | 25.5 |      |          |         |      |
| Change Period (Y+Rc), s      |      | 3.0      |      | 3.2  |          | 3.0  |       | 3.0  |      |          |         |      |
| Max Green Setting (Gmax), s  |      | 8.0      |      | 20.0 |          | 25.0 |       | 30.0 |      |          |         |      |
| Max Q Clear Time (g_c+I1), s |      | 0.0      |      | 22.0 |          | 27.0 |       | 19.9 |      |          |         |      |
| Green Ext Time (p_c), s      |      | 0.0      |      | 0.0  |          | 0.0  |       | 2.6  |      |          |         |      |
| Intersection Summary         |      |          |      |      |          |      |       |      |      |          |         |      |
| HCM 6th Ctrl Delay           |      |          | 69.6 |      |          |      |       |      |      |          |         |      |
| HCM 6th LOS                  |      |          | Е    |      |          |      |       |      |      |          |         |      |

User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for turning movement.

|                           | <b>→</b> | $\rightarrow$ | •    | •    | 1    |      |   |
|---------------------------|----------|---------------|------|------|------|------|---|
| Movement                  | EBT      | EBR           | WBL  | WBT  | NBL  | NBR  |   |
| Lane Configurations       | <b>^</b> | 7             | ሻ    | 414  | *    | 77   |   |
| Traffic Volume (veh/h)    | 256      | 280           | 484  | 336  | 267  | 537  |   |
| Future Volume (veh/h)     | 256      | 280           | 484  | 336  | 267  | 537  |   |
| Initial Q (Qb), veh       | 0        | 0             | 0    | 0    | 0    | 0    |   |
| Ped-Bike Adj(A_pbT)       | U        | 1.00          | 1.00 | U    | 1.00 | 1.00 |   |
| Parking Bus, Adj          | 1.00     | 1.00          | 1.00 | 1.00 | 1.00 | 1.00 |   |
| Work Zone On Approach     |          | 1.00          | 1.00 | No   | No   | 1.00 |   |
|                           | 1870     | 1870          | 1870 | 1870 | 1870 | 1870 |   |
| Adj Flow Rate, veh/h      | 269      | 52            | 509  | 354  | 281  | 303  |   |
| ,                         |          |               |      |      |      |      |   |
|                           | 0.95     | 0.95          | 0.95 | 0.95 | 0.95 | 0.95 |   |
| Percent Heavy Veh, %      | 2        | 2             | 2    | 2    | 2    | 2    |   |
| Cap, veh/h                | 586      | 261           | 1050 | 551  | 423  | 1485 |   |
|                           | 0.16     | 0.16          | 0.29 | 0.29 | 0.24 | 0.24 |   |
| Sat Flow, veh/h           | 3647     | 1585          | 3563 | 1870 | 1781 | 2790 | Į |
| Grp Volume(v), veh/h      | 269      | 52            | 509  | 354  | 281  | 303  |   |
| Grp Sat Flow(s), veh/h/ln | 1777     | 1585          | 1781 | 1870 | 1781 | 1395 |   |
| Q Serve(g_s), s           | 2.4      | 1.0           | 4.1  | 5.7  | 5.0  | 2.0  |   |
| Cycle Q Clear(g_c), s     | 2.4      | 1.0           | 4.1  | 5.7  | 5.0  | 2.0  |   |
| Prop In Lane              |          | 1.00          | 1.00 |      | 1.00 | 1.00 |   |
| Lane Grp Cap(c), veh/h    | 586      | 261           | 1050 | 551  | 423  | 1485 |   |
|                           | 0.46     | 0.20          | 0.48 | 0.64 | 0.66 | 0.20 |   |
| , ,                       | 2049     | 914           | 1540 | 809  | 719  | 1948 |   |
|                           | 1.00     | 1.00          | 1.00 | 1.00 | 1.00 | 1.00 |   |
|                           | 1.00     | 1.00          | 1.00 | 1.00 | 1.00 | 1.00 |   |
| Uniform Delay (d), s/veh  |          | 12.5          | 10.1 | 10.6 | 12.0 | 4.3  |   |
|                           | 0.6      | 0.4           |      |      |      | 0.1  |   |
| Incr Delay (d2), s/veh    |          |               | 0.3  | 1.3  | 1.8  |      |   |
| Initial Q Delay(d3),s/veh |          | 0.0           | 0.0  | 0.0  | 0.0  | 0.0  |   |
| %ile BackOfQ(50%),veh     |          | 0.3           | 1.2  | 1.9  | 1.7  | 0.8  |   |
| Unsig. Movement Delay,    |          |               |      |      |      |      |   |
|                           | 13.6     | 12.9          | 10.4 | 11.9 | 13.8 | 4.3  |   |
| LnGrp LOS                 | В        | В             | В    | В    | В    | A    |   |
| Approach Vol, veh/h       | 321      |               |      | 863  | 584  |      |   |
|                           | 13.5     |               |      | 11.0 | 8.9  |      |   |
| Approach LOS              | В        |               |      | В    | Α    |      |   |
|                           |          | 2             |      |      |      | ,    |   |
| Timer - Assigned Phs      |          | 2             |      |      |      | 6    |   |
| Phs Duration (G+Y+Rc),    |          | 9.2           |      |      |      | 13.7 |   |
| Change Period (Y+Rc), s   |          | 3.5           |      |      |      | 3.5  |   |
| Max Green Setting (Gma    |          | 20.0          |      |      |      | 15.0 |   |
| Max Q Clear Time (g_c+    | ·I1), s  | 4.4           |      |      |      | 7.7  |   |
| Green Ext Time (p_c), s   |          | 1.6           |      |      |      | 2.5  |   |
| Intersection Summary      |          |               |      |      |      |      |   |
|                           |          |               | 10.8 |      |      |      |   |
| HCM 6th Ctrl Delay        |          |               |      |      |      |      |   |
| HCM 6th LOS               |          |               | В    |      |      |      |   |
| Notes                     |          |               |      |      |      |      |   |

|                          | ۶    | <b>→</b> | •    | •    | <b>←</b> | •    | 4    | †        | <b>/</b> | <b>/</b> | ļ        | 4    |  |
|--------------------------|------|----------|------|------|----------|------|------|----------|----------|----------|----------|------|--|
| Movement                 | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR      | SBL      | SBT      | SBR  |  |
| Lane Configurations      | ķ    | र्स      | 7    | ķ    | f)       |      | ľ    | <b>^</b> | 7        | ľ        | <b>^</b> | 7    |  |
| Traffic Volume (veh/h)   | 370  | 120      | 303  | 30   | 40       | 40   | 409  | 741      | 50       | 60       | 375      | 371  |  |
| Future Volume (veh/h)    | 370  | 120      | 303  | 30   | 40       | 40   | 409  | 741      | 50       | 60       | 375      | 371  |  |
| Initial Q (Qb), veh      | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0        | 0        | 0        | 0    |  |
| Ped-Bike Adj(A_pbT)      | 1.00 |          | 0.99 | 1.00 |          | 1.00 | 1.00 |          | 0.99     | 1.00     |          | 0.99 |  |
| Parking Bus, Adj         | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |  |
| Work Zone On Approac     |      | No       |      |      | No       |      |      | No       |          |          | No       |      |  |
| Adj Sat Flow, veh/h/ln   | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870     | 1870     | 1870     | 1870 |  |
| Adj Flow Rate, veh/h     | 258  | 310      | 56   | 32   | 42       | 1    | 431  | 780      | 19       | 63       | 395      | 70   |  |
| Peak Hour Factor         | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     | 0.95     | 0.95     | 0.95     | 0.95 |  |
| Percent Heavy Veh, %     | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2        | 2        | 2        | 2    |  |
| Cap, veh/h               | 365  | 383      | 322  | 82   | 84       | 2    | 473  | 1331     | 590      | 80       | 563      | 249  |  |
| Arrive On Green          | 0.20 | 0.20     | 0.20 | 0.05 | 0.05     | 0.05 | 0.27 | 0.37     | 0.37     | 0.04     | 0.16     | 0.16 |  |
| Sat Flow, veh/h          | 1781 | 1870     | 1573 | 1781 | 1819     | 43   | 1781 | 3554     | 1574     | 1781     | 3554     | 1570 |  |
| Grp Volume(v), veh/h     | 258  | 310      | 56   | 32   | 0        | 43   | 431  | 780      | 19       | 63       | 395      | 70   |  |
| Grp Sat Flow(s),veh/h/li |      | 1870     | 1573 | 1781 | 0        | 1863 | 1781 | 1777     | 1574     | 1781     | 1777     | 1570 |  |
| Q Serve(g_s), s          | 8.6  | 10.1     | 1.9  | 1.1  | 0.0      | 1.4  | 14.9 | 11.2     | 0.5      | 2.2      | 6.7      | 2.5  |  |
| Cycle Q Clear(g_c), s    | 8.6  | 10.1     | 1.9  | 1.1  | 0.0      | 1.4  | 14.9 | 11.2     | 0.5      | 2.2      | 6.7      | 2.5  |  |
| Prop In Lane             | 1.00 |          | 1.00 | 1.00 |          | 0.02 | 1.00 |          | 1.00     | 1.00     |          | 1.00 |  |
| Lane Grp Cap(c), veh/h   |      | 383      | 322  | 82   | 0        | 86   | 473  | 1331     | 590      | 80       | 563      | 249  |  |
| V/C Ratio(X)             | 0.71 | 0.81     | 0.17 | 0.39 | 0.00     | 0.50 | 0.91 | 0.59     | 0.03     | 0.79     | 0.70     | 0.28 |  |
| Avail Cap(c_a), veh/h    | 504  | 529      | 445  | 280  | 0        | 293  | 476  | 1339     | 593      | 280      | 893      | 395  |  |
| HCM Platoon Ratio        | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |  |
| Upstream Filter(I)       | 1.00 | 1.00     | 1.00 | 1.00 | 0.00     | 1.00 | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |  |
| Uniform Delay (d), s/vel |      | 24.1     | 20.9 | 29.5 | 0.0      | 29.7 | 22.6 | 16.0     | 12.6     | 30.1     | 25.4     | 23.6 |  |
| Incr Delay (d2), s/veh   | 1.2  | 4.5      | 0.1  | 1.1  | 0.0      | 1.7  | 21.0 | 0.4      | 0.0      | 6.4      | 0.6      | 0.2  |  |
| nitial Q Delay(d3),s/veh |      | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0      | 0.0      | 0.0      | 0.0  |  |
| %ile BackOfQ(50%),vel    |      | 4.6      | 0.6  | 0.5  | 0.0      | 0.7  | 8.4  | 4.1      | 0.2      | 1.0      | 2.6      | 0.9  |  |
| Unsig. Movement Delay    |      |          |      |      |          |      |      |          |          |          |          |      |  |
| LnGrp Delay(d),s/veh     | 24.8 | 28.7     | 21.0 | 30.6 | 0.0      | 31.3 | 43.7 | 16.4     | 12.6     | 36.5     | 26.0     | 23.8 |  |
| LnGrp LOS                | С    | С        | С    | С    | A        | С    | D    | В        | В        | D        | С        | С    |  |
| Approach Vol, veh/h      |      | 624      |      |      | 75       |      |      | 1230     |          |          | 528      |      |  |
| Approach Delay, s/veh    |      | 26.4     |      |      | 31.0     |      |      | 25.9     |          |          | 26.9     |      |  |
| Approach LOS             |      | С        |      |      | С        |      |      | С        |          |          | С        |      |  |
| Timer - Assigned Phs     |      | 2        | 3    | 4    |          | 6    | 7    | 8        |          |          |          |      |  |
| Phs Duration (G+Y+Rc)    | ), S | 18.1     | 22.0 | 15.5 |          | 8.0  | 8.3  | 29.3     |          |          |          |      |  |
| Change Period (Y+Rc),    |      | 5.1      | 5.1  | 5.4  |          | 5.1  | 5.4  | * 5.4    |          |          |          |      |  |
| Max Green Setting (Gm    |      | 18.0     | 17.0 | 16.0 |          | 10.0 | 10.0 | * 24     |          |          |          |      |  |
| Max Q Clear Time (g_c    |      | 12.1     | 16.9 | 8.7  |          | 3.4  | 4.2  | 13.2     |          |          |          |      |  |
| Green Ext Time (p_c), s  |      | 0.7      | 0.0  | 0.8  |          | 0.0  | 0.0  | 2.2      |          |          |          |      |  |
| ntersection Summary      |      |          |      |      |          |      |      |          |          |          |          |      |  |
| HCM 6th Ctrl Delay       |      |          | 26.4 |      |          |      |      |          |          |          |          |      |  |
| HCM 6th LOS              |      |          | С    |      |          |      |      |          |          |          |          |      |  |
| <del>-</del>             |      |          | -    |      |          |      |      |          |          |          |          |      |  |

Notes

User approved pedestrian interval to be less than phase max green.

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection            |        |  |  |  |  |  |
|-------------------------|--------|--|--|--|--|--|
| Intersection Delay, s/v | eh13.7 |  |  |  |  |  |
| Intersection LOS        | В      |  |  |  |  |  |
|                         |        |  |  |  |  |  |

| Movement                | EBL            | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|-------------------------|----------------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations     |                | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h      | 50             | 20   | 271  | 20   | 20   | 20   | 142  | 132  | 20   | 20   | 221  | 50   |  |
| Future Vol, veh/h       | 50             | 20   | 271  | 20   | 20   | 20   | 142  | 132  | 20   | 20   | 221  | 50   |  |
| Peak Hour Factor        | 0.95           | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |  |
| Heavy Vehicles, %       | 2              | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow               | 53             | 21   | 285  | 21   | 21   | 21   | 149  | 139  | 21   | 21   | 233  | 53   |  |
| Number of Lanes         | 0              | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                | EB             |      |      | WB   |      |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach       | WB             |      |      | EB   |      |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes          | 1              |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Le | eft SB         |      |      | NB   |      |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left  | 1              |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach R  | igh <b>N</b> B |      |      | SB   |      |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right | 1              |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay       | 14.2           |      |      | 10.1 |      |      | 14.1 |      |      | 13.6 |      |      |  |
| HCM LOS                 | В              |      |      | В    |      |      | В    |      |      | В    |      |      |  |

| Lane                   | NBLn1 | EBLn1\ | NBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 48%   | 15%    | 33%   | 7%    |
| Vol Thru, %            | 45%   | 6%     | 33%   | 76%   |
| Vol Right, %           | 7%    | 79%    | 33%   | 17%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 294   | 341    | 60    | 291   |
| LT Vol                 | 142   | 50     | 20    | 20    |
| Through Vol            | 132   | 20     | 20    | 221   |
| RT Vol                 | 20    | 271    | 20    | 50    |
| Lane Flow Rate         | 309   | 359    | 63    | 306   |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.489 | 0.528  | 0.109 | 0.473 |
| Departure Headway (Hd) | 5.687 | 5.3    | 6.208 | 5.558 |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Cap                    | 631   | 675    | 572   | 646   |
| Service Time           | 3.752 | 3.366  | 4.303 | 3.623 |
| HCM Lane V/C Ratio     | 0.49  | 0.532  | 0.11  | 0.474 |
| HCM Control Delay      | 14.1  | 14.2   | 10.1  | 13.6  |
| HCM Lane LOS           | В     | В      | В     | В     |
| HCM 95th-tile Q        | 2.7   | 3.1    | 0.4   | 2.5   |

| Intersection           |        |       |       |        |      |       |        |       |        |          |       |       |
|------------------------|--------|-------|-------|--------|------|-------|--------|-------|--------|----------|-------|-------|
| Int Delay, s/veh       | 38.8   |       |       |        |      |       |        |       |        |          |       |       |
| Movement               | EBL    | EBT   | EBR   | WBL    | WBT  | WBR   | NBL    | NBT   | NBR    | SBL      | SBT   | SBR   |
| Lane Configurations    | ሻ      | f)    |       |        | 4    |       |        | 4     |        |          | 4     |       |
| Traffic Vol, veh/h     | 52     | 300   | 20    | 100    | 290  | 62    | 30     | 30    | 30     | 147      | 30    | 57    |
| Future Vol, veh/h      | 52     | 300   | 20    | 100    | 290  | 62    | 30     | 30    | 30     | 147      | 30    | 57    |
| Conflicting Peds, #/hr | 0      | 0     | 0     | 0      | 0    | 0     | 0      | 0     | 0      | 0        | 0     | 0     |
| Sign Control           | Free   | Free  | Free  | Free   | Free | Free  | Stop   | Stop  | Stop   | Stop     | Stop  | Stop  |
| RT Channelized         | -      | -     | None  | -      | -    | None  | -      | -     | None   | -        | -     | None  |
| Storage Length         | 100    | -     | -     | -      | -    | -     | -      | -     | -      | -        | -     | -     |
| Veh in Median Storage  | e,# -  | 0     | -     | -      | 0    | -     | -      | 0     | -      | -        | 0     | -     |
| Grade, %               | -      | 0     | -     | -      | 0    | -     | -      | 0     | -      | -        | 0     | -     |
| Peak Hour Factor       | 95     | 95    | 95    | 95     | 95   | 95    | 95     | 95    | 95     | 95       | 95    | 95    |
| Heavy Vehicles, %      | 2      | 2     | 2     | 2      | 2    | 2     | 2      | 2     | 2      | 2        | 2     | 2     |
| Mvmt Flow              | 55     | 316   | 21    | 105    | 305  | 65    | 32     | 32    | 32     | 155      | 32    | 60    |
|                        |        |       |       |        |      |       |        |       |        |          |       |       |
| Major/Minor            | Major1 |       |       | Major2 |      | 1     | Minor1 |       |        | Minor2   |       |       |
| Conflicting Flow All   | 370    | 0     | 0     | 337    | 0    | 0     | 1031   | 1017  | 327    | 1017     | 995   | 338   |
| Stage 1                | -      | -     | -     | -      | -    | -     | 437    | 437   | -      | 548      | 548   | -     |
| Stage 2                | _      | _     | _     | _      | _    | _     | 594    | 580   | _      | 469      | 447   | _     |
| Critical Hdwy          | 4.12   | _     | -     | 4.12   | -    | -     | 7.12   | 6.52  | 6.22   | 7.12     | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -      | _     | _     | - 1.12 | _    | _     | 6.12   | 5.52  | -      | 6.12     | 5.52  | -     |
| Critical Hdwy Stg 2    | -      | -     | -     | -      | -    | -     | 6.12   | 5.52  | -      | 6.12     | 5.52  | -     |
| Follow-up Hdwy         | 2.218  | -     | -     | 2.218  | -    | -     | 3.518  | 4.018 | 3.318  | 3.518    | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1189   | -     | -     | 1222   | -    | -     | 211    | 238   | 714    | 216      | 245   | 704   |
| Stage 1                | -      | _     | _     |        | -    | _     | 598    | 579   | -      | 521      | 517   | -     |
| Stage 2                | -      | -     | -     | -      | -    | -     | 491    | 500   | -      | 575      | 573   | -     |
| Platoon blocked, %     |        | _     | _     |        | -    | _     |        |       |        |          |       |       |
| Mov Cap-1 Maneuver     | 1189   | -     | -     | 1222   | -    | -     | 151    | 202   | 714    | 161      | 208   | 704   |
| Mov Cap-2 Maneuver     | -      | -     | -     |        | -    | -     | 151    | 202   | -      | 161      | 208   | -     |
| Stage 1                | -      | -     | -     | -      | -    | -     | 570    | 552   | -      | 497      | 461   | -     |
| Stage 2                | _      | _     | _     | _      | -    | _     | 373    | 446   | -      | 494      | 547   | -     |
| <b>J</b> -             |        |       |       |        |      |       |        |       |        |          |       |       |
| Approach               | EB     |       |       | WB     |      |       | NB     |       |        | SB       |       |       |
| HCM Control Delay, s   | 1.1    |       |       | 1.8    |      |       | 31     |       |        | 173      |       |       |
| HCM LOS                | 1.1    |       |       | 1.0    |      |       | D      |       |        | 1/3<br>F |       |       |
| TOW LOS                |        |       |       |        |      |       | U      |       |        | '        |       |       |
| Minor Lane/Major Mvn   | ot N   | NBLn1 | EBL   | EBT    | EBR  | WBL   | WBT    | WBR:  | SRI n1 |          |       |       |
|                        | nt I   |       |       |        |      |       | VVDI   | WDK.  |        |          |       |       |
| Capacity (veh/h)       |        | 231   | 1189  | -      |      | 1222  | -      | -     | 206    |          |       |       |
| HCM Central Delay (c)  | \      | 0.41  | 0.046 | -      | -    | 0.086 | -      | -     | 1.196  |          |       |       |
| HCM Long LOS           |        | 31    | 8.2   | -      | -    | 8.2   | 0      | -     | 173    |          |       |       |
| HCM Lane LOS           | ١      | D     | A     | -      | -    | A     | Α      | -     | F      |          |       |       |
| HCM 95th %tile Q(veh   | 1)     | 1.9   | 0.1   | -      | -    | 0.3   | -      | -     | 12.5   |          |       |       |

|                                              | ۶          | <b>→</b> | *        | •          | <b>←</b> | 4        | 1         | <b>†</b> | <i>&gt;</i> | <b>/</b>   | <b></b>  | 4          |
|----------------------------------------------|------------|----------|----------|------------|----------|----------|-----------|----------|-------------|------------|----------|------------|
| Movement                                     | EBL        | EBT      | EBR      | WBL        | WBT      | WBR      | NBL       | NBT      | NBR         | SBL        | SBT      | SBR        |
| Lane Configurations                          |            | 4        |          |            | 4        |          |           | 4        |             | ሻ          | 4        |            |
| Traffic Volume (veh/h)                       | 64         | 264      | 100      | 20         | 132      | 410      | 60        | 283      | 20          | 510        | 664      | 71         |
| Future Volume (veh/h)                        | 64         | 264      | 100      | 20         | 132      | 410      | 60        | 283      | 20          | 510        | 664      | 71         |
| Initial Q (Qb), veh                          | 0          | 0        | 0        | 0          | 0        | 0        | 0         | 0        | 0           | 0          | 0        | 0          |
| Ped-Bike Adj(A_pbT)                          | 1.00       |          | 0.99     | 1.00       |          | 0.99     | 1.00      |          | 1.00        | 1.00       |          | 0.99       |
| Parking Bus, Adj                             | 1.00       | 1.00     | 1.00     | 1.00       | 1.00     | 1.00     | 1.00      | 1.00     | 1.00        | 1.00       | 1.00     | 1.00       |
| Work Zone On Approach                        |            | No       |          |            | No       |          |           | No       |             |            | No       |            |
| Adj Sat Flow, veh/h/ln                       | 1870       | 1870     | 1870     | 1870       | 1870     | 1870     | 1870      | 1870     | 1870        | 1870       | 1870     | 1870       |
| Adj Flow Rate, veh/h                         | 67         | 278      | 89       | 21         | 139      | 287      | 63        | 298      | 18          | 537        | 699      | 70         |
| Peak Hour Factor                             | 0.95       | 0.95     | 0.95     | 0.95       | 0.95     | 0.95     | 0.95      | 0.95     | 0.95        | 0.95       | 0.95     | 0.95       |
| Percent Heavy Veh, %                         | 2          | 2        | 2        | 2          | 2        | 2        | 2         | 2        | 2           | 2          | 2        | 2          |
| Cap, veh/h                                   | 116        | 336      | 100      | 71         | 175      | 336      | 74        | 348      | 21          | 380        | 356      | 36         |
| Arrive On Green                              | 0.31       | 0.31     | 0.31     | 0.31       | 0.31     | 0.31     | 0.24      | 0.24     | 0.24        | 0.21       | 0.21     | 0.21       |
| Sat Flow, veh/h                              | 167        | 1096     | 326      | 39         | 572      | 1095     | 306       | 1446     | 87          | 1781       | 1671     | 167        |
| Grp Volume(v), veh/h                         | 434        | 0        | 0        | 447        | 0        | 0        | 379       | 0        | 0           | 537        | 0        | 769        |
| Grp Sat Flow(s), veh/h/ln                    | 1590       | 0        | 0        | 1706       | 0        | 0        | 1839      | 0        | 0           | 1781       | 0        | 1838       |
| Q Serve(g_s), s                              | 1.0        | 0.0      | 0.0      | 0.0        | 0.0      | 0.0      | 12.7      | 0.0      | 0.0         | 13.7       | 0.0      | 13.7       |
| Cycle Q Clear(g_c), s                        | 16.7       | 0.0      | 0.0      | 15.7       | 0.0      | 0.0      | 12.7      | 0.0      | 0.0         | 13.7       | 0.0      | 13.7       |
| Prop In Lane                                 | 0.15       |          | 0.21     | 0.05       |          | 0.64     | 0.17      |          | 0.05        | 1.00       |          | 0.09       |
| Lane Grp Cap(c), veh/h                       | 552        | 0        | 0        | 581        | 0        | 0        | 442       | 0        | 0           | 380        | 0        | 392        |
| V/C Ratio(X)                                 | 0.79       | 0.00     | 0.00     | 0.77       | 0.00     | 0.00     | 0.86      | 0.00     | 0.00        | 1.41       | 0.00     | 1.96       |
| Avail Cap(c_a), veh/h                        | 658        | 0        | 0        | 808        | 0        | 0        | 544       | 0        | 0           | 380        | 0        | 392        |
| HCM Platoon Ratio                            | 1.00       | 1.00     | 1.00     | 1.00       | 1.00     | 1.00     | 1.00      | 1.00     | 1.00        | 1.00       | 1.00     | 1.00       |
| Upstream Filter(I)                           | 1.00       | 0.00     | 0.00     | 1.00       | 0.00     | 0.00     | 1.00      | 0.00     | 0.00        | 1.00       | 0.00     | 1.00       |
| Uniform Delay (d), s/veh                     | 20.9       | 0.0      | 0.0      | 21.0       | 0.0      | 0.0      | 23.3      | 0.0      | 0.0         | 25.3       | 0.0      | 25.3       |
| Incr Delay (d2), s/veh                       | 4.3        | 0.0      | 0.0      | 1.8        | 0.0      | 0.0      | 10.3      | 0.0      | 0.0         | 201.0      | 0.0      | 441.8      |
| Initial Q Delay(d3),s/veh                    | 0.0<br>6.1 | 0.0      | 0.0      | 0.0<br>5.8 | 0.0      | 0.0      | 0.0       | 0.0      | 0.0         | 0.0        | 0.0      | 0.0        |
| %ile BackOfQ(50%),veh/ln                     |            | 0.0      | 0.0      | 5.8        | 0.0      | 0.0      | 6.5       | 0.0      | 0.0         | 26.5       | 0.0      | 53.6       |
| Unsig. Movement Delay, s/veh                 | 25.2       | 0.0      | 0.0      | 22.8       | 0.0      | 0.0      | 33.6      | 0.0      | 0.0         | 226.2      | 0.0      | 467.1      |
| LnGrp Delay(d),s/veh<br>LnGrp LOS            | 25.2<br>C  | 0.0<br>A | 0.0<br>A | 22.8<br>C  | 0.0<br>A | 0.0<br>A | 33.0<br>C | 0.0<br>A | 0.0<br>A    | 220.2<br>F | 0.0<br>A | 407.1<br>F |
|                                              | <u> </u>   |          | A        | U          |          | A        | U         |          | A           | Г          |          | Г          |
| Approach Vol, veh/h<br>Approach Delay, s/veh |            | 434      |          |            | 447      |          |           | 379      |             |            | 1306     |            |
| 11 7:                                        |            | 25.2     |          |            | 22.8     |          |           | 33.6     |             |            | 368.1    |            |
| Approach LOS                                 |            | С        |          |            | С        |          |           | С        |             |            | F        |            |
| Timer - Assigned Phs                         |            | 2        |          | 4          |          | 6        |           | 8        |             |            |          |            |
| Phs Duration (G+Y+Rc), s                     |            | 20.0     |          | 25.1       |          | 19.1     |           | 25.1     |             |            |          |            |
| Change Period (Y+Rc), s                      |            | 4.6      |          | * 5.4      |          | 5.4      |           | 5.4      |             |            |          |            |
| Max Green Setting (Gmax), s                  |            | 19.0     |          | * 24       |          | 13.7     |           | 28.7     |             |            |          |            |
| Max Q Clear Time (g_c+l1), s                 |            | 14.7     |          | 18.7       |          | 15.7     |           | 17.7     |             |            |          |            |
| Green Ext Time (p_c), s                      |            | 8.0      |          | 0.6        |          | 0.0      |           | 0.8      |             |            |          |            |
| Intersection Summary                         |            |          |          |            |          |          |           |          |             |            |          |            |
| HCM 6th Ctrl Delay                           |            |          | 200.5    |            |          |          |           |          |             |            |          |            |
| HCM 6th LOS                                  |            |          | F        |            |          |          |           |          |             |            |          |            |

|                           | $\checkmark$ | •    | Ť         |      | -    | ¥        |
|---------------------------|--------------|------|-----------|------|------|----------|
| Movement                  | WBL          | WBR  | NBT       | NBR  | SBL  | SBT      |
| Lane Configurations       | *            | 7    | <b>↑</b>  | 7    | 1    | <b>†</b> |
| Traffic Volume (veh/h)    | 680          | 33   | 278       | 335  | 43   | 706      |
| Future Volume (veh/h)     | 680          | 33   | 278       | 335  | 43   | 706      |
| Initial Q (Qb), veh       | 0            | 0    | 0         | 0    | 0    | 0        |
| Ped-Bike Adj(A_pbT)       | 1.00         | 1.00 | U         | 1.00 | 1.00 | U        |
| Parking Bus, Adj          | 1.00         | 1.00 | 1.00      | 1.00 | 1.00 | 1.00     |
| Work Zone On Approach     |              | 1.00 | No        | 1.00 | 1.00 | No       |
|                           | 1870         | 1870 | 1870      | 1870 | 1870 | 1870     |
| Adj Flow Rate, veh/h      | 716          | 13   | 293       | 353  | 45   | 743      |
| Peak Hour Factor          | 0.95         | 0.95 | 0.95      | 0.95 | 0.95 | 0.95     |
|                           |              |      |           |      |      |          |
| Percent Heavy Veh, %      | 2            | 2    | 2         | 2    | 2    | 2        |
| Cap, veh/h                | 750          | 667  | 550       | 466  | 60   | 784      |
| Arrive On Green           | 0.42         | 0.42 | 0.29      | 0.29 | 0.03 | 0.42     |
|                           | 1781         | 1585 | 1870      | 1585 | 1781 | 1870     |
| Grp Volume(v), veh/h      | 716          | 13   | 293       | 353  | 45   | 743      |
| Grp Sat Flow(s), veh/h/ln | 1781         | 1585 | 1870      | 1585 | 1781 | 1870     |
| Q Serve(g_s), s           | 26.3         | 0.3  | 8.9       | 13.7 | 1.7  | 25.9     |
| Cycle Q Clear(g_c), s     | 26.3         | 0.3  | 8.9       | 13.7 | 1.7  | 25.9     |
| Prop In Lane              | 1.00         | 1.00 |           | 1.00 | 1.00 |          |
| Lane Grp Cap(c), veh/h    | 750          | 667  | 550       | 466  | 60   | 784      |
| V/C Ratio(X)              | 0.96         | 0.02 | 0.53      | 0.76 | 0.75 | 0.95     |
| Avail Cap(c_a), veh/h     | 790          | 703  | 830       | 703  | 316  | 830      |
| HCM Platoon Ratio         | 1.00         | 1.00 | 1.00      | 1.00 | 1.00 | 1.00     |
| Upstream Filter(I)        | 1.00         | 1.00 | 1.00      | 1.00 | 1.00 | 1.00     |
| Uniform Delay (d), s/veh  |              | 11.4 | 20.0      | 21.7 | 32.4 | 18.9     |
| Incr Delay (d2), s/veh    | 20.8         | 0.0  | 0.3       | 1.0  | 6.7  | 18.6     |
|                           |              |      |           |      |      |          |
| Initial Q Delay(d3),s/veh |              | 0.0  | 0.0       | 0.0  | 0.0  | 0.0      |
| %ile BackOfQ(50%),veh     |              | 0.1  | 3.5       | 4.6  | 0.8  | 13.4     |
| Unsig. Movement Delay     |              |      |           |      |      |          |
| LnGrp Delay(d),s/veh      | 39.8         | 11.4 | 20.3      | 22.7 | 39.1 | 37.5     |
| LnGrp LOS                 | D            | В    | С         | С    | D    | D        |
| Approach Vol, veh/h       | 729          |      | 646       |      |      | 788      |
| Approach Delay, s/veh     | 39.2         |      | 21.6      |      |      | 37.6     |
| Approach LOS              | D            |      | С         |      |      | D        |
| Timer - Assigned Phs      | 1            | 2    |           | 4    |      | 6        |
| Phs Duration (G+Y+Rc)     | . s8.5       | 26.1 |           | 33.1 |      | 34.6     |
| Change Period (Y+Rc),     |              | 6.2  |           | 4.6  |      | 6.2      |
| Max Green Setting (Gma    |              | 30.0 |           | 30.0 |      | 30.0     |
| Max Q Clear Time (g_c+    |              | 15.7 |           | 28.3 |      | 27.9     |
| Green Ext Time (p_c), s   |              | 0.6  |           | 0.1  |      | 0.5      |
| 4-7                       | 0.0          | 0.0  |           | 0.1  |      | 0.5      |
| Intersection Summary      |              |      |           |      |      |          |
|                           |              |      | 33.4      |      |      |          |
| HCM 6th Ctrl Delay        |              |      | 33.4      |      |      |          |
|                           |              |      | 33.4<br>C |      |      |          |

| Intersection           |        |           |       |        |      |          |        |       |           |        |       |       |
|------------------------|--------|-----------|-------|--------|------|----------|--------|-------|-----------|--------|-------|-------|
| Int Delay, s/veh       | 3.9    |           |       |        |      |          |        |       |           |        |       |       |
| Movement               | EBL    | EBT       | EBR   | WBL    | WBT  | WBR      | NBL    | NBT   | NBR       | SBL    | SBT   | SBR   |
| Lane Configurations    | 7      | f)        |       | Ť      | ĥ    |          |        | 4     |           |        | 4     |       |
| Traffic Vol, veh/h     | 30     | 575       | 5     | 15     | 425  | 35       | 5      | 10    | 25        | 55     | 5     | 30    |
| Future Vol, veh/h      | 30     | 575       | 5     | 15     | 425  | 35       | 5      | 10    | 25        | 55     | 5     | 30    |
| Conflicting Peds, #/hr | 0      | 0         | 0     | 0      | 0    | 0        | 0      | 0     | 0         | 0      | 0     | 0     |
| Sign Control           | Free   | Free      | Free  | Free   | Free | Free     | Stop   | Stop  | Stop      | Stop   | Stop  | Stop  |
| RT Channelized         | -      | -         | None  | -      | -    | None     | -      | -     | None      | -      | -     | None  |
| Storage Length         | 90     | -         | -     | 90     | -    | -        | -      | -     | -         | -      | -     | -     |
| Veh in Median Storage  | e,# -  | 0         | -     | -      | 0    | -        | -      | 0     | -         | -      | 0     | -     |
| Grade, %               | -      | 0         | -     | -      | 0    | -        | -      | 0     | -         | -      | 0     | -     |
| Peak Hour Factor       | 95     | 95        | 95    | 95     | 95   | 95       | 95     | 95    | 95        | 95     | 95    | 95    |
| Heavy Vehicles, %      | 2      | 2         | 2     | 2      | 2    | 2        | 2      | 2     | 2         | 2      | 2     | 2     |
| Mvmt Flow              | 32     | 605       | 5     | 16     | 447  | 37       | 5      | 11    | 26        | 58     | 5     | 32    |
|                        |        |           |       |        |      |          |        |       |           |        |       |       |
| Major/Minor            | Major1 |           | N     | Major2 |      | I        | Minor1 |       |           | Minor2 |       |       |
| Conflicting Flow All   | 484    | 0         | 0     | 610    | 0    | 0        | 1188   | 1188  | 608       | 1188   | 1172  | 466   |
| Stage 1                | -      | -         | -     | -      | -    | -        | 672    | 672   | -         | 498    | 498   | -     |
| Stage 2                | _      | -         | _     | _      | -    | _        | 516    | 516   | -         | 690    | 674   | -     |
| Critical Hdwy          | 4.12   | -         | -     | 4.12   | -    | -        | 7.12   | 6.52  | 6.22      | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1    | -      | -         | -     | -      | -    | -        | 6.12   | 5.52  | -         | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2    | -      | -         | -     | -      | -    | -        | 6.12   | 5.52  | -         | 6.12   | 5.52  | -     |
| Follow-up Hdwy         | 2.218  | -         | -     | 2.218  | -    | -        | 3.518  | 4.018 | 3.318     | 3.518  | 4.018 | 3.318 |
| Pot Cap-1 Maneuver     | 1079   | -         | -     | 969    | -    | -        | 165    | 188   | 496       | 165    | 192   | 597   |
| Stage 1                | -      | -         | -     | -      | -    | -        | 445    | 454   | -         | 554    | 544   | -     |
| Stage 2                | -      | -         | -     | -      | -    | -        | 542    | 534   | -         | 435    | 454   | -     |
| Platoon blocked, %     |        | -         | -     |        | -    | -        |        |       |           |        |       |       |
| Mov Cap-1 Maneuver     | 1079   | -         | -     | 969    | -    | -        | 148    | 179   | 496       | 144    | 183   | 597   |
| Mov Cap-2 Maneuver     | -      | -         | -     | -      | -    | -        | 148    | 179   | -         | 144    | 183   | -     |
| Stage 1                | -      | -         | -     | -      | -    | -        | 432    | 440   | -         | 537    | 535   | -     |
| Stage 2                | -      | -         | -     | -      | -    | -        | 500    | 525   | -         | 390    | 440   | -     |
| ÿ                      |        |           |       |        |      |          |        |       |           |        |       |       |
| Approach               | EB     |           |       | WB     |      |          | NB     |       |           | SB     |       |       |
| HCM Control Delay, s   | 0.4    |           |       | 0.3    |      |          | 19.7   |       |           | 39.4   |       |       |
| HCM LOS                | 0.1    |           |       | 0.0    |      |          | C      |       |           | E      |       |       |
|                        |        |           |       |        |      |          |        |       |           | _      |       |       |
| Minor Lane/Major Mvn   | nt I   | VBLn1     | EBL   | EBT    | EBR  | WBL      | WBT    | WBR   | SRI n1    |        |       |       |
| Capacity (veh/h)       | nc I   | 286       | 1079  | LDI    | LDIX | 969      | VVDI   |       | 196       |        |       |       |
| HCM Lane V/C Ratio     |        |           | 0.029 | -      |      | 0.016    | -      |       | 0.483     |        |       |       |
| HCM Control Delay (s)  | \      | 19.7      | 8.4   | -      | -    | 8.8      | -      | -     | 39.4      |        |       |       |
| HCM Lane LOS           |        | 19.7<br>C |       | -      | -    | 0.0<br>A | -      | -     | 39.4<br>E |        |       |       |
|                        | .\     |           | A     | -      | -    |          | -      | -     |           |        |       |       |
| HCM 95th %tile Q(veh   | )      | 0.5       | 0.1   | -      | -    | 0.1      | -      | -     | 2.4       |        |       |       |

|                              | ۶    | <b>→</b> | •    | •     | •        | 4     | 4    | <b>†</b> | /    | <b>/</b> | <b>↓</b>   | 4    |
|------------------------------|------|----------|------|-------|----------|-------|------|----------|------|----------|------------|------|
| Movement                     | EBL  | EBT      | EBR  | WBL   | WBT      | WBR   | NBL  | NBT      | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations          | ň    | î»       |      | 7     | <b>₽</b> |       | 7    | ħβ       |      | Ť        | <b>∱</b> ∱ |      |
| Traffic Volume (veh/h)       | 340  | 390      | 91   | 81    | 280      | 300   | 83   | 398      | 143  | 230      | 262        | 90   |
| Future Volume (veh/h)        | 340  | 390      | 91   | 81    | 280      | 300   | 83   | 398      | 143  | 230      | 262        | 90   |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0     | 0        | 0     | 0    | 0        | 0    | 0        | 0          | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00  |          | 0.99  | 1.00 |          | 0.99 | 1.00     |            | 0.99 |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Work Zone On Approach        |      | No       |      |       | No       |       |      | No       |      |          | No         |      |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870  | 1870     | 1870  | 1870 | 1870     | 1870 | 1870     | 1870       | 1870 |
| Adj Flow Rate, veh/h         | 358  | 411      | 90   | 85    | 295      | 282   | 87   | 419      | 117  | 242      | 276        | 64   |
| Peak Hour Factor             | 0.95 | 0.95     | 0.95 | 0.95  | 0.95     | 0.95  | 0.95 | 0.95     | 0.95 | 0.95     | 0.95       | 0.95 |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2     | 2        | 2     | 2    | 2        | 2    | 2        | 2          | 2    |
| Cap, veh/h                   | 389  | 611      | 134  | 167   | 252      | 241   | 168  | 512      | 141  | 264      | 690        | 157  |
| Arrive On Green              | 0.22 | 0.41     | 0.41 | 0.09  | 0.29     | 0.29  | 0.09 | 0.19     | 0.19 | 0.15     | 0.24       | 0.24 |
| Sat Flow, veh/h              | 1781 | 1485     | 325  | 1781  | 876      | 838   | 1781 | 2741     | 758  | 1781     | 2868       | 653  |
| Grp Volume(v), veh/h         | 358  | 0        | 501  | 85    | 0        | 577   | 87   | 270      | 266  | 242      | 169        | 171  |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 0        | 1810 | 1781  | 0        | 1714  | 1781 | 1777     | 1722 | 1781     | 1777       | 1745 |
| Q Serve(g_s), s              | 21.2 | 0.0      | 24.3 | 4.9   | 0.0      | 31.0  | 5.0  | 15.7     | 16.0 | 14.4     | 8.6        | 8.9  |
| Cycle Q Clear(g_c), s        | 21.2 | 0.0      | 24.3 | 4.9   | 0.0      | 31.0  | 5.0  | 15.7     | 16.0 | 14.4     | 8.6        | 8.9  |
| Prop In Lane                 | 1.00 |          | 0.18 | 1.00  |          | 0.49  | 1.00 |          | 0.44 | 1.00     |            | 0.37 |
| Lane Grp Cap(c), veh/h       | 389  | 0        | 745  | 167   | 0        | 493   | 168  | 332      | 321  | 264      | 427        | 420  |
| V/C Ratio(X)                 | 0.92 | 0.00     | 0.67 | 0.51  | 0.00     | 1.17  | 0.52 | 0.81     | 0.83 | 0.92     | 0.40       | 0.41 |
| Avail Cap(c_a), veh/h        | 429  | 0        | 745  | 429   | 0        | 493   | 182  | 445      | 431  | 264      | 445        | 437  |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Upstream Filter(I)           | 1.00 | 0.00     | 1.00 | 1.00  | 0.00     | 1.00  | 1.00 | 1.00     | 1.00 | 1.00     | 1.00       | 1.00 |
| Uniform Delay (d), s/veh     | 41.3 | 0.0      | 25.8 | 46.5  | 0.0      | 38.4  | 46.5 | 42.1     | 42.2 | 45.3     | 34.4       | 34.5 |
| Incr Delay (d2), s/veh       | 23.9 | 0.0      | 2.4  | 2.4   | 0.0      | 96.9  | 2.4  | 8.3      | 9.5  | 34.0     | 0.6        | 0.6  |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0   | 0.0      | 0.0   | 0.0  | 0.0      | 0.0  | 0.0      | 0.0        | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 11.5 | 0.0      | 10.2 | 2.2   | 0.0      | 25.7  | 2.3  | 7.4      | 7.4  | 8.8      | 3.7        | 3.8  |
| Unsig. Movement Delay, s/veh |      |          |      |       |          |       |      |          |      |          |            |      |
| LnGrp Delay(d),s/veh         | 65.2 | 0.0      | 28.2 | 48.9  | 0.0      | 135.3 | 48.9 | 50.4     | 51.7 | 79.2     | 35.0       | 35.1 |
| LnGrp LOS                    | Ε    | Α        | С    | D     | Α        | F     | D    | D        | D    | Ε        | С          | D    |
| Approach Vol, veh/h          |      | 859      |      |       | 662      |       |      | 623      |      |          | 582        |      |
| Approach Delay, s/veh        |      | 43.6     |      |       | 124.2    |       |      | 50.8     |      |          | 53.4       |      |
| Approach LOS                 |      | D        |      |       | F        |       |      | D        |      |          | D          |      |
| Timer - Assigned Phs         | 1    | 2        | 3    | 4     | 5        | 6     | 7    | 8        |      |          |            |      |
| Phs Duration (G+Y+Rc), s     | 14.2 | 31.0     | 27.5 | 35.2  | 20.0     | 25.1  | 14.1 | 48.6     |      |          |            |      |
| Change Period (Y+Rc), s      | 4.0  | 5.0      | 4.0  | * 4.2 | 4.0      | 5.0   | 4.0  | * 4.2    |      |          |            |      |
| Max Green Setting (Gmax), s  | 11.0 | 27.0     | 26.0 | * 31  | 16.0     | 27.0  | 26.0 | * 31     |      |          |            |      |
| Max Q Clear Time (g_c+l1), s | 7.0  | 10.9     | 23.2 | 33.0  | 16.4     | 18.0  | 6.9  | 26.3     |      |          |            |      |
| Green Ext Time (p_c), s      | 0.1  | 1.7      | 0.3  | 0.0   | 0.0      | 2.0   | 0.2  | 1.2      |      |          |            |      |
| Intersection Summary         | 0.1  | 1.7      | 0.0  | 0.0   | 0.0      | 2.0   | 0.2  | 1.2      |      |          |            |      |
|                              |      |          | 4/ 0 |       |          |       |      |          |      |          |            |      |
| HCM 6th Ctrl Delay           |      |          | 66.9 |       |          |       |      |          |      |          |            |      |
| HCM 6th LOS                  |      |          | E    |       |          |       |      |          |      |          |            |      |
| Notes                        |      |          |      |       |          |       |      |          |      |          |            |      |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

## 1: Geyserville Ave & Canyon Road

| Intersection              |     |  |
|---------------------------|-----|--|
| Intersection Delay, s/veh | 9.8 |  |
| Intersection LOS          | А   |  |

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | ₩    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 50   | 20   | 148  | 20   | 20   | 20   | 186  | 50   | 20   | 20   | 50   | 30   |
| Future Vol, veh/h          | 50   | 20   | 148  | 20   | 20   | 20   | 186  | 50   | 20   | 20   | 50   | 30   |
| Peak Hour Factor           | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 53   | 21   | 156  | 21   | 21   | 21   | 196  | 53   | 21   | 21   | 53   | 32   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 9.5  |      |      | 8.6  |      |      | 10.7 |      |      | 8.7  |      |      |
| HCM LOS                    | Α    |      |      | Α    |      |      | В    |      |      | Α    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 73%   | 23%   | 33%   | 20%   |  |
| Vol Thru, %            | 20%   | 9%    | 33%   | 50%   |  |
| Vol Right, %           | 8%    | 68%   | 33%   | 30%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 256   | 218   | 60    | 100   |  |
| LT Vol                 | 186   | 50    | 20    | 20    |  |
| Through Vol            | 50    | 20    | 20    | 50    |  |
| RT Vol                 | 20    | 148   | 20    | 30    |  |
| Lane Flow Rate         | 269   | 229   | 63    | 105   |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.363 | 0.291 | 0.088 | 0.141 |  |
| Departure Headway (Hd) | 4.843 | 4.563 | 5     | 4.818 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Cap                    | 738   | 783   | 711   | 738   |  |
| Service Time           | 2.903 | 2.619 | 3.073 | 2.889 |  |
| HCM Lane V/C Ratio     | 0.364 | 0.292 | 0.089 | 0.142 |  |
| HCM Control Delay      | 10.7  | 9.5   | 8.6   | 8.7   |  |
| HCM Lane LOS           | В     | Α     | Α     | А     |  |
| HCM 95th-tile Q        | 1.7   | 1.2   | 0.3   | 0.5   |  |

|                           | ۶    | <b>→</b> | •    | •     | <b>←</b> | •     | 4    | <b>†</b> | /    | <b>&gt;</b> | <b>↓</b> | ✓    |  |
|---------------------------|------|----------|------|-------|----------|-------|------|----------|------|-------------|----------|------|--|
| Movement                  | EBL  | EBT      | EBR  | WBL   | WBT      | WBR   | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |  |
| Lane Configurations       |      | <b>↑</b> |      |       | <b></b>  | 7     | ሻ    | f)       |      | ሻ           | f)       |      |  |
| Traffic Volume (veh/h)    | 94   | 540      | 0    | 0     | 650      | 324   | 20   | 56       | 30   | 157         | 0        | 102  |  |
| Future Volume (veh/h)     | 94   | 540      | 0    | 0     | 650      | 324   | 20   | 56       | 30   | 157         | 0        | 102  |  |
| Initial Q (Qb), veh       | 0    | 0        | 0    | 0     | 0        | 0     | 0    | 0        | 0    | 0           | 0        | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00 |          | 1.00 | 1.00  |          | 0.99  | 0.99 |          | 0.99 | 0.99        |          | 0.99 |  |
| Parking Bus, Adj          | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |  |
| Work Zone On Approac      | h    | No       |      |       | No       |       |      | No       |      |             | No       |      |  |
| Adj Sat Flow, veh/h/ln    | 1870 | 1870     | 0    | 0     | 1870     | 1870  | 1870 | 1870     | 1870 | 1870        | 1870     | 1870 |  |
| Adj Flow Rate, veh/h      | 99   | 568      | 0    | 0     | 684      | 224   | 21   | 59       | 15   | 165         | 0        | 19   |  |
| Peak Hour Factor          | 0.95 | 0.95     | 0.95 | 0.95  | 0.95     | 0.95  | 0.95 | 0.95     | 0.95 | 0.95        | 0.95     | 0.95 |  |
| Percent Heavy Veh, %      | 2    | 2        | 0    | 0     | 2        | 2     | 2    | 2        | 2    | 2           | 2        | 2    |  |
| Cap, veh/h                | 388  | 1196     | 0    | 0     | 868      | 732   | 385  | 288      | 73   | 341         | 0        | 314  |  |
| Arrive On Green           | 0.10 | 0.64     | 0.00 | 0.00  | 0.46     | 0.46  | 0.20 | 0.20     | 0.20 | 0.20        | 0.00     | 0.20 |  |
| Sat Flow, veh/h           | 1781 | 1870     | 0    | 0     | 1870     | 1577  | 1377 | 1435     | 365  | 1312        | 0        | 1565 |  |
| Grp Volume(v), veh/h      | 99   | 568      | 0    | 0     | 684      | 224   | 21   | 0        | 74   | 165         | 0        | 19   |  |
| Grp Sat Flow(s), veh/h/lr |      | 1870     | 0    | 0     | 1870     | 1577  | 1377 | 0        | 1799 | 1312        | 0        | 1565 |  |
| Q Serve(g_s), s           | 1.4  | 9.3      | 0.0  | 0.0   | 18.2     | 5.2   | 0.7  | 0.0      | 2.0  | 7.1         | 0.0      | 0.6  |  |
| Cycle Q Clear(g_c), s     | 1.4  | 9.3      | 0.0  | 0.0   | 18.2     | 5.2   | 1.3  | 0.0      | 2.0  | 9.1         | 0.0      | 0.6  |  |
| Prop In Lane              | 1.00 |          | 0.00 | 0.00  |          | 1.00  | 1.00 |          | 0.20 | 1.00        |          | 1.00 |  |
| Lane Grp Cap(c), veh/h    |      | 1196     | 0    | 0     | 868      | 732   | 385  | 0        | 361  | 341         | 0        | 314  |  |
| V/C Ratio(X)              | 0.26 | 0.47     | 0.00 | 0.00  | 0.79     | 0.31  | 0.05 | 0.00     | 0.20 | 0.48        | 0.00     | 0.06 |  |
| Avail Cap(c_a), veh/h     | 430  | 1196     | 0    | 0     | 2288     | 1929  | 530  | 0        | 550  | 479         | 0        | 479  |  |
| HCM Platoon Ratio         | 1.00 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |  |
| Upstream Filter(I)        | 1.00 | 1.00     | 0.00 | 0.00  | 1.00     | 1.00  | 1.00 | 0.00     | 1.00 | 1.00        | 0.00     | 1.00 |  |
| Uniform Delay (d), s/veh  |      | 5.5      | 0.0  | 0.0   | 13.3     | 9.8   | 19.6 | 0.0      | 19.6 | 23.4        | 0.0      | 19.0 |  |
| Incr Delay (d2), s/veh    | 0.3  | 0.3      | 0.0  | 0.0   | 1.6      | 0.2   | 0.1  | 0.0      | 0.3  | 1.1         | 0.0      | 0.1  |  |
| Initial Q Delay(d3),s/veh |      | 0.0      | 0.0  | 0.0   | 0.0      | 0.0   | 0.0  | 0.0      | 0.0  | 0.0         | 0.0      | 0.0  |  |
| %ile BackOfQ(50%),veh     |      | 2.7      | 0.0  | 0.0   | 7.0      | 1.6   | 0.2  | 0.0      | 0.8  | 2.2         | 0.0      | 0.2  |  |
| Unsig. Movement Delay     |      |          |      |       |          |       |      |          |      |             |          |      |  |
| LnGrp Delay(d),s/veh      | 9.6  | 5.8      | 0.0  | 0.0   | 14.9     | 10.1  | 19.6 | 0.0      | 19.9 | 24.5        | 0.0      | 19.1 |  |
| LnGrp LOS                 | A    | A        | A    | A     | В        | В     | В    | A        | В    | С           | A        | В    |  |
| Approach Vol, veh/h       |      | 667      |      |       | 908      |       |      | 95       |      |             | 184      |      |  |
| Approach Delay, s/veh     |      | 6.4      |      |       | 13.7     |       |      | 19.8     |      |             | 23.9     |      |  |
| Approach LOS              |      | Α        |      |       | В        |       |      | В        |      |             | С        |      |  |
| Timer - Assigned Phs      |      | 2        |      | 4     | 5        | 6     |      | 8        |      |             |          |      |  |
| Phs Duration (G+Y+Rc)     | , S  | 42.3     |      | 16.5  | 10.3     | 32.0  |      | 16.5     |      |             |          |      |  |
| Change Period (Y+Rc),     |      | * 4.7    |      | * 4.7 | * 4.7    | * 4.7 |      | * 4.7    |      |             |          |      |  |
| Max Green Setting (Gm     |      | * 32     |      | * 18  | * 7      | * 72  |      | * 18     |      |             |          |      |  |
| Max Q Clear Time (g_c-    |      | 11.3     |      | 11.1  | 3.4      | 20.2  |      | 4.0      |      |             |          |      |  |
| Green Ext Time (p_c), s   |      | 4.0      |      | 0.3   | 0.1      | 7.2   |      | 0.3      |      |             |          |      |  |
| Intersection Summary      |      |          |      |       |          |       |      |          |      |             |          |      |  |
| HCM 6th Ctrl Delay        |      |          | 12.4 |       |          |       |      |          |      |             |          |      |  |
| HCM 6th LOS               |      |          | В    |       |          |       |      |          |      |             |          |      |  |
|                           |      |          |      |       |          |       |      |          |      |             |          |      |  |

| •                            |   | <b>→</b> | •    | •     | <b>←</b> | •     | 1    | †     | <b>/</b> | <b>/</b> | ļ    | √    |
|------------------------------|---|----------|------|-------|----------|-------|------|-------|----------|----------|------|------|
| Movement EB                  | L | EBT      | EBR  | WBL   | WBT      | WBR   | NBL  | NBT   | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations          |   | <b>†</b> | 7    | ሻ     | f)       |       | ሻ    | f)    |          |          | 4    |      |
|                              | 0 | 520      | 207  | 90    | 665      | 30    | 259  | 20    | 50       | 30       | 30   | 50   |
|                              | 0 | 520      | 207  | 90    | 665      | 30    | 259  | 20    | 50       | 30       | 30   | 50   |
| Initial Q (Qb), veh          | 0 | 0        | 0    | 0     | 0        | 0     | 0    | 0     | 0        | 0        | 0    | 0    |
| Ped-Bike Adj(A_pbT) 1.0      | 0 |          | 0.99 | 1.00  |          | 1.00  | 0.99 |       | 1.00     | 1.00     |      | 0.99 |
| Parking Bus, Adj 1.0         | 0 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00  | 1.00     | 1.00     | 1.00 | 1.00 |
| Work Zone On Approach        |   | No       |      |       | No       |       |      | No    |          |          | No   |      |
| Adj Sat Flow, veh/h/ln       | 0 | 1870     | 1870 | 1870  | 1870     | 1870  | 1870 | 1870  | 1870     | 1870     | 1870 | 1870 |
| Adj Flow Rate, veh/h         | 0 | 547      | 157  | 95    | 700      | 30    | 273  | 21    | 14       | 32       | 32   | 14   |
| Peak Hour Factor 0.9         | 5 | 0.95     | 0.95 | 0.95  | 0.95     | 0.95  | 0.95 | 0.95  | 0.95     | 0.95     | 0.95 | 0.95 |
| Percent Heavy Veh, %         | 0 | 2        | 2    | 2     | 2        | 2     | 2    | 2     | 2        | 2        | 2    | 2    |
| Cap, veh/h                   | 0 | 671      | 564  | 441   | 1032     | 44    | 474  | 249   | 166      | 218      | 199  | 70   |
| Arrive On Green 0.0          | 0 | 0.36     | 0.36 | 0.13  | 0.58     | 0.58  | 0.24 | 0.24  | 0.24     | 0.24     | 0.24 | 0.24 |
| Sat Flow, veh/h              | 0 | 1870     | 1574 | 1781  | 1780     | 76    | 1348 | 1047  | 698      | 502      | 837  | 293  |
| Grp Volume(v), veh/h         | 0 | 547      | 157  | 95    | 0        | 730   | 273  | 0     | 35       | 78       | 0    | 0    |
| 1 1                          | 0 | 1870     | 1574 | 1781  | 0        | 1856  | 1348 | 0     | 1745     | 1632     | 0    | 0    |
| Q Serve(g_s), s 0.           |   | 13.6     | 3.7  | 1.4   | 0.0      | 14.0  | 7.5  | 0.0   | 0.8      | 0.0      | 0.0  | 0.0  |
| Cycle Q Clear(q_c), s 0.     |   | 13.6     | 3.7  | 1.4   | 0.0      | 14.0  | 9.3  | 0.0   | 0.8      | 1.8      | 0.0  | 0.0  |
| Prop In Lane 0.0             |   |          | 1.00 | 1.00  |          | 0.04  | 1.00 |       | 0.40     | 0.41     |      | 0.18 |
|                              | 0 | 671      | 564  | 441   | 0        | 1076  | 474  | 0     | 414      | 486      | 0    | 0    |
| V/C Ratio(X) 0.0             | 0 | 0.82     | 0.28 | 0.22  | 0.00     | 0.68  | 0.58 | 0.00  | 0.08     | 0.16     | 0.00 | 0.00 |
| . ,                          | 0 | 872      | 734  | 521   | 0        | 1076  | 940  | 0     | 1017     | 486      | 0    | 0    |
| HCM Platoon Ratio 1.0        | 0 | 1.00     | 1.00 | 1.00  | 1.00     | 1.00  | 1.00 | 1.00  | 1.00     | 1.00     | 1.00 | 1.00 |
| Upstream Filter(I) 0.0       |   | 1.00     | 1.00 | 1.00  | 0.00     | 1.00  | 1.00 | 0.00  | 1.00     | 1.00     | 0.00 | 0.00 |
| Uniform Delay (d), s/veh 0.  |   | 15.0     | 11.8 | 8.8   | 0.0      | 7.5   | 18.3 | 0.0   | 15.3     | 15.6     | 0.0  | 0.0  |
| Incr Delay (d2), s/veh 0.    |   | 4.7      | 0.3  | 0.2   | 0.0      | 1.7   | 1.1  | 0.0   | 0.1      | 0.2      | 0.0  | 0.0  |
| Initial Q Delay(d3),s/veh 0. |   | 0.0      | 0.0  | 0.0   | 0.0      | 0.0   | 0.0  | 0.0   | 0.0      | 0.0      | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/lr0.   |   | 5.9      | 1.2  | 0.4   | 0.0      | 4.6   | 2.9  | 0.0   | 0.3      | 0.7      | 0.0  | 0.0  |
| Unsig. Movement Delay, s/v   |   |          |      |       |          |       |      |       |          |          |      |      |
| LnGrp Delay(d),s/veh 0.      |   | 19.6     | 12.0 | 9.0   | 0.0      | 9.2   | 19.4 | 0.0   | 15.4     | 15.8     | 0.0  | 0.0  |
| . 3                          | 4 | В        | В    | Α     | Α        | Α     | В    | Α     | В        | В        | Α    | Α    |
| Approach Vol, veh/h          |   | 704      |      |       | 825      |       |      | 308   |          |          | 78   |      |
| Approach Delay, s/veh        |   | 17.9     |      |       | 9.2      |       |      | 18.9  |          |          | 15.8 |      |
| Approach LOS                 |   | В        |      |       | Α        |       |      | В     |          |          | В    |      |
| Timer - Assigned Phs         | 1 | 2        |      | 4     |          | 6     |      | 8     |          |          |      |      |
| Phs Duration (G+Y+Rc), \$1.  | 4 | 23.2     |      | 16.9  |          | 34.5  |      | 16.9  |          |          |      |      |
| Change Period (Y+Rc), \$ 4.  |   | * 4.7    |      | * 4.7 |          | * 4.7 |      | * 4.7 |          |          |      |      |
| Max Green Setting (Gmax),    |   | * 24     |      | * 10  |          | * 24  |      | * 30  |          |          |      |      |
| Max Q Clear Time (q_c+l13),  |   | 15.6     |      | 3.8   |          | 16.0  |      | 11.3  |          |          |      |      |
| Green Ext Time (p_c), s 0.   |   | 2.8      |      | 0.1   |          | 3.3   |      | 1.0   |          |          |      |      |
| Intersection Summary         |   |          |      |       |          |       |      |       |          |          |      |      |
| HCM 6th Ctrl Delay           |   |          | 14.2 |       |          |       |      |       |          |          |      |      |
| HCM 6th LOS                  |   |          | В    |       |          |       |      |       |          |          |      |      |
| Notos                        |   |          |      |       |          |       |      |       |          |          |      |      |

| Intersection           |        |        |          |          |          |         |                      |                                |
|------------------------|--------|--------|----------|----------|----------|---------|----------------------|--------------------------------|
| Int Delay, s/veh       | 285.7  |        |          |          |          |         |                      |                                |
| Movement               | EBL    | EBR    | NBL      | NBT      | SBT      | SBR     |                      |                                |
| Lane Configurations    | *      | 7      | ች        | <b>†</b> | <b>↑</b> | 7       |                      |                                |
| Traffic Vol, veh/h     | 412    | 80     | 60       | 804      | 645      | 325     |                      |                                |
| Future Vol, veh/h      | 412    | 80     | 60       | 804      | 645      | 325     |                      |                                |
| Conflicting Peds, #/hr | 0      | 0      | 0        | 0        | 0        | 0       |                      |                                |
| Sign Control           | Stop   | Stop   | Free     | Free     | Free     | Free    |                      |                                |
| RT Channelized         | -<br>- | Stop   | -        | None     | -        | None    |                      |                                |
| Storage Length         | 0      | 90     | 70       | -        | _        | 100     |                      |                                |
| Veh in Median Storage  |        | -      | -        | 0        | 0        | -       |                      |                                |
| Grade, %               | 0      | -      | -        | 0        | 0        |         |                      |                                |
| Peak Hour Factor       | 95     | 95     | 95       | 95       | 95       | 95      |                      |                                |
|                        |        |        |          |          |          |         |                      |                                |
| Heavy Vehicles, %      | 2      | 2      | 2        | 2        | 2        | 2       |                      |                                |
| Mvmt Flow              | 434    | 84     | 63       | 846      | 679      | 342     |                      |                                |
|                        |        |        |          |          |          |         |                      |                                |
|                        | Minor2 |        | Major1   |          | Major2   |         |                      |                                |
| Conflicting Flow All   | 1651   | 679    | 1021     | 0        | -        | 0       |                      |                                |
| Stage 1                | 679    | -      | -        | -        | -        | -       |                      |                                |
| Stage 2                | 972    | -      | -        | -        | -        | -       |                      |                                |
| Critical Hdwy          | 6.42   | 6.22   | 4.12     | -        | -        | -       |                      |                                |
| Critical Hdwy Stg 1    | 5.42   | -      | _        | -        | -        | -       |                      |                                |
| Critical Hdwy Stg 2    | 5.42   | -      | -        | -        | -        | -       |                      |                                |
| Follow-up Hdwy         |        | 3.318  | 2.218    | _        | _        | _       |                      |                                |
| Pot Cap-1 Maneuver     | ~ 109  | 452    | 680      | _        | _        | _       |                      |                                |
| Stage 1                | 504    | 102    | -        | _        | _        | _       |                      |                                |
| Stage 2                | ~ 367  | _      |          | _        | _        | _       |                      |                                |
| Platoon blocked, %     | ~ 307  | -      | -        | _        | _        |         |                      |                                |
|                        | 00     | 450    | 400      |          | -        |         |                      |                                |
| Mov Cap-1 Maneuver     |        | 452    | 680      | -        |          | -       |                      |                                |
| Mov Cap-2 Maneuver     |        | -      | -        | -        | -        | -       |                      |                                |
| Stage 1                | 457    | -      | -        | -        | -        | -       |                      |                                |
| Stage 2                | ~ 367  | -      | -        | -        | -        | -       |                      |                                |
|                        |        |        |          |          |          |         |                      |                                |
| Approach               | EB     |        | NB       |          | SB       |         |                      |                                |
| HCM Control Delay, \$  | 1349.3 |        | 0.8      |          | 0        |         |                      |                                |
| HCM LOS                | F      |        |          |          |          |         |                      |                                |
|                        |        |        |          |          |          |         |                      |                                |
| Minor Lane/Major Mvn   | nt     | NBL    | NDT      | EBLn1    | EBI na   | SBT     | SBR                  |                                |
|                        | III    |        | INDII    |          |          | SDI     | אטכ                  |                                |
| Capacity (veh/h)       |        | 680    | -        | 99       | 452      | -       | -                    |                                |
| HCM Lane V/C Ratio     |        | 0.093  |          |          | 0.186    | -       | -                    |                                |
| HCM Control Delay (s)  | )      | 10.8   | \$ ´     | 1608.4   | 14.8     | -       | -                    |                                |
| HCM Lane LOS           |        | В      | -        | F        | В        | -       | -                    |                                |
| HCM 95th %tile Q(veh   | 1)     | 0.3    | -        | 45.4     | 0.7      | -       | -                    |                                |
| Notes                  |        |        |          |          |          |         |                      |                                |
| ~: Volume exceeds ca   | pacity | \$: De | elay exc | ceeds 3  | 00s      | +: Com  | putation Not Defined | *: All major volume in platoon |
| 2.22 000000 00         | 1      | ,. 5   | J C/10   |          |          | . 50.11 |                      | j piatosi.                     |

|                              | ۶         | <b>→</b>      | •         | •         | <b>←</b> | •         | 4          | <b>†</b>  | /         | <b>&gt;</b> | ļ     | 4    |
|------------------------------|-----------|---------------|-----------|-----------|----------|-----------|------------|-----------|-----------|-------------|-------|------|
| Movement                     | EBL       | EBT           | EBR       | WBL       | WBT      | WBR       | NBL        | NBT       | NBR       | SBL         | SBT   | SBR  |
| Lane Configurations          | , j       | <b>†</b>      | 7         | ň         | ĵ»       |           | *          | <b></b>   | 7         |             | 4     |      |
| Traffic Volume (veh/h)       | 231       | 890           | 700       | 172       | 444      | 50        | 610        | 392       | 222       | 60          | 322   | 153  |
| Future Volume (veh/h)        | 231       | 890           | 700       | 172       | 444      | 50        | 610        | 392       | 222       | 60          | 322   | 153  |
| Initial Q (Qb), veh          | 0         | 0             | 0         | 0         | 0        | 0         | 0          | 0         | 0         | 0           | 0     | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00      |               | 0.99      | 1.00      |          | 0.99      | 1.00       |           | 0.99      | 1.00        |       | 0.99 |
| Parking Bus, Adj             | 1.00      | 1.00          | 1.00      | 1.00      | 1.00     | 1.00      | 1.00       | 1.00      | 1.00      | 1.00        | 1.00  | 1.00 |
| Work Zone On Approach        |           | No            |           |           | No       |           |            | No        |           |             | No    |      |
| Adj Sat Flow, veh/h/ln       | 1870      | 1870          | 1870      | 1870      | 1870     | 1870      | 1870       | 1870      | 1870      | 1870        | 1870  | 1870 |
| Adj Flow Rate, veh/h         | 243       | 937           | 486       | 181       | 467      | 50        | 642        | 413       | 48        | 63          | 339   | 149  |
| Peak Hour Factor             | 0.95      | 0.95          | 0.95      | 0.95      | 0.95     | 0.95      | 0.95       | 0.95      | 0.95      | 0.95        | 0.95  | 0.95 |
| Percent Heavy Veh, %         | 2         | 2             | 2         | 2         | 2        | 2         | 2          | 2         | 2         | 2           | 2     | 2    |
| Cap, veh/h                   | 268       | 580           | 488       | 207       | 458      | 49        | 422        | 443       | 371       | 32          | 172   | 75   |
| Arrive On Green              | 0.15      | 0.31          | 0.31      | 0.12      | 0.28     | 0.28      | 0.24       | 0.24      | 0.24      | 0.16        | 0.16  | 0.16 |
| Sat Flow, veh/h              | 1781      | 1870          | 1572      | 1781      | 1659     | 178       | 1781       | 1870      | 1568      | 202         | 1088  | 478  |
| Grp Volume(v), veh/h         | 243       | 937           | 486       | 181       | 0        | 517       | 642        | 413       | 48        | 551         | 0     | 0    |
| Grp Sat Flow(s), veh/h/ln    | 1781      | 1870          | 1572      | 1781      | 0        | 1836      | 1781       | 1870      | 1568      | 1769        | 0     | 0    |
| Q Serve(g_s), s              | 17.0      | 39.3          | 39.1      | 12.7      | 0.0      | 35.0      | 30.0       | 27.4      | 3.1       | 20.0        | 0.0   | 0.0  |
| Cycle Q Clear(g_c), s        | 17.0      | 39.3          | 39.1      | 12.7      | 0.0      | 35.0      | 30.0       | 27.4      | 3.1       | 20.0        | 0.0   | 0.0  |
| Prop In Lane                 | 1.00      | 37.3          | 1.00      | 1.00      | 0.0      | 0.10      | 1.00       | 21.7      | 1.00      | 0.11        | 0.0   | 0.27 |
| Lane Grp Cap(c), veh/h       | 268       | 580           | 488       | 207       | 0        | 507       | 422        | 443       | 371       | 279         | 0     | 0.27 |
| V/C Ratio(X)                 | 0.91      | 1.62          | 1.00      | 0.87      | 0.00     | 1.02      | 1.52       | 0.93      | 0.13      | 1.97        | 0.00  | 0.00 |
| Avail Cap(c_a), veh/h        | 281       | 580           | 488       | 275       | 0.00     | 507       | 422        | 443       | 371       | 279         | 0.00  | 0.00 |
| HCM Platoon Ratio            | 1.00      | 1.00          | 1.00      | 1.00      | 1.00     | 1.00      | 1.00       | 1.00      | 1.00      | 1.00        | 1.00  | 1.00 |
| Upstream Filter(I)           | 1.00      | 1.00          | 1.00      | 1.00      | 0.00     | 1.00      | 1.00       | 1.00      | 1.00      | 1.00        | 0.00  | 0.00 |
| Uniform Delay (d), s/veh     | 53.0      | 43.7          | 43.7      | 55.1      | 0.00     | 45.9      | 48.4       | 47.4      | 38.1      | 53.4        | 0.00  | 0.00 |
| Incr Delay (d2), s/veh       | 29.2      | 284.9         | 39.9      | 17.0      | 0.0      | 45.0      | 247.1      | 26.4      | 0.1       | 451.1       | 0.0   | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0       | 0.0           | 0.0       | 0.0       | 0.0      | 0.0       | 0.0        | 0.0       | 0.0       | 0.0         | 0.0   | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 9.6       | 63.3          | 20.0      | 6.6       | 0.0      | 21.8      | 41.8       | 15.6      | 1.2       | 43.8        | 0.0   | 0.0  |
| Unsig. Movement Delay, s/veh |           | 05.5          | 20.0      | 0.0       | 0.0      | 21.0      | 41.0       | 13.0      | 1.2       | 43.0        | 0.0   | 0.0  |
| LnGrp Delay(d),s/veh         | 82.2      | 328.7         | 83.5      | 72.1      | 0.0      | 90.8      | 295.4      | 73.8      | 38.1      | 504.5       | 0.0   | 0.0  |
| LnGrp LOS                    | 62.2<br>F | 320. <i>1</i> | 63.5<br>F | 72.1<br>E | Α        | 90.6<br>F | 295.4<br>F | 73.6<br>E | 30.1<br>D | 504.5<br>F  | Α     | Α    |
|                              | Г         |               | <u> </u>  | <u> </u>  |          | Г         |            |           | D         | Г           |       | A    |
| Approach Vol, veh/h          |           | 1666          |           |           | 698      |           |            | 1103      |           |             | 551   |      |
| Approach Delay, s/veh        |           | 221.2         |           |           | 86.0     |           |            | 201.3     |           |             | 504.5 |      |
| Approach LOS                 |           | F             |           |           | F        |           |            | F         |           |             | F     |      |
| Timer - Assigned Phs         | 1         | 2             |           | 4         | 5        | 6         |            | 8         |           |             |       |      |
| Phs Duration (G+Y+Rc), s     | 20.5      | 45.3          |           | 25.1      | 24.8     | 41.0      |            | 35.8      |           |             |       |      |
| Change Period (Y+Rc), s      | 5.8       | 6.0           |           | 5.1       | 5.8      | 6.0       |            | 5.8       |           |             |       |      |
| Max Green Setting (Gmax), s  | 19.6      | 30.0          |           | 20.0      | 20.0     | 35.0      |            | 30.0      |           |             |       |      |
| Max Q Clear Time (g_c+I1), s | 14.7      | 41.3          |           | 22.0      | 19.0     | 37.0      |            | 32.0      |           |             |       |      |
| Green Ext Time (p_c), s      | 0.1       | 0.0           |           | 0.0       | 0.0      | 0.0       |            | 0.0       |           |             |       |      |
| Intersection Summary         |           |               |           |           |          |           |            |           |           |             |       |      |
| HCM 6th Ctrl Delay           |           |               | 231.1     |           |          |           |            |           |           |             |       |      |
| HCM 6th LOS                  |           |               | F         |           |          |           |            |           |           |             |       |      |
| Notes                        |           |               |           |           |          |           |            |           |           |             |       |      |

|                           | ۶      | <b>→</b> | •    | •    | <b>←</b> | •           | •    | †        | <b>/</b> | <b>\</b> | ļ        | 4    |
|---------------------------|--------|----------|------|------|----------|-------------|------|----------|----------|----------|----------|------|
| Movement                  | EBL    | EBT      | EBR  | WBL  | WBT      | WBR         | NBL  | NBT      | NBR      | SBL      | SBT      | SBR  |
| Lane Configurations       | ሻ      | <b>†</b> | 7    | ሻ    | f)       |             | ሻ    | <b>†</b> | 7        | ሻ        | <b>†</b> | 7    |
| Traffic Volume (veh/h)    | 100    | 231      | 571  | 30   | 131      | 50          | 345  | 754      | 30       | 70       | 564      | 70   |
| Future Volume (veh/h)     | 100    | 231      | 571  | 30   | 131      | 50          | 345  | 754      | 30       | 70       | 564      | 70   |
| Initial Q (Qb), veh       | 0      | 0        | 0    | 0    | 0        | 0           | 0    | 0        | 0        | 0        | 0        | 0    |
| Ped-Bike Adj(A_pbT)       | 1.00   |          | 1.00 | 1.00 |          | 1.00        | 1.00 |          | 1.00     | 1.00     |          | 1.00 |
| Parking Bus, Adj          | 1.00   | 1.00     | 1.00 | 1.00 | 1.00     | 1.00        | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |
| Work Zone On Approac      | ch     | No       |      |      | No       |             |      | No       |          |          | No       |      |
| Adj Sat Flow, veh/h/ln    | 1870   | 1870     | 1870 | 1870 | 1870     | 1870        | 1870 | 1870     | 1870     | 1870     | 1870     | 1870 |
| Adj Flow Rate, veh/h      | 105    | 243      | 227  | 32   | 138      | 38          | 363  | 794      | 14       | 74       | 594      | 21   |
| Peak Hour Factor          | 0.95   | 0.95     | 0.95 | 0.95 | 0.95     | 0.95        | 0.95 | 0.95     | 0.95     | 0.95     | 0.95     | 0.95 |
| Percent Heavy Veh, %      | 2      | 2        | 2    | 2    | 2        | 2           | 2    | 2        | 2        | 2        | 2        | 2    |
| Cap, veh/h                | 133    | 337      | 285  | 44   | 170      | 47          | 397  | 945      | 801      | 95       | 628      | 533  |
| Arrive On Green           | 0.07   | 0.18     | 0.18 | 0.02 | 0.12     | 0.12        | 0.22 | 0.51     | 0.51     | 0.05     | 0.34     | 0.34 |
| Sat Flow, veh/h           | 1781   | 1870     | 1585 | 1781 | 1412     | 389         | 1781 | 1870     | 1585     | 1781     | 1870     | 1585 |
| Grp Volume(v), veh/h      | 105    | 243      | 227  | 32   | 0        | 176         | 363  | 794      | 14       | 74       | 594      | 21   |
| Grp Sat Flow(s), veh/h/li |        | 1870     | 1585 | 1781 | 0        | 1800        | 1781 | 1870     | 1585     | 1781     | 1870     | 1585 |
| Q Serve(g_s), s           | 4.9    | 10.5     | 11.7 | 1.5  | 0.0      | 8.1         | 17.0 | 31.2     | 0.4      | 3.5      | 26.4     | 0.8  |
| Cycle Q Clear(q_c), s     | 4.9    | 10.5     | 11.7 | 1.5  | 0.0      | 8.1         | 17.0 | 31.2     | 0.4      | 3.5      | 26.4     | 0.8  |
| Prop In Lane              | 1.00   |          | 1.00 | 1.00 |          | 0.22        | 1.00 |          | 1.00     | 1.00     |          | 1.00 |
| Lane Grp Cap(c), veh/h    |        | 337      | 285  | 44   | 0        | 217         | 397  | 945      | 801      | 95       | 628      | 533  |
| V/C Ratio(X)              | 0.79   | 0.72     | 0.80 | 0.72 | 0.00     | 0.81        | 0.92 | 0.84     | 0.02     | 0.78     | 0.95     | 0.04 |
| Avail Cap(c_a), veh/h     | 250    | 876      | 742  | 250  | 0        | 548         | 417  | 945      | 801      | 209      | 657      | 557  |
| HCM Platoon Ratio         | 1.00   | 1.00     | 1.00 | 1.00 | 1.00     | 1.00        | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |
| Upstream Filter(I)        | 1.00   | 1.00     | 1.00 | 1.00 | 0.00     | 1.00        | 1.00 | 1.00     | 1.00     | 1.00     | 1.00     | 1.00 |
| Uniform Delay (d), s/vel  |        | 33.0     | 33.5 | 41.3 | 0.0      | 36.6        | 32.4 | 18.2     | 10.5     | 39.9     | 27.6     | 19.1 |
| Incr Delay (d2), s/veh    | 3.9    | 1.1      | 1.9  | 7.9  | 0.0      | 2.7         | 23.2 | 6.5      | 0.0      | 5.1      | 21.7     | 0.0  |
| Initial Q Delay(d3),s/vel |        | 0.0      | 0.0  | 0.0  | 0.0      | 0.0         | 0.0  | 0.0      | 0.0      | 0.0      | 0.0      | 0.0  |
| %ile BackOfQ(50%),vel     |        | 4.6      | 4.5  | 0.8  | 0.0      | 3.7         | 9.5  | 13.6     | 0.1      | 1.6      | 14.8     | 0.3  |
| Unsig. Movement Delay     |        |          |      |      |          | <b>J</b> ., |      | . 3.0    |          |          |          |      |
| LnGrp Delay(d),s/veh      | 42.7   | 34.1     | 35.5 | 49.3 | 0.0      | 39.3        | 55.6 | 24.6     | 10.5     | 45.0     | 49.3     | 19.1 |
| LnGrp LOS                 | D      | С        | D    | D    | А        | D           | E    | С        | В        | D        | D        | В    |
| Approach Vol, veh/h       |        | 575      |      |      | 208      |             |      | 1171     |          |          | 689      |      |
| Approach Delay, s/veh     |        | 36.2     |      |      | 40.9     |             |      | 34.1     |          |          | 47.9     |      |
| Approach LOS              |        | D        |      |      | D        |             |      | С        |          |          | D        |      |
| Timer - Assigned Phs      | 1      | 2        | 3    | 4    | 5        | 6           | 7    | 8        |          |          |          |      |
| Phs Duration (G+Y+Rc)     | ) c6 7 | 20.8     | 24.1 |      | 11.8     | 15.7        | 9.7  | 48.3     |          |          |          |      |
| , ,                       |        |          |      | 33.8 |          |             |      |          |          |          |          |      |
| Change Period (Y+Rc),     |        | 5.4      | 5.1  | 5.1  | 5.4      | * 5.4       | 5.1  | 5.1      |          |          |          |      |
| Max Green Setting (Gm     |        | 40.0     | 20.0 | 30.0 | 12.0     | * 26        | 10.0 | 30.0     |          |          |          |      |
| Max Q Clear Time (g_c     |        | 13.7     | 19.0 | 28.4 | 6.9      | 10.1        | 5.5  | 33.2     |          |          |          |      |
| Green Ext Time (p_c), s   | 5 0.0  | 0.5      | 0.0  | 0.3  | 0.0      | 0.3         | 0.0  | 0.0      |          |          |          |      |
| Intersection Summary      |        |          |      |      |          |             |      |          |          |          |          |      |
| HCM 6th Ctrl Delay        |        |          | 38.7 |      |          |             |      |          |          |          |          |      |
| HCM 6th LOS               |        |          | D    |      |          |             |      |          |          |          |          |      |
| Notes                     |        |          |      |      |          |             |      |          |          |          |          |      |

| Intersection                  |            |            |                                                                                  |        |         |        |        |            |        |        |      |      |  |
|-------------------------------|------------|------------|----------------------------------------------------------------------------------|--------|---------|--------|--------|------------|--------|--------|------|------|--|
| Int Delay, s/veh              | 771        |            |                                                                                  |        |         |        |        |            |        |        |      |      |  |
| Movement                      | EBL        | EBT        | EBR                                                                              | WBL    | WBT     | WBR    | NBL    | NBT        | NBR    | SBL    | SBT  | SBR  |  |
| Lane Configurations           | LDL        | 4          | LDI                                                                              | VVDL   | 4       | WDIX   | NDL    | <u>ND1</u> | TODK T | JUL    | ₩    | JUK  |  |
| Traffic Vol, veh/h            | 20         | 20         | 30                                                                               | 101    | 20      | 60     | 30     | 929        | 172    | 50     | 1005 | 50   |  |
| Future Vol, veh/h             | 20         | 20         | 30                                                                               | 101    | 20      | 60     | 30     | 929        | 172    | 50     | 1005 | 50   |  |
| Conflicting Peds, #/hr        | 0          | 0          | 0                                                                                | 0      | 0       | 00     | 0      | 0          | 0      | 0      | 0    | 0    |  |
| Sign Control                  | Stop       | Stop       | Stop                                                                             | Stop   | Stop    | Stop   | Free   | Free       | Free   | Free   | Free | Free |  |
| RT Channelized                | J.(0p      | Jiop       | None                                                                             | -<br>- | -<br>-  | None   | -      | -          | None   | -      | 1100 | None |  |
| Storage Length                | _          | _          | - TWOTIC                                                                         | _      |         | -      | 50     | _          | 270    | _      | _    | -    |  |
| Veh in Median Storage         |            | 0          | _                                                                                | _      | 0       |        | -      | 0          | -      | _      | 0    | _    |  |
| Grade, %                      | -          | 0          | _                                                                                | _      | 0       | _      | _      | 0          | _      | _      | 0    | _    |  |
| Peak Hour Factor              | 95         | 95         | 95                                                                               | 95     | 95      | 95     | 95     | 95         | 95     | 95     | 95   | 95   |  |
| Heavy Vehicles, %             | 2          | 2          | 2                                                                                | 2      | 2       | 2      | 2      | 2          | 2      | 2      | 2    | 2    |  |
| Mvmt Flow                     | 21         | 21         | 32                                                                               | 106    | 21      | 63     | 32     | 978        | 181    | 53     | 1058 | 53   |  |
| Will tow                      |            |            | 02                                                                               | 100    |         | 00     | 02     | 770        | 101    | 00     | 1000 | 00   |  |
|                               |            |            | -                                                                                |        |         | -      |        |            | -      |        |      |      |  |
|                               | Minor2     |            |                                                                                  | Minor1 |         |        | Major1 |            |        | Major2 |      |      |  |
| Conflicting Flow All          | 2366       | 2414       | 1085                                                                             | 2259   | 2259    | 978    | 1111   | 0          | 0      | 1159   | 0    | 0    |  |
| Stage 1                       | 1191       | 1191       | -                                                                                | 1042   | 1042    | -      | -      | -          | -      | -      | -    | -    |  |
| Stage 2                       | 1175       | 1223       | -                                                                                | 1217   | 1217    | -      | -      | -          | -      | -      | -    | -    |  |
| Critical Hdwy                 | 7.12       | 6.52       | 6.22                                                                             | 7.12   | 6.52    | 6.22   | 4.12   | -          | -      | 4.12   | -    | -    |  |
| Critical Hdwy Stg 1           | 6.12       | 5.52       | -                                                                                | 6.12   | 5.52    | -      | -      | -          | -      | -      | -    | -    |  |
| Critical Hdwy Stg 2           | 6.12       | 5.52       | -                                                                                | 6.12   | 5.52    | -      | -      | -          | -      | -      | -    | -    |  |
| Follow-up Hdwy                | 3.518      | 4.018      | 3.318                                                                            | 3.518  | 4.018   | 3.318  | 2.218  | -          | -      | 2.218  | -    | -    |  |
| Pot Cap-1 Maneuver            | 24         | 33         | 263                                                                              | ~ 29   | 41      | 304    | 629    | -          | -      | 603    | -    | -    |  |
| Stage 1                       | 229<br>233 | 261<br>252 | -                                                                                | 277    | 307     | -      | -      | -          | -      | -      | -    | -    |  |
| Stage 2<br>Platoon blocked, % | 233        | 252        | -                                                                                | 221    | 253     | -      | -      | -          | -      | -      | -    | -    |  |
| Mov Cap-1 Maneuver            | ~ 7        | 24         | 263                                                                              | ~ 5    | 30      | 304    | 629    | -          | -      | 603    | -    | -    |  |
| Mov Cap-1 Maneuver            | ~ 7        | 24         | 203                                                                              | ~ 5    | 30      | 304    | 029    | -          | -      | 003    | -    | -    |  |
| Stage 1                       | 217        | 200        | -                                                                                | 263    | 291     | -      | -      | -          | -      | -      | -    | -    |  |
| Stage 2                       | 163        | 239        | -                                                                                | 133    | 194     | -      | _      | _          | _      | _      | _    | _    |  |
| Jiaye Z                       | 103        | 237        | _                                                                                | 133    | 174     | _      | -      | -          | _      | -      | -    | -    |  |
|                               |            |            |                                                                                  |        |         |        |        |            |        |        |      |      |  |
| Approach                      | EB         |            |                                                                                  | WB     |         |        | NB     |            |        | SB     |      |      |  |
| HCM Control Delay, \$ 1       | \$ (       | 9883.3     |                                                                                  |        | 0.3     |        |        | 0.5        |        |        |      |      |  |
| HCM LOS                       | F          |            |                                                                                  | F      |         |        |        |            |        |        |      |      |  |
|                               |            |            |                                                                                  |        |         |        |        |            |        |        |      |      |  |
| Minor Lane/Major Mvm          | nt         | NBL        | NBT                                                                              | NBR I  | EBLn1\  | WBL n1 | SBL    | SBT        | SBR    |        |      |      |  |
| Capacity (veh/h)              |            | 629        |                                                                                  |        | 18      | 9      | 603    |            | -      |        |      |      |  |
| HCM Lane V/C Ratio            |            | 0.05       | _                                                                                | _      |         |        | 0.087  | _          | _      |        |      |      |  |
| HCM Control Delay (s)         |            | 11         | -                                                                                |        | 1824.\$ |        | 11.5   | 0          | -      |        |      |      |  |
| HCM Lane LOS                  |            | В          | _                                                                                | -      | F       | F      | В      | A          | _      |        |      |      |  |
| HCM 95th %tile Q(veh)         | )          | 0.2        | -                                                                                | -      | 9.8     | 25.5   | 0.3    | -          | -      |        |      |      |  |
|                               |            | J.2        |                                                                                  |        | 7.5     |        | 3.0    |            |        |        |      |      |  |
| Notes                         |            |            |                                                                                  |        |         |        |        |            |        |        |      |      |  |
| Volume exceeds capacity       |            | \$: De     | \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon |        |         |        |        |            |        |        |      |      |  |

|                                                       | ۶    | <b>→</b> | •         | •    | <b>←</b> | •    | •    | <b>†</b> | /    | <b>&gt;</b> | ļ        | 4    |
|-------------------------------------------------------|------|----------|-----------|------|----------|------|------|----------|------|-------------|----------|------|
| Movement                                              | EBL  | EBT      | EBR       | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |
| Lane Configurations                                   |      | 4        |           |      | 4        | 7    | *    | <b></b>  | 7    | ň           | <b>†</b> | 7    |
| Traffic Volume (veh/h)                                | 20   | 20       | 20        | 199  | 20       | 158  | 40   | 894      | 216  | 115         | 921      | 20   |
| Future Volume (veh/h)                                 | 20   | 20       | 20        | 199  | 20       | 158  | 40   | 894      | 216  | 115         | 921      | 20   |
| Initial Q (Qb), veh                                   | 0    | 0        | 0         | 0    | 0        | 0    | 0    | 0        | 0    | 0           | 0        | 0    |
| Ped-Bike Adj(A_pbT)                                   | 1.00 |          | 0.99      | 1.00 |          | 0.99 | 1.00 |          | 0.99 | 1.00        |          | 0.99 |
| Parking Bus, Adj                                      | 1.00 | 1.00     | 1.00      | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |
| Work Zone On Approach                                 |      | No       |           |      | No       |      |      | No       |      |             | No       |      |
| Adj Sat Flow, veh/h/ln                                | 1870 | 1870     | 1870      | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870        | 1870     | 1870 |
| Adj Flow Rate, veh/h                                  | 21   | 21       | 4         | 209  | 21       | 70   | 42   | 941      | 149  | 121         | 969      | 10   |
| Peak Hour Factor                                      | 0.95 | 0.95     | 0.95      | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 | 0.95        | 0.95     | 0.95 |
| Percent Heavy Veh, %                                  | 2    | 2        | 2         | 2    | 2        | 2    | 2    | 2        | 2    | 2           | 2        | 2    |
| Cap, veh/h                                            | 103  | 85       | 11        | 348  | 25       | 429  | 57   | 802      | 675  | 154         | 904      | 762  |
| Arrive On Green                                       | 0.27 | 0.27     | 0.27      | 0.27 | 0.27     | 0.27 | 0.03 | 0.43     | 0.43 | 0.09        | 0.48     | 0.48 |
| Sat Flow, veh/h                                       | 104  | 312      | 40        | 914  | 92       | 1571 | 1781 | 1870     | 1576 | 1781        | 1870     | 1577 |
| Grp Volume(v), veh/h                                  | 46   | 0        | 0         | 230  | 0        | 70   | 42   | 941      | 149  | 121         | 969      | 10   |
| Grp Sat Flow(s), veh/h/ln                             | 455  | 0        | 0         | 1006 | 0        | 1571 | 1781 | 1870     | 1576 | 1781        | 1870     | 1577 |
| Q Serve(g_s), s                                       | 0.4  | 0.0      | 0.0       | 0.0  | 0.0      | 2.4  | 1.6  | 30.0     | 4.2  | 4.7         | 33.8     | 0.2  |
| Cycle Q Clear(g_c), s                                 | 16.7 | 0.0      | 0.0       | 16.3 | 0.0      | 2.4  | 1.6  | 30.0     | 4.2  | 4.7         | 33.8     | 0.2  |
| Prop In Lane                                          | 0.46 | 0.0      | 0.09      | 0.91 | 0.0      | 1.00 | 1.00 | 30.0     | 1.00 | 1.00        | 33.0     | 1.00 |
| Lane Grp Cap(c), veh/h                                | 199  | 0        | 0.07      | 373  | 0        | 429  | 57   | 802      | 675  | 154         | 904      | 762  |
| V/C Ratio(X)                                          | 0.23 | 0.00     | 0.00      | 0.62 | 0.00     | 0.16 | 0.74 | 1.17     | 0.22 | 0.78        | 1.07     | 0.01 |
| Avail Cap(c_a), veh/h                                 | 199  | 0.00     | 0.00      | 491  | 0.00     | 561  | 305  | 802      | 675  | 305         | 904      | 762  |
| HCM Platoon Ratio                                     | 1.00 | 1.00     | 1.00      | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |
| Upstream Filter(I)                                    | 1.00 | 0.00     | 0.00      | 1.00 | 0.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |
| Uniform Delay (d), s/veh                              | 20.4 | 0.00     | 0.00      | 24.4 | 0.00     | 19.3 | 33.6 | 20.0     | 12.6 | 31.3        | 18.1     | 9.4  |
| Incr Delay (d2), s/veh                                | 0.2  | 0.0      | 0.0       | 0.6  | 0.0      | 0.1  | 6.8  | 91.2     | 0.1  | 3.3         | 51.2     | 0.0  |
|                                                       | 0.2  | 0.0      | 0.0       | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.1  | 0.0         | 0.0      | 0.0  |
| Initial Q Delay(d3),s/veh<br>%ile BackOfQ(50%),veh/ln | 0.6  | 0.0      | 0.0       | 3.5  | 0.0      | 0.0  | 0.0  | 31.5     | 1.3  | 2.0         | 25.0     | 0.0  |
|                                                       |      | 0.0      | 0.0       | 3.3  | 0.0      | 0.0  | 0.0  | 31.3     | 1.3  | 2.0         | 23.0     | 0.1  |
| Unsig. Movement Delay, s/veh                          |      | 0.0      | 0.0       | 25.0 | 0.0      | 10.4 | 10.1 | 111.2    | 107  | 247         | /0.2     | 0.4  |
| LnGrp Delay(d),s/veh                                  | 20.6 | 0.0      | 0.0       | 25.0 | 0.0      | 19.4 | 40.4 |          | 12.7 | 34.6        | 69.3     | 9.4  |
| LnGrp LOS                                             | С    | A        | Α         | С    | Α        | В    | D    | F        | В    | С           | F        | A    |
| Approach Vol, veh/h                                   |      | 46       |           |      | 300      |      |      | 1132     |      |             | 1100     |      |
| Approach Delay, s/veh                                 |      | 20.6     |           |      | 23.7     |      |      | 95.6     |      |             | 64.9     |      |
| Approach LOS                                          |      | С        |           |      | С        |      |      | F        |      |             | Е        |      |
| Timer - Assigned Phs                                  |      | 2        | 3         | 4    |          | 6    | 7    | 8        |      |             |          |      |
| Phs Duration (G+Y+Rc), s                              |      | 23.7     | 7.3       | 38.9 |          | 23.7 | 11.2 | 35.1     |      |             |          |      |
| Change Period (Y+Rc), s                               |      | 4.6      | 5.1       | 5.1  |          | 4.6  | 5.1  | 5.1      |      |             |          |      |
| Max Green Setting (Gmax), s                           |      | 12.0     | 12.0      | 30.0 |          | 25.0 | 12.0 | 30.0     |      |             |          |      |
| Max Q Clear Time (q_c+I1), s                          |      | 18.7     | 3.6       | 35.8 |          | 18.3 | 6.7  | 32.0     |      |             |          |      |
| Green Ext Time (p_c), s                               |      | 0.0      | 0.0       | 0.0  |          | 0.6  | 0.0  | 0.0      |      |             |          |      |
| Intersection Summary                                  |      |          |           |      |          |      |      |          |      |             |          |      |
| HCM 6th Ctrl Delay                                    |      |          | 72.8      |      |          |      |      |          |      |             |          |      |
| HCM 6th LOS                                           |      |          | 72.8<br>E |      |          |      |      |          |      |             |          |      |
| Notes                                                 |      |          |           |      |          |      |      |          |      |             |          |      |

| Intersection           | 04.0   |        |          |         |        |            |                      |                                |
|------------------------|--------|--------|----------|---------|--------|------------|----------------------|--------------------------------|
| Int Delay, s/veh       | 31.9   |        |          |         |        |            |                      |                                |
| Movement               | EBL    | EBT    | WBT      | WBR     | SBL    | SBR        |                      |                                |
| Lane Configurations    |        | 4      |          | 7       | ሻ      | 7          |                      |                                |
| Traffic Vol, veh/h     | 52     | 285    | 299      | 653     | 413    | 80         |                      |                                |
| Future Vol, veh/h      | 52     | 285    | 299      | 653     | 413    | 80         |                      |                                |
| Conflicting Peds, #/hr | 0      | 0      | 0        | 0       | 0      | 0          |                      |                                |
| Sign Control           | Free   | Free   | Free     | Free    | Stop   | Stop       |                      |                                |
| RT Channelized         | -      | None   | -        | Yield   | -      | None       |                      |                                |
| Storage Length         | -      | -      | -        | 150     | 90     | 0          |                      |                                |
| Veh in Median Storage  | e,# -  | 0      | 0        | -       | 0      | -          |                      |                                |
| Grade, %               | -      | 0      | 0        | -       | 0      | -          |                      |                                |
| Peak Hour Factor       | 95     | 95     | 95       | 95      | 95     | 95         |                      |                                |
| Heavy Vehicles, %      | 2      | 2      | 2        | 2       | 2      | 2          |                      |                                |
| VIvmt Flow             | 55     | 300    | 315      | 687     | 435    | 84         |                      |                                |
|                        |        |        |          |         |        |            |                      |                                |
| Major/Minor            | Major1 | Λ      | Major2   |         | Minor2 |            |                      |                                |
| Conflicting Flow All   | 315    | 0      |          | 0       | 725    | 315        |                      |                                |
| Stage 1                | -      | -      | -        | -       | 315    | -          |                      |                                |
| Stage 2                | -      | -      | -        | -       | 410    | -          |                      |                                |
| Critical Hdwy          | 4.12   | -      | -        | -       | 6.42   | 6.22       |                      |                                |
| Critical Hdwy Stg 1    | -      | -      | -        | -       | 5.42   | -          |                      |                                |
| Critical Hdwy Stg 2    | -      | -      | -        | -       | 5.42   | -          |                      |                                |
| Follow-up Hdwy         | 2.218  | -      | -        | -       | 3.518  | 3.318      |                      |                                |
| Pot Cap-1 Maneuver     | 1245   | -      | -        | -       | ~ 392  | 725        |                      |                                |
| Stage 1                | -      | -      | -        | -       | 740    | -          |                      |                                |
| Stage 2                | -      | -      | -        | -       | 670    | -          |                      |                                |
| Platoon blocked, %     |        | -      | -        | -       |        |            |                      |                                |
| Mov Cap-1 Maneuver     | 1245   | -      | -        | -       | ~ 371  | 725        |                      |                                |
| Mov Cap-2 Maneuver     | -      | -      | -        | -       | · · ·  | -          |                      |                                |
| Stage 1                | -      | -      | -        | -       | 701    | -          |                      |                                |
| Stage 2                | -      | -      | -        | -       | 670    | -          |                      |                                |
|                        |        |        |          |         |        |            |                      |                                |
| Approach               | EB     |        | WB       |         | SB     |            |                      |                                |
| HCM Control Delay, s   | 1.2    |        | 0        |         | 114.6  |            |                      |                                |
| HCM LOS                |        |        |          |         | F      |            |                      |                                |
|                        |        |        |          |         |        |            |                      |                                |
| Minor Lane/Major Mvn   | nt     | EBL    | EBT      | WBT     | WRR    | SBLn1:     | SBI n2               |                                |
| Capacity (veh/h)       | 10     | 1245   | -        | WDI     | VVDIX. | 371        | 725                  |                                |
| HCM Lane V/C Ratio     |        | 0.044  | -        | -       |        | 1.172      |                      |                                |
| HCM Control Delay (s)  |        | 8      | 0        | -       |        | 134.7      | 10.6                 |                                |
| HCM Lane LOS           |        | A      | A        | -       | -      | 134.7<br>F | В                    |                                |
| HCM 95th %tile Q(veh   | )      | 0.1    | - A      | -       | -      | 17.4       | 0.4                  |                                |
| ·                      | )      | 0.1    |          |         |        | 17.4       | 0.4                  |                                |
| Notes                  |        |        |          |         |        |            |                      |                                |
| ~: Volume exceeds ca   | pacity | \$: De | elay exc | ceeds 3 | 00s    | +: Com     | putation Not Defined | *: All major volume in platoon |

|                                        | ۶           | <b>→</b> | •           | •           | <b>—</b> | •    | 1           | <b>†</b> | /           | <b>/</b>    | <b>+</b> | ✓           |
|----------------------------------------|-------------|----------|-------------|-------------|----------|------|-------------|----------|-------------|-------------|----------|-------------|
| Movement                               | EBL         | EBT      | EBR         | WBL         | WBT      | WBR  | NBL         | NBT      | NBR         | SBL         | SBT      | SBR         |
| Lane Configurations                    |             | र्स      | 7           |             | 4        |      | ሻ           | <b>₽</b> |             | ሻ           | ₽        |             |
| Traffic Volume (veh/h)                 | 40          | 41       | 138         | 240         | 71       | 21   | 196         | 668      | 110         | 20          | 573      | 50          |
| Future Volume (veh/h)                  | 40          | 41       | 138         | 240         | 71       | 21   | 196         | 668      | 110         | 20          | 573      | 50          |
| Initial Q (Qb), veh                    | 0           | 0        | 0           | 0           | 0        | 0    | 0           | 0        | 0           | 0           | 0        | 0           |
| Ped-Bike Adj(A_pbT)                    | 1.00        |          | 0.99        | 0.99        |          | 0.99 | 1.00        |          | 1.00        | 1.00        |          | 0.99        |
| Parking Bus, Adj                       | 1.00        | 1.00     | 1.00        | 1.00        | 1.00     | 1.00 | 1.00        | 1.00     | 1.00        | 1.00        | 1.00     | 1.00        |
| Work Zone On Approach                  |             | No       |             |             | No       |      |             | No       |             |             | No       |             |
| Adj Sat Flow, veh/h/ln                 | 1870        | 1870     | 1870        | 1870        | 1870     | 1870 | 1870        | 1870     | 1870        | 1870        | 1870     | 1870        |
| Adj Flow Rate, veh/h                   | 42          | 43       | 24          | 253         | 75       | 20   | 206         | 703      | 114         | 21          | 603      | 51          |
| Peak Hour Factor                       | 0.95        | 0.95     | 0.95        | 0.95        | 0.95     | 0.95 | 0.95        | 0.95     | 0.95        | 0.95        | 0.95     | 0.95        |
| Percent Heavy Veh, %                   | 2           | 2        | 2           | 2           | 2        | 2    | 2           | 2        | 2           | 2           | 2        | 2           |
| Cap, veh/h                             | 224         | 206      | 345         | 273         | 56       | 15   | 289         | 791      | 128         | 102         | 678      | 57          |
| Arrive On Green                        | 0.22        | 0.22     | 0.22        | 0.22        | 0.22     | 0.22 | 0.16        | 0.50     | 0.50        | 0.06        | 0.40     | 0.40        |
| Sat Flow, veh/h                        | 683         | 937      | 1567        | 853         | 253      | 67   | 1781        | 1569     | 254         | 1781        | 1700     | 144         |
| Grp Volume(v), veh/h                   | 85          | 0        | 24          | 348         | 0        | 0    | 206         | 0        | 817         | 21          | 0        | 654         |
| Grp Sat Flow(s), veh/h/ln              | 1620        | 0        | 1567        | 1173        | 0        | 0    | 1781        | 0        | 1823        | 1781        | 0        | 1843        |
| Q Serve(g_s), s                        | 0.0         | 0.0      | 0.9         | 13.2        | 0.0      | 0.0  | 8.0         | 0.0      | 29.3        | 0.8         | 0.0      | 24.0        |
| Cycle Q Clear(g_c), s                  | 2.8         | 0.0      | 0.9         | 16.0        | 0.0      | 0.0  | 8.0         | 0.0      | 29.3        | 0.8         | 0.0      | 24.0        |
| Prop In Lane                           | 0.49        | ٥        | 1.00        | 0.73        | Λ        | 0.06 | 1.00        | ٥        | 0.14        | 1.00        | 0        | 0.08        |
| Lane Grp Cap(c), veh/h<br>V/C Ratio(X) | 431<br>0.20 | 0.00     | 345<br>0.07 | 344<br>1.01 | 0.00     | 0.00 | 289<br>0.71 | 0.00     | 919<br>0.89 | 102<br>0.21 | 0.00     | 735<br>0.89 |
| Avail Cap(c_a), veh/h                  | 1150        | 0.00     | 1078        | 344         | 0.00     | 0.00 | 392         | 0.00     | 1254        | 1225        | 0.00     | 735         |
| HCM Platoon Ratio                      | 1.00        | 1.00     | 1.00        | 1.00        | 1.00     | 1.00 | 1.00        | 1.00     | 1.00        | 1.00        | 1.00     | 1.00        |
| Upstream Filter(I)                     | 1.00        | 0.00     | 1.00        | 1.00        | 0.00     | 0.00 | 1.00        | 0.00     | 1.00        | 1.00        | 0.00     | 1.00        |
| Uniform Delay (d), s/veh               | 23.2        | 0.00     | 22.5        | 31.4        | 0.00     | 0.00 | 28.8        | 0.00     | 16.2        | 32.7        | 0.00     | 20.4        |
| Incr Delay (d2), s/veh                 | 0.2         | 0.0      | 0.1         | 51.8        | 0.0      | 0.0  | 3.8         | 0.0      | 6.3         | 1.0         | 0.0      | 13.0        |
| Initial Q Delay(d3),s/veh              | 0.0         | 0.0      | 0.0         | 0.0         | 0.0      | 0.0  | 0.0         | 0.0      | 0.0         | 0.0         | 0.0      | 0.0         |
| %ile BackOfQ(50%),veh/ln               | 1.2         | 0.0      | 0.3         | 10.7        | 0.0      | 0.0  | 3.4         | 0.0      | 11.2        | 0.4         | 0.0      | 11.4        |
| Unsig. Movement Delay, s/veh           |             | 0.0      | 0.0         | 10.7        | 0.0      | 0.0  | 0.1         | 0.0      | 1112        | 0.1         | 0.0      |             |
| LnGrp Delay(d),s/veh                   | 23.4        | 0.0      | 22.5        | 83.2        | 0.0      | 0.0  | 32.6        | 0.0      | 22.5        | 33.7        | 0.0      | 33.3        |
| LnGrp LOS                              | С           | A        | C           | F           | A        | A    | C           | A        | C           | С           | A        | С           |
| Approach Vol, veh/h                    |             | 109      |             |             | 348      |      |             | 1023     |             |             | 675      |             |
| Approach Delay, s/veh                  |             | 23.2     |             |             | 83.2     |      |             | 24.5     |             |             | 33.3     |             |
| Approach LOS                           |             | С        |             |             | F        |      |             | С        |             |             | С        |             |
| Timer - Assigned Phs                   | 1           | 2        |             | 4           | 5        | 6    |             | 8        |             |             |          |             |
| Phs Duration (G+Y+Rc), s               | 16.5        | 34.8     |             | 21.4        | 8.8      | 42.5 |             | 21.4     |             |             |          |             |
| Change Period (Y+Rc), s                | * 4.7       | 5.8      |             | 5.4         | * 4.7    | 5.8  |             | 5.4      |             |             |          |             |
| Max Green Setting (Gmax), s            | * 16        | 25.0     |             | 16.0        | * 50     | 50.0 |             | 50.0     |             |             |          |             |
| Max Q Clear Time (g_c+l1), s           | 10.0        | 26.0     |             | 18.0        | 2.8      | 31.3 |             | 4.8      |             |             |          |             |
| Green Ext Time (p_c), s                | 0.3         | 0.0      |             | 0.0         | 0.0      | 5.4  |             | 0.6      |             |             |          |             |
| Intersection Summary                   |             |          |             |             |          |      |             |          |             |             |          |             |
| HCM 6th Ctrl Delay                     |             |          | 36.7        |             |          |      |             |          |             |             |          |             |
| HCM 6th LOS                            |             |          | 30.7<br>D   |             |          |      |             |          |             |             |          |             |
| I IOWI UNI LUJ                         |             |          | U           |             |          |      |             |          |             |             |          |             |

| Intersection           |         |              |            |         |              |        |          |         |          |        |            |            |
|------------------------|---------|--------------|------------|---------|--------------|--------|----------|---------|----------|--------|------------|------------|
| Int Delay, s/veh       | 3701.3  |              |            |         |              |        |          |         |          |        |            |            |
| Movement               | EBL     | EBT          | EBR        | WBL     | WBT          | WBR    | NBL      | NBT     | NBR      | SBL    | SBT        | SBR        |
| Lane Configurations    | 7       | <del>(</del> |            | ř       | <del>(</del> |        |          | 4       |          |        | र्स        | 7          |
| Traffic Vol, veh/h     | 72      | 748          | 20         | 30      | 625          | 490    | 20       | 30      | 30       | 505    | 30         | 42         |
| Future Vol, veh/h      | 72      | 748          | 20         | 30      | 625          | 490    | 20       | 30      | 30       | 505    | 30         | 42         |
| Conflicting Peds, #/hr | 0       | 0            | 0          | 0       | 0            | 0      | 0        | 0       | 0        | 0      | 0          | 0          |
| Sign Control           | Free    | Free         | Free       | Free    | Free         | Free   | Stop     | Stop    | Stop     | Stop   | Stop       | Stop       |
| RT Channelized         | -       | -            | None       | -       | -            | None   | -        | -       | None     | -      | -          | None       |
| Storage Length         | 100     | -            | -          | 70      | -            | -      | -        | -       | -        | -      | -          | 60         |
| Veh in Median Storag   | e,# -   | 0            | -          | -       | 0            | -      | -        | 0       | -        | -      | 0          | -          |
| Grade, %               | -       | 0            | -          | -       | 0            | -      | -        | 0       | -        | -      | 0          | -          |
| Peak Hour Factor       | 95      | 95           | 95         | 95      | 95           | 95     | 95       | 95      | 95       | 95     | 95         | 95         |
| Heavy Vehicles, %      | 2       | 2            | 2          | 2       | 2            | 2      | 2        | 2       | 2        | 2      | 2          | 2          |
| Mvmt Flow              | 76      | 787          | 21         | 32      | 658          | 516    | 21       | 32      | 32       | 532    | 32         | 44         |
|                        |         |              |            |         |              |        |          |         |          |        |            |            |
| Major/Minor            | Major1  |              |            | Major2  |              |        | Minor1   |         |          | Minor2 |            |            |
| Conflicting Flow All   | 1174    | 0            | 0          | 808     | 0            | 0      | 1968     | 2188    | 798      | 1962   | 1940       | 916        |
| Stage 1                | -       | -            | -          | -       | -            | -      | 950      | 950     | -        | 980    | 980        | -          |
| Stage 2                | -       | -            | -          | -       | -            | -      | 1018     | 1238    | -        | 982    | 960        | -          |
| Critical Hdwy          | 4.12    | -            | -          | 4.12    | -            | -      | 7.12     | 6.52    | 6.22     | 7.12   | 6.52       | 6.22       |
| Critical Hdwy Stg 1    | -       | -            | -          | -       | -            | -      | 6.12     | 5.52    | -        | 6.12   | 5.52       | -          |
| Critical Hdwy Stg 2    | -       | -            | -          | -       | -            | -      | 6.12     | 5.52    | -        |        | 5.52       | -          |
| Follow-up Hdwy         | 2.218   | -            | _          | 2.218   | -            | -      | 3.518    | 4.018   | 3.318    |        | 4.018      | 3.318      |
| Pot Cap-1 Maneuver     | 595     | -            | -          | 817     | -            | -      | 47       | 46      | 386      |        | 65         | 330        |
| Stage 1                | -       | -            | -          | -       | _            | -      | 312      | 339     |          | ~ 301  | 328        | -          |
| Stage 2                | -       | -            | -          | -       | -            | -      | 286      | 248     |          | ~ 300  | 335        | -          |
| Platoon blocked, %     |         | -            | -          |         | _            | -      |          |         |          |        |            |            |
| Mov Cap-1 Maneuver     | 595     | -            | -          | 817     | -            | -      | ~ 19     | 39      | 386      | ~ 13   | 54         | 330        |
| Mov Cap-2 Maneuver     |         | -            | -          |         | -            | _      | ~ 19     | 39      | -        |        | 54         | -          |
| Stage 1                | -       | -            | -          | -       | -            | -      | 272      | 296     | -        | ~ 262  | 315        | -          |
| Stage 2                | -       | _            | _          | -       | -            | _      | 214      | 238     |          | ~ 215  | 292        | -          |
| 5.a.g. 2               |         |              |            |         |              |        | _ ' '    |         |          |        | _/_        |            |
| Approach               | EB      |              |            | WB      |              |        | NB       |         |          | SB     |            |            |
| HCM Control Delay, s   | 1       |              |            | 0.3     |              | \$     | 675.3    |         | \$ 1     | 6851.9 |            |            |
| HCM LOS                |         |              |            |         |              |        | F        |         |          | F      |            |            |
|                        |         |              |            |         |              |        |          |         |          |        |            |            |
| Minor Lane/Major Mvr   | nt l    | VBLn1        | EBL        | EBT     | EBR          | WBL    | WBT      | WBR S   | SBLn1    | SBLn2  |            |            |
| Capacity (veh/h)       |         | 42           | 595        | -       | -            | 817    | -        | -       | 14       | 330    |            |            |
| HCM Lane V/C Ratio     |         | 2.005        |            | -       | _            | 0.039  | -        | - 4     |          | 0.134  |            |            |
| HCM Control Delay (s   | .) \$   | 675.3        | 11.9       | -       | -            | 9.6    | -        |         | 3173.5   | 17.6   |            |            |
| HCM Lane LOS           | ,       | F            | В          | _       | _            | A      | _        | ψ I (   | F        | C      |            |            |
| HCM 95th %tile Q(veh   | 1)      | 8.8          | 0.4        | -       | -            | 0.1    | -        | -       | 71.6     | 0.5    |            |            |
| Notes                  | ,       | 3.3          | <u> </u>   |         |              | J.,    |          |         |          | 0.3    |            |            |
|                        | noo!t.  | ¢ D          | alove serv | 0000    | 000          | C = == | nute!    | a Met D | ofin s s | * ^!   | ma a ! = : | ر دور بامر |
| ~: Volume exceeds ca   | ipacity | \$: De       | elay exc   | eeas 30 | UUS          | +: Com | putation | n Not D | etined   | : Al   | major      | volume     |

|                                                | ۶    | <b>→</b>   | •     | •    | <b>←</b>   | •    | 1     | <b>†</b>   | ~    | <b>/</b> | ļ          | 4    |
|------------------------------------------------|------|------------|-------|------|------------|------|-------|------------|------|----------|------------|------|
| Movement                                       | EBL  | EBT        | EBR   | WBL  | WBT        | WBR  | NBL   | NBT        | NBR  | SBL      | SBT        | SBR  |
| Lane Configurations                            |      | र्स        | 7     | ሻ    | f)         |      | 7     | <b>₽</b>   | 7    |          | 4          |      |
| Traffic Volume (veh/h)                         | 0    | 585        | 698   | 460  | 413        | 0    | 732   | 0          | 197  | 0        | 0          | 0    |
| Future Volume (veh/h)                          | 0    | 585        | 698   | 460  | 413        | 0    | 732   | 0          | 197  | 0        | 0          | 0    |
| Initial Q (Qb), veh                            | 0    | 0          | 0     | 0    | 0          | 0    | 0     | 0          | 0    | 0        | 0          | 0    |
| Ped-Bike Adj(A_pbT)                            | 1.00 | 1.00       | 1.00  | 1.00 | 1.00       | 1.00 | 1.00  | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Parking Bus, Adj                               | 1.00 | 1.00       | 1.00  | 1.00 | 1.00       | 1.00 | 1.00  | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Work Zone On Approach                          | 1870 | No<br>1870 | 1870  | 1870 | No<br>1870 | 1870 | 1870  | No<br>1870 | 1870 | 1870     | No<br>1870 | 1870 |
| Adj Sat Flow, veh/h/ln<br>Adj Flow Rate, veh/h | 0    | 616        | 462   | 484  | 435        | 1870 | 771   | 0          | 132  | 0        | 0          | 1870 |
| Peak Hour Factor                               | 0.95 | 0.95       | 0.95  | 0.95 | 0.95       | 0.95 | 0.95  | 0.95       | 0.95 | 0.95     | 0.95       | 0.95 |
| Percent Heavy Veh, %                           | 2    | 0.73       | 2     | 2    | 2          | 2    | 2     | 2          | 2    | 2        | 2          | 0.73 |
| Cap, veh/h                                     | 0    | 473        | 401   | 561  | 589        | 0    | 563   | 0          | 1002 | 0        | 2          | 0    |
| Arrive On Green                                | 0.00 | 0.25       | 0.25  | 0.32 | 0.32       | 0.00 | 0.32  | 0.00       | 0.32 | 0.00     | 0.00       | 0.00 |
| Sat Flow, veh/h                                | 0.00 | 1870       | 1585  | 1781 | 1870       | 0.00 | 1781  | 0.00       | 3170 | 0.00     | 1870       | 0.00 |
| Grp Volume(v), veh/h                           | 0    | 616        | 462   | 484  | 435        | 0    | 771   | 0          | 132  | 0        | 0          | 0    |
| Grp Sat Flow(s), veh/h/ln                      | 0    | 1870       | 1585  | 1781 | 1870       | 0    | 1781  | 0          | 1585 | 0        | 1870       | 0    |
| Q Serve(g_s), s                                | 0.0  | 20.0       | 20.0  | 20.2 | 16.4       | 0.0  | 25.0  | 0.0        | 2.4  | 0.0      | 0.0        | 0.0  |
| Cycle Q Clear(g_c), s                          | 0.0  | 20.0       | 20.0  | 20.2 | 16.4       | 0.0  | 25.0  | 0.0        | 2.4  | 0.0      | 0.0        | 0.0  |
| Prop In Lane                                   | 0.00 |            | 1.00  | 1.00 |            | 0.00 | 1.00  |            | 1.00 | 0.00     |            | 0.00 |
| Lane Grp Cap(c), veh/h                         | 0    | 473        | 401   | 561  | 589        | 0    | 563   | 0          | 1002 | 0        | 2          | 0    |
| V/C Ratio(X)                                   | 0.00 | 1.30       | 1.15  | 0.86 | 0.74       | 0.00 | 1.37  | 0.00       | 0.13 | 0.00     | 0.00       | 0.00 |
| Avail Cap(c_a), veh/h                          | 0    | 473        | 401   | 675  | 709        | 0    | 563   | 0          | 1002 | 0        | 189        | 0    |
| HCM Platoon Ratio                              | 1.00 | 1.00       | 1.00  | 1.00 | 1.00       | 1.00 | 1.00  | 1.00       | 1.00 | 1.00     | 1.00       | 1.00 |
| Upstream Filter(I)                             | 0.00 | 1.00       | 1.00  | 1.00 | 1.00       | 0.00 | 1.00  | 0.00       | 1.00 | 0.00     | 0.00       | 0.00 |
| Uniform Delay (d), s/veh                       | 0.0  | 29.6       | 29.6  | 25.5 | 24.2       | 0.0  | 27.1  | 0.0        | 19.3 | 0.0      | 0.0        | 0.0  |
| Incr Delay (d2), s/veh                         | 0.0  | 151.1      | 93.8  | 9.7  | 3.3        | 0.0  | 177.6 | 0.0        | 0.1  | 0.0      | 0.0        | 0.0  |
| Initial Q Delay(d3),s/veh                      | 0.0  | 0.0        | 0.0   | 0.0  | 0.0        | 0.0  | 0.0   | 0.0        | 0.0  | 0.0      | 0.0        | 0.0  |
| %ile BackOfQ(50%),veh/ln                       | 0.0  | 28.3       | 17.6  | 9.4  | 7.3        | 0.0  | 37.8  | 0.0        | 0.8  | 0.0      | 0.0        | 0.0  |
| Unsig. Movement Delay, s/veh                   | 0.0  | 100.7      | 100.4 | 05.0 | 07.5       | 0.0  | 0047  | 0.0        | 10.4 | 0.0      | 0.0        | 0.0  |
| LnGrp Delay(d),s/veh                           | 0.0  | 180.7      | 123.4 | 35.2 | 27.5       | 0.0  | 204.7 | 0.0        | 19.4 | 0.0      | 0.0        | 0.0  |
| LnGrp LOS                                      | A    | F 1070     | F     | D    | C 010      | A    | F     | A          | В    | A        | A          | A    |
| Approach Vol, veh/h                            |      | 1078       |       |      | 919        |      |       | 903        |      |          | 0          |      |
| Approach LOS                                   |      | 156.1      |       |      | 31.5       |      |       | 177.6      |      |          | 0.0        |      |
| Approach LOS                                   |      | F          |       |      | С          |      |       | F          |      |          |            |      |
| Timer - Assigned Phs                           |      | 2          |       | 4    |            | 6    |       | 8          |      |          |            |      |
| Phs Duration (G+Y+Rc), s                       |      | 0.0        |       | 23.2 |            | 28.0 |       | 27.9       |      |          |            |      |
| Change Period (Y+Rc), s                        |      | 3.0        |       | 3.2  |            | 3.0  |       | 3.0        |      |          |            |      |
| Max Green Setting (Gmax), s                    |      | 8.0        |       | 20.0 |            | 25.0 |       | 30.0       |      |          |            |      |
| Max Q Clear Time (g_c+l1), s                   |      | 0.0        |       | 22.0 |            | 27.0 |       | 22.2       |      |          |            |      |
| Green Ext Time (p_c), s                        |      | 0.0        |       | 0.0  |            | 0.0  |       | 2.7        |      |          |            |      |
| Intersection Summary                           |      | <u> </u>   |       |      |            |      |       |            |      |          |            |      |
| HCM 6th Ctrl Delay                             |      |            | 123.3 |      |            |      |       |            |      |          |            |      |
| HCM 6th LOS                                    |      |            | F     |      |            |      |       |            |      |          |            |      |

Notes

User approved pedestrian interval to be less than phase max green.

| -                          | <b>→</b> | •    | •    | •    | <b>1</b> | /    |
|----------------------------|----------|------|------|------|----------|------|
| Movement E                 | EBT      | EBR  | WBL  | WBT  | NBL      | NBR  |
|                            | <b>^</b> | 7    | ሻ    | 414  | ኘ        | 77   |
|                            | 265      | 345  | 474  | 428  | 315      | 803  |
| ,                          | 265      | 345  | 474  | 428  | 315      | 803  |
| Initial Q (Qb), veh        | 0        | 0    | 0    | 0    | 0        | 0    |
| Ped-Bike Adj(A_pbT)        | U        | 1.00 | 1.00 | U    | 1.00     | 1.00 |
| , , _, ,                   | 1.00     | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 |
| Work Zone On Approach      |          | 1.00 | 1.00 | No   | No       | 1.00 |
|                            | 870      | 1870 | 1870 | 1870 | 1870     | 1870 |
|                            | 279      | 67   | 530  | 408  | 332      | 542  |
|                            |          |      |      |      |          |      |
|                            | 0.95     | 0.95 | 0.95 | 0.95 | 0.95     | 0.95 |
| Percent Heavy Veh, %       | 2        | 2    | 2    | 2    | 2        | 2    |
|                            | 578      | 258  | 1080 | 567  | 473      | 1586 |
|                            | 0.16     | 0.16 | 0.30 | 0.30 | 0.27     | 0.27 |
| Sat Flow, veh/h 3          | 647      | 1585 | 3563 | 1870 | 1781     | 2790 |
| Grp Volume(v), veh/h       | 279      | 67   | 530  | 408  | 332      | 542  |
| Grp Sat Flow(s), veh/h/ln1 | 777      | 1585 | 1781 | 1870 | 1781     | 1395 |
| Q Serve(g_s), s            | 2.8      | 1.4  | 4.8  | 7.6  | 6.6      | 4.1  |
| Cycle Q Clear(q_c), s      | 2.8      | 1.4  | 4.8  | 7.6  | 6.6      | 4.1  |
| Prop In Lane               |          | 1.00 | 1.00 |      | 1.00     | 1.00 |
| Lane Grp Cap(c), veh/h     | 578      | 258  | 1080 | 567  | 473      | 1586 |
|                            | 0.48     | 0.26 | 0.49 | 0.72 | 0.70     | 0.34 |
| ` '                        | 820      | 812  | 1369 | 719  | 639      | 1846 |
|                            |          | 1.00 |      |      |          | 1.00 |
|                            | 1.00     |      | 1.00 | 1.00 | 1.00     |      |
|                            | 1.00     | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 |
| Uniform Delay (d), s/veh 1 |          | 14.3 | 11.1 | 12.1 | 13.0     | 4.5  |
| Incr Delay (d2), s/veh     | 0.6      | 0.5  | 0.3  | 2.6  | 2.2      | 0.1  |
| Initial Q Delay(d3),s/veh  |          | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/l    |          | 0.5  | 1.5  | 2.9  | 2.4      | 1.7  |
| Unsig. Movement Delay, s   | s/veh    |      |      |      |          |      |
| LnGrp Delay(d),s/veh 1     | 15.5     | 14.8 | 11.5 | 14.7 | 15.1     | 4.6  |
| LnGrp LOS                  | В        | В    | В    | В    | В        | Α    |
|                            | 346      |      |      | 938  | 874      |      |
|                            | 15.4     |      |      | 12.9 | 8.6      |      |
| Approach LOS               | В        |      |      | В    | Α.       |      |
|                            | U        |      |      | U    |          |      |
| Timer - Assigned Phs       |          | 2    |      |      |          | 6    |
| Phs Duration (G+Y+Rc), s   | S        | 9.8  |      |      |          | 15.3 |
| Change Period (Y+Rc), s    |          | 3.5  |      |      |          | 3.5  |
| Max Green Setting (Gmax    |          | 20.0 |      |      |          | 15.0 |
| Max Q Clear Time (q_c+l    |          | 4.8  |      |      |          | 9.6  |
| Green Ext Time (p_c), s    | 1), 3    | 1.7  |      |      |          | 2.2  |
| i i                        |          | 1.7  |      |      |          | ۷.۷  |
| Intersection Summary       |          |      |      |      |          |      |
| HCM 6th Ctrl Delay         |          |      | 11.6 |      |          |      |
| HCM 6th LOS                |          |      | В    |      |          |      |
|                            |          |      |      |      |          |      |
| Notes                      |          |      |      |      |          |      |

| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                       | ۶     | <b>→</b> | •         | •    | <b>←</b> | •    | 4     | <b>†</b> | <u> </u> | <b>&gt;</b> | ţ    | ✓    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|----------|-----------|------|----------|------|-------|----------|----------|-------------|------|------|--|
| Traffic Volume (veh/h) 583 70 415 60 120 70 407 685 50 40 593 375   Truture Volume (veh/h) 583 70 415 60 120 70 407 685 50 40 593 375   Initial O (Ob), veh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Movement E              | BL    | EBT      | EBR       | WBL  | WBT      | WBR  | NBL   | NBT      | NBR      | SBL         | SBT  | SBR  |  |
| Traffic Volume (veh/h) 583 70 415 60 120 70 407 685 50 40 593 375   Truture Volume (veh/h) 583 70 415 60 120 70 407 685 50 40 593 375   Truture Volume (veh/h) 583 70 415 60 120 70 407 685 50 40 593 375   Truture Volume (veh/h) 583 70 415 60 120 70 407 685 50 40 593 375   Truture Volume (veh/h) 583 70 415 60 120 70 407 685 50 40 593 375   Truture Volume (veh/h) 583 70 415 60 120 70 407 685 50 40 593 375   Truture Volume (veh/h) 583 70 415 60 120 70 407 685 50 40 593 375   Truture Volume (veh/h) 683 70 415 60 120 70 407 685 50 40 593 375   Truture Volume (veh/h) 683 70 415 60 120 70 407 685 50 40 593 375   Truture Volume (veh/h) 685 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lane Configurations     | ች     | सी       | 7         |      | 1₃       |      | *     | <b>^</b> | 7        | ች           | 44   | 7    |  |
| Initial Q (Ob), veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |       |          | 415       | 60   |          | 70   |       |          |          |             |      | 375  |  |
| Ped-Blike Adj(A_pbT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Future Volume (veh/h) 5 | 583   | 70       | 415       | 60   | 120      | 70   | 407   | 685      | 50       | 40          | 593  | 375  |  |
| Parking Bus, Adj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Initial Q (Qb), veh     |       | 0        |           |      | 0        |      |       | 0        |          |             | 0    |      |  |
| Work Zone On Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jı ,                    |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Adj Saf Flow, veh/hi/hi 1870 1870 1870 1870 1870 1870 1870 1870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | .00   |          | 1.00      | 1.00 |          | 1.00 | 1.00  |          | 1.00     | 1.00        |      | 1.00 |  |
| Adj Flow Rate, veh/h 667 0 83 63 126 47 428 721 18 42 624 75 Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Peak Hour Factor 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                       |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Cap, veh/h 751 0 332 213 155 58 379 1337 593 54 702 311 Arrive On Green 0.21 0.00 0.21 0.12 0.12 0.12 0.12 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Arrive On Green 0.21 0.00 0.21 0.12 0.12 0.12 0.12 0.21 0.38 0.38 0.03 0.20 0.20 Sat Flow, veh/h 3563 0 1574 1781 1299 484 1781 3554 1575 1781 3554 1573 Grg Volume(v), veh/h 667 0 83 63 0 1574 1781 1299 484 1781 3554 1575 1781 3554 1573 Grg Volume(v), veh/h 667 0 83 63 0 1574 1781 0 1783 1781 1777 1575 1781 1777 1573 0 Serve(g_s), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2 Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2 Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2 Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2 Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2 Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2 Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2 Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2 Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2 Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2 Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2 Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 0.0 0.0 0.0 0.0 1.00 1.00 1.00 1. |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Sat Flow, veh/h 3563 0 1574 1781 1299 484 1781 3554 1575 1781 3554 1573  Grp Volume(v), veh/h 667 0 83 63 0 173 428 721 18 42 624 75  Grp Sat Flow(s), veh/h/in1781 0 1574 1781 0 1783 1781 1777 1575 1781 1777 1573  O Serve(g_s), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2  Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2  Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2  Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2  Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2  Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2  Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2  Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2  Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2  Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2  Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.2 3.0 2.1 3.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                            | •                       |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Grp Volume(v), veh/h 667 0 83 63 0 173 428 721 18 42 624 75 Grp Sat Flow(s), veh/h/ln1781 0 1574 1781 0 1783 1781 1777 1575 1781 1777 1573  O Serve(g_s), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2  Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2  Prop In Lane 1.00 1.00 1.00 0.27 1.00 1.00 1.00 1.00 1.00  Lane Grp Cap(c), veh/h 751 0 332 213 0 213 379 1337 593 54 702 311  V/C Ratio(X) 0.89 0.00 0.25 0.30 0.00 0.81 1.13 0.54 0.03 0.78 0.89 0.24  Avail Cap(c_a), veh/h 803 0 355 223 0 223 379 1337 593 223 712 315  HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Grp Sat Flow(s), veh/h/ln1781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Q Serve(g_s), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2 Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Cycle Q Clear(g_c), s 14.5 0.0 3.5 2.6 0.0 7.6 17.0 12.7 0.6 1.9 13.6 3.2  Prop In Lane 1.00 1.00 1.00 - 0.27 1.00 1.00 1.00 1.00 1.00 1.00  Lane Grp Cap(c), veh/h 751 0 332 213 0 213 3.79 1337 593 54 702 311  V/C Ratio(X) 0.89 0.00 0.25 0.30 0.00 0.81 1.13 0.54 0.03 0.78 0.89 0.24  Avail Cap(c_a), veh/h 803 0 355 223 0 223 379 1337 593 223 712 315  HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Prop In Lane 1.00 1.00 1.00 0.27 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Lane Grp Cap(c), veh/h 751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |       | 0.0      |           |      | 0.0      |      |       | 12.7     |          |             | 13.6 |      |  |
| \( \text{V/C Ratio(X)}  \text{0.89}  \text{0.00}  \text{0.25}  \text{0.30}  \text{0.00}  \text{0.81}  \text{1.13}  \text{0.54}  \text{0.03}  \text{0.78}  \text{0.89}  \text{0.24} \\ \text{Avail Cap(c_a), veh/h}  \text{803}  \text{0}  \text{355}  \text{223}  \text{0}  \text{223}  \text{379}  \text{3377}  \text{593}  \text{223}  \text{712}  \text{315} \\ \text{HCM Platoon Ratio}   \text{1.00}   \text{1.00}   \text{1.00}   \text{1.00}   \text{1.00}   \text{1.00}   \text{1.00}   \text{1.00}    \text{1.00}                                                                                                                                                                                                                             \qua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |       | Λ        |           |      | Λ        |      |       | 1227     |          |             | 702  |      |  |
| Avail Cap(c_a), veh/h 803 0 355 223 0 223 379 1337 593 223 712 315 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| HCM Platoon Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . ,                     |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Upstream Filter(I)       1.00       0.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1                                                                                         |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Uniform Delay (d), s/veh 30.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Incr Delay (d2), s/veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| %ile BackOrO(50%),veh/lrī.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Unsig. Movement Delay, s/veh  LnGrp Delay(d),s/veh 41.3 0.0 26.4 32.4 0.0 52.0 117.4 19.7 15.7 47.0 43.8 27.1  LnGrp LOS D A C C A D F B B D D C  Approach Vol, veh/h 750 236 1167 741  Approach Delay, s/veh 39.7 46.8 55.5 42.3  Approach LOS D D E D  Timer - Assigned Phs 2 3 4 6 7 8  Phs Duration (G+Y+Rc), s 21.9 22.1 21.2 14.6 7.8 35.5  Change Period (Y+Rc), s 5.1 5.1 5.4 5.1 5.4 5.1 5.4 *5.4  Max Green Setting (Gmax), s 18.0 17.0 16.0 10.0 10.0 *24  Max Q Clear Time (g_c+I1), s 16.5 19.0 15.6 9.6 3.9 14.7  Green Ext Time (p_c), s 0.3 0.0 0.1 0.0 0.0 1.9  Intersection Summary  HCM 6th Ctrl Delay 47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| LnGrp Delay(d),s/veh 41.3 0.0 26.4 32.4 0.0 52.0 117.4 19.7 15.7 47.0 43.8 27.1  LnGrp LOS D A C C A D F B B D D C  Approach Vol, veh/h 750 236 1167 741  Approach Delay, s/veh 39.7 46.8 55.5 42.3  Approach LOS D D E D  Timer - Assigned Phs 2 3 4 6 7 8  Phs Duration (G+Y+Rc), s 21.9 22.1 21.2 14.6 7.8 35.5  Change Period (Y+Rc), s 5.1 5.1 5.4 5.1 5.4 *5.4  Max Green Setting (Gmax), s 18.0 17.0 16.0 10.0 10.0 *24  Max Q Clear Time (g_c+I1), s 16.5 19.0 15.6 9.6 3.9 14.7  Green Ext Time (p_c), s 0.3 0.0 0.1 0.0 0.0 1.9  Intersection Summary  HCM 6th Ctrl Delay 47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |       | 0.0      | 1.0       | 1.1  | 0.0      | 1.0  | 10.0  | 1.7      | 0.2      | 0.7         | 0.7  | 1.2  |  |
| LnGrp LOS         D         A         C         C         A         D         F         B         B         D         D         C           Approach Vol, veh/h         750         236         1167         741           Approach Delay, s/veh         39.7         46.8         55.5         42.3           Approach LOS         D         D         E         D           Timer - Assigned Phs         2         3         4         6         7         8           Phs Duration (G+Y+Rc), s         21.9         22.1         21.2         14.6         7.8         35.5           Change Period (Y+Rc), s         5.1         5.1         5.4         5.1         5.4 * 5.4           Max Green Setting (Gmax), s         18.0         17.0         16.0         10.0         10.0         *24           Max Q Clear Time (g_c+I1), s         16.5         19.0         15.6         9.6         3.9         14.7           Green Ext Time (p_c), s         0.3         0.0         0.1         0.0         0.0         1.9    Intersection Summary                                                                                                                                                                                          |                         |       | 0.0      | 26.4      | 32.4 | 0.0      | 52.0 | 117.4 | 19.7     | 15.7     | 47.0        | 43.8 | 27.1 |  |
| Approach Vol, veh/h 750 236 1167 741  Approach Delay, s/veh 39.7 46.8 55.5 42.3  Approach LOS D D E D  Timer - Assigned Phs 2 3 4 6 7 8  Phs Duration (G+Y+Rc), s 21.9 22.1 21.2 14.6 7.8 35.5  Change Period (Y+Rc), s 5.1 5.1 5.4 5.1 5.4 *5.4  Max Green Setting (Gmax), s 18.0 17.0 16.0 10.0 10.0 *24  Max Q Clear Time (g_c+l1), s 16.5 19.0 15.6 9.6 3.9 14.7  Green Ext Time (p_c), s 0.3 0.0 0.1 0.0 0.0 1.9  Intersection Summary  HCM 6th Ctrl Delay 47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Approach Delay, s/veh 39.7 46.8 55.5 42.3  Approach LOS D D E D  Timer - Assigned Phs 2 3 4 6 7 8  Phs Duration (G+Y+Rc), s 21.9 22.1 21.2 14.6 7.8 35.5  Change Period (Y+Rc), s 5.1 5.1 5.4 5.1 5.4 * 5.4  Max Green Setting (Gmax), s 18.0 17.0 16.0 10.0 10.0 * 24  Max Q Clear Time (g_c+l1), s 16.5 19.0 15.6 9.6 3.9 14.7  Green Ext Time (p_c), s 0.3 0.0 0.1 0.0 0.0 1.9  Intersection Summary  HCM 6th Ctrl Delay 47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |       |          |           |      |          |      | · ·   |          |          |             |      |      |  |
| Approach LOS D D E D  Timer - Assigned Phs 2 3 4 6 7 8  Phs Duration (G+Y+Rc), s 21.9 22.1 21.2 14.6 7.8 35.5  Change Period (Y+Rc), s 5.1 5.1 5.4 5.1 5.4 * 5.4  Max Green Setting (Gmax), s 18.0 17.0 16.0 10.0 10.0 * 24  Max Q Clear Time (g_c+l1), s 16.5 19.0 15.6 9.6 3.9 14.7  Green Ext Time (p_c), s 0.3 0.0 0.1 0.0 0.0 1.9  Intersection Summary  HCM 6th Ctrl Delay 47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 1 1                   |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Timer - Assigned Phs 2 3 4 6 7 8  Phs Duration (G+Y+Rc), s 21.9 22.1 21.2 14.6 7.8 35.5  Change Period (Y+Rc), s 5.1 5.1 5.4 5.1 5.4 * 5.4  Max Green Setting (Gmax), s 18.0 17.0 16.0 10.0 10.0 * 24  Max Q Clear Time (g_c+l1), s 16.5 19.0 15.6 9.6 3.9 14.7  Green Ext Time (p_c), s 0.3 0.0 0.1 0.0 0.0 1.9  Intersection Summary  HCM 6th Ctrl Delay 47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Phs Duration (G+Y+Rc), s 21.9 22.1 21.2 14.6 7.8 35.5 Change Period (Y+Rc), s 5.1 5.1 5.4 5.1 5.4 * 5.4  Max Green Setting (Gmax), s 18.0 17.0 16.0 10.0 10.0 * 24  Max Q Clear Time (g_c+I1), s 16.5 19.0 15.6 9.6 3.9 14.7  Green Ext Time (p_c), s 0.3 0.0 0.1 0.0 0.0 1.9  Intersection Summary  HCM 6th Ctrl Delay 47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |       |          | 3         | 1    |          | 6    | 7     |          |          |             |      |      |  |
| Change Period (Y+Rc), s 5.1 5.1 5.4 5.1 5.4 * 5.4  Max Green Setting (Gmax), s 18.0 17.0 16.0 10.0 10.0 * 24  Max Q Clear Time (g_c+l1), s 16.5 19.0 15.6 9.6 3.9 14.7  Green Ext Time (p_c), s 0.3 0.0 0.1 0.0 0.0 1.9  Intersection Summary  HCM 6th Ctrl Delay 47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |       |          |           |      |          |      | -     |          |          |             |      |      |  |
| Max Green Setting (Gmax), s 18.0 17.0 16.0 10.0 *24  Max Q Clear Time (g_c+l1), s 16.5 19.0 15.6 9.6 3.9 14.7  Green Ext Time (p_c), s 0.3 0.0 0.1 0.0 0.0 1.9  Intersection Summary  HCM 6th Ctrl Delay 47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Max Q Clear Time (g_c+I1), s 16.5 19.0 15.6 9.6 3.9 14.7  Green Ext Time (p_c), s 0.3 0.0 0.1 0.0 1.9  Intersection Summary  HCM 6th Ctrl Delay 47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ) (   |          |           |      |          |      |       |          |          |             |      |      |  |
| Green Ext Time (p_c), s       0.3       0.0       0.1       0.0       0.0       1.9         Intersection Summary         HCM 6th Ctrl Delay       47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |       |          |           |      |          |      |       |          |          |             |      |      |  |
| Intersection Summary HCM 6th Ctrl Delay 47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Green Ext Time (p_c), s | 1), 3 |          |           |      |          |      |       |          |          |             |      |      |  |
| HCM 6th Ctrl Delay 47.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-,                     |       |          |           |      |          |      |       |          |          |             |      |      |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |       |          | 17.3      |      |          |      |       |          |          |             |      |      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HCM 6th LOS             |       |          | 47.3<br>D |      |          |      |       |          |          |             |      |      |  |

Notes

User approved pedestrian interval to be less than phase max green.

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Intersection                                |         |  |  |  |  |
|---------------------------------------------|---------|--|--|--|--|
| Intersection Delay, s/v                     | /eh13.6 |  |  |  |  |
| Intersection Delay, s/\<br>Intersection LOS | В       |  |  |  |  |
|                                             |         |  |  |  |  |

| Movement                | EBL    | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|-------------------------|--------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations     |        | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |  |
| Traffic Vol, veh/h      | 60     | 20   | 222  | 20   | 20   | 20   | 162  | 182  | 20   | 20   | 142  | 70   |  |
| Future Vol, veh/h       | 60     | 20   | 222  | 20   | 20   | 20   | 162  | 182  | 20   | 20   | 142  | 70   |  |
| Peak Hour Factor        | 0.95   | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 | 0.95 |  |
| Heavy Vehicles, %       | 2      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow               | 63     | 21   | 234  | 21   | 21   | 21   | 171  | 192  | 21   | 21   | 149  | 74   |  |
| Number of Lanes         | 0      | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |  |
| Approach                | EB     |      |      | WB   |      |      | NB   |      |      | SB   |      |      |  |
| Opposing Approach       | WB     |      |      | EB   |      |      | SB   |      |      | NB   |      |      |  |
| Opposing Lanes          | 1      |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach Lo | eft SB |      |      | NB   |      |      | EB   |      |      | WB   |      |      |  |
| Conflicting Lanes Left  | 1      |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| Conflicting Approach R  | ighNB  |      |      | SB   |      |      | WB   |      |      | EB   |      |      |  |
| Conflicting Lanes Right | 1      |      |      | 1    |      |      | 1    |      |      | 1    |      |      |  |
| HCM Control Delay       | 13.1   |      |      | 9.9  |      |      | 15.9 |      |      | 11.8 |      |      |  |
| HCM LOS                 | В      |      |      | Α    |      |      | С    |      |      | В    |      |      |  |

| Lane                   | NBLn1 | EBLn1\ | WBLn1 | SBLn1 |
|------------------------|-------|--------|-------|-------|
| Vol Left, %            | 45%   | 20%    | 33%   | 9%    |
| Vol Thru, %            | 50%   | 7%     | 33%   | 61%   |
| Vol Right, %           | 5%    | 74%    | 33%   | 30%   |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 364   | 302    | 60    | 232   |
| LT Vol                 | 162   | 60     | 20    | 20    |
| Through Vol            | 182   | 20     | 20    | 142   |
| RT Vol                 | 20    | 222    | 20    | 70    |
| Lane Flow Rate         | 383   | 318    | 63    | 244   |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.581 | 0.472  | 0.107 | 0.371 |
| Departure Headway (Hd) | 5.46  | 5.341  | 6.121 | 5.468 |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Cap                    | 659   | 671    | 582   | 654   |
| Service Time           | 3.512 | 3.399  | 4.202 | 3.527 |
| HCM Lane V/C Ratio     | 0.581 | 0.474  | 0.108 | 0.373 |
| HCM Control Delay      | 15.9  | 13.1   | 9.9   | 11.8  |
| HCM Lane LOS           | С     | В      | А     | В     |
| HCM 95th-tile Q        | 3.7   | 2.5    | 0.4   | 1.7   |

| Intersection                         |        |        |          |         |      |        |          |         |        |        |         |        |            |
|--------------------------------------|--------|--------|----------|---------|------|--------|----------|---------|--------|--------|---------|--------|------------|
| Int Delay, s/veh                     | 155.2  |        |          |         |      |        |          |         |        |        |         |        |            |
| Movement                             | EBL    | EBT    | EBR      | WBL     | WBT  | WBR    | NBL      | NBT     | NBR    | SBL    | SBT     | SBR    |            |
| Lane Configurations                  | ሻ      | f)     |          |         | 4    |        |          | 4       |        |        | 4       |        |            |
| Traffic Vol, veh/h                   | 65     | 365    | 130      | 80      | 415  | 160    | 30       | 90      | 30     | 85     | 60      | 45     |            |
| Future Vol, veh/h                    | 65     | 365    | 130      | 80      | 415  | 160    | 30       | 90      | 30     | 85     | 60      | 45     |            |
| Conflicting Peds, #/hr               | 0      | 0      | 0        | 0       | 0    | 0      | 0        | 0       | 0      | 0      | 0       | 0      |            |
| Sign Control                         | Free   | Free   | Free     | Free    | Free | Free   | Stop     | Stop    | Stop   | Stop   | Stop    | Stop   |            |
| RT Channelized                       | -      | -      | None     | -       | -    | None   | -        | ·-      | None   | -      | -       | None   |            |
| Storage Length                       | 100    | -      | -        | -       | _    | -      | _        | -       | -      | -      | -       | -      |            |
| /eh in Median Storage                |        | 0      | -        | -       | 0    | -      | -        | 0       | -      | -      | 0       | -      |            |
| Grade, %                             | -      | 0      | _        | _       | 0    | _      | _        | 0       | -      | _      | 0       | _      |            |
| Peak Hour Factor                     | 95     | 95     | 95       | 95      | 95   | 95     | 95       | 95      | 95     | 95     | 95      | 95     |            |
| leavy Vehicles, %                    | 2      | 2      | 2        | 2       | 2    | 2      | 2        | 2       | 2      | 2      | 2       | 2      |            |
| Nymt Flow                            | 68     | 384    | 137      | 84      | 437  | 168    | 32       | 95      | 32     | 89     | 63      | 47     |            |
| VIVIIILI IOW                         | 00     | 304    | 137      | 04      | 437  | 100    | JZ       | 73      | JZ     | 07     | 03      | 47     |            |
| Major/Minor N                        | Major1 |        | N        | Major2  |      | ı      | Minor1   |         | 1      | Minor2 |         |        |            |
| Conflicting Flow All                 | 605    | 0      | 0        | 521     | 0    | 0      | 1333     | 1362    | 453    | 1341   | 1346    | 521    |            |
| Stage 1                              | 000    | -      | -        | 321     | -    | -      | 589      | 589     | 400    | 689    | 689     | 321    |            |
| •                                    | -      |        | -        | -       |      |        | 744      | 773     |        | 652    | 657     | -      |            |
| Stage 2<br>Critical Hdwy             |        | -      | -        | 112     | -    | -      |          |         | - / 22 |        |         |        |            |
| ,                                    | 4.12   | -      | -        | 4.12    | -    | -      | 7.12     | 6.52    | 6.22   | 7.12   | 6.52    | 6.22   |            |
| Critical Hdwy Stg 1                  | -      | -      | -        | -       | -    | -      | 6.12     | 5.52    | -      | 6.12   | 5.52    | -      |            |
| Critical Hdwy Stg 2                  | -      | -      | -        | -       | -    | -      | 6.12     | 5.52    | -      | 6.12   | 5.52    | -      |            |
| ollow-up Hdwy                        | 2.218  | -      | -        | 2.218   | -    | -      | 3.518    | 4.018   | 3.318  | 3.518  | 4.018   | 3.318  |            |
| Pot Cap-1 Maneuver                   | 973    | -      | -        | 1045    | -    | -      | 131      | 148     | 607    | 129    | 151     | 555    |            |
| Stage 1                              | -      | -      | -        | -       | -    | -      | 494      | 495     | -      | 436    | 446     | -      |            |
| Stage 2                              | -      | -      | -        | -       | -    | -      | 407      | 409     | -      | 457    | 462     | -      |            |
| Platoon blocked, %                   |        | -      | -        |         | -    | -      |          |         |        |        |         |        |            |
| Mov Cap-1 Maneuver                   | 973    | -      | -        | 1045    | -    | -      | 62       | 120     | 607    | ~ 37   | 123     | 555    |            |
| Mov Cap-2 Maneuver                   | -      | -      | -        | -       | -    | -      | 62       | 120     | -      | ~ 37   | 123     | -      |            |
| Stage 1                              | -      | -      | -        | -       | -    | -      | 459      | 460     | -      | 405    | 390     | -      |            |
| Stage 2                              | -      | -      | -        | -       | -    | -      | 273      | 358     | -      | 320    | 430     | -      |            |
|                                      |        |        |          |         |      |        |          |         |        |        |         |        |            |
| Approach                             | EB     |        |          | WB      |      |        | NB       |         |        | SB     |         |        |            |
| HCM Control Delay, s                 | 1      |        |          | 1.1     |      |        | 272.1    |         | \$ 1   | 1048.4 |         |        |            |
| HCM LOS                              |        |        |          |         |      |        | F        |         |        | F      |         |        |            |
|                                      |        |        |          |         |      |        |          |         |        |        |         |        |            |
| Minor Lane/Major Mvm                 | nt     | NBLn1  | EBL      | EBT     | EBR  | WBL    | WBT      | WBR S   | SBLn1  |        |         |        |            |
| Capacity (veh/h)                     |        | 117    | 973      | -       | -    | 1045   | -        | -       | 66     |        |         |        |            |
| HCM Lane V/C Ratio                   |        | 1.35   | 0.07     | _       |      | 0.081  | _        | _       | 3.03   |        |         |        |            |
| HCM Control Delay (s)                |        | 272.1  | 9        | _       | _    | 8.7    | 0        |         | 1048.4 |        |         |        |            |
| HCM Lane LOS                         |        | F      | A        | _       | -    | Α      | A        | -<br>-  | F      |        |         |        |            |
| HCM 95th %tile Q(veh)                | )      | 10.7   | 0.2      |         | _    | 0.3    | -        |         | 20.4   |        |         |        |            |
| `                                    | /      | 10.7   | 0.2      |         |      | 0.0    |          |         | 20.7   |        |         |        |            |
| Notes                                |        |        |          |         |      |        |          |         |        |        |         |        |            |
| <ul><li>Volume exceeds cap</li></ul> | oacity | \$: D∈ | elay exc | eeds 30 | J0s  | +: Com | putation | n Not D | efined | *: All | major v | volume | in platoon |

|                                                          | ۶          | <b>→</b>    | •        | •          | <b>←</b>     | •        | 4           | <b>†</b>      | /        | <b>&gt;</b> | <b>↓</b>     |            |
|----------------------------------------------------------|------------|-------------|----------|------------|--------------|----------|-------------|---------------|----------|-------------|--------------|------------|
| Movement                                                 | EBL        | EBT         | EBR      | WBL        | WBT          | WBR      | NBL         | NBT           | NBR      | SBL         | SBT          | SBR        |
| Lane Configurations                                      |            | 4           |          |            | 4            |          |             | 4             |          | ሻ           | 4î           |            |
| Traffic Volume (veh/h)                                   | 51         | 191         | 80       | 30         | 265          | 560      | 60          | 915           | 30       | 380         | 416          | 54         |
| Future Volume (veh/h)                                    | 51         | 191         | 80       | 30         | 265          | 560      | 60          | 915           | 30       | 380         | 416          | 54         |
| Initial Q (Qb), veh                                      | 0          | 0           | 0        | 0          | 0            | 0        | 0           | 0             | 0        | 0           | 0            | 0          |
| Ped-Bike Adj(A_pbT)                                      | 1.00       |             | 0.99     | 1.00       |              | 0.99     | 1.00        |               | 1.00     | 1.00        |              | 0.99       |
| Parking Bus, Adj                                         | 1.00       | 1.00        | 1.00     | 1.00       | 1.00         | 1.00     | 1.00        | 1.00          | 1.00     | 1.00        | 1.00         | 1.00       |
| Work Zone On Approach                                    |            | No          |          |            | No           |          |             | No            |          |             | No           |            |
| Adj Sat Flow, veh/h/ln                                   | 1870       | 1870        | 1870     | 1870       | 1870         | 1870     | 1870        | 1870          | 1870     | 1870        | 1870         | 1870       |
| Adj Flow Rate, veh/h                                     | 54         | 201         | 67       | 32         | 279          | 494      | 63          | 963           | 30       | 400         | 438          | 51         |
| Peak Hour Factor                                         | 0.95       | 0.95        | 0.95     | 0.95       | 0.95         | 0.95     | 0.95        | 0.95          | 0.95     | 0.95        | 0.95         | 0.95       |
| Percent Heavy Veh, %                                     | 2          | 2           | 2        | 2          | 2            | 2        | 2           | 2             | 2        | 2           | 2            | 2          |
| Cap, veh/h                                               | 103        | 349         | 104      | 62         | 225          | 379      | 27          | 419           | 13       | 318         | 293          | 34         |
| Arrive On Green                                          | 0.37       | 0.37        | 0.37     | 0.37       | 0.37         | 0.37     | 0.25        | 0.25          | 0.25     | 0.18        | 0.18         | 0.18       |
| Sat Flow, veh/h                                          | 128        | 934         | 279      | 37         | 603          | 1015     | 111         | 1692          | 53       | 1781        | 1642         | 191        |
| Grp Volume(v), veh/h                                     | 322        | 0           | 0        | 805        | 0            | 0        | 1056        | 0             | 0        | 400         | 0            | 489        |
| Grp Sat Flow(s), veh/h/ln                                | 1341       | 0           | 0        | 1654       | 0            | 0        | 1855        | 0             | 0        | 1781        | 0            | 1833       |
| Q Serve(g_s), s                                          | 0.0        | 0.0         | 0.0      | 16.1       | 0.0          | 0.0      | 19.0        | 0.0           | 0.0      | 13.7        | 0.0          | 13.7       |
| Cycle Q Clear(g_c), s                                    | 11.5       | 0.0         | 0.0      | 28.7       | 0.0          | 0.0      | 19.0        | 0.0           | 0.0      | 13.7        | 0.0          | 13.7       |
| Prop In Lane                                             | 0.17       | •           | 0.21     | 0.04       | •            | 0.61     | 0.06        | •             | 0.03     | 1.00        | •            | 0.10       |
| Lane Grp Cap(c), veh/h                                   | 556        | 0           | 0        | 667        | 0            | 0        | 459         | 0             | 0        | 318         | 0            | 327        |
| V/C Ratio(X)                                             | 0.58       | 0.00        | 0.00     | 1.21       | 0.00         | 0.00     | 2.30        | 0.00          | 0.00     | 1.26        | 0.00         | 1.50       |
| Avail Cap(c_a), veh/h                                    | 556        | 0           | 0        | 667        | 0            | 0        | 459         | 0             | 0        | 318         | 0            | 327        |
| HCM Platoon Ratio                                        | 1.00       | 1.00        | 1.00     | 1.00       | 1.00         | 1.00     | 1.00        | 1.00          | 1.00     | 1.00        | 1.00         | 1.00       |
| Upstream Filter(I)                                       | 1.00       | 0.00        | 0.00     | 1.00       | 0.00         | 0.00     | 1.00        | 0.00          | 0.00     | 1.00        | 0.00         | 1.00       |
| Uniform Delay (d), s/veh                                 | 18.4       | 0.0         | 0.0      | 25.0       | 0.0          | 0.0      | 28.9        | 0.0           | 0.0      | 31.6        | 0.0          | 31.6       |
| Incr Delay (d2), s/veh                                   | 1.0        | 0.0         | 0.0      | 106.8      | 0.0          | 0.0      | 592.1       | 0.0           | 0.0      | 139.5       | 0.0          | 238.6      |
| Initial Q Delay(d3),s/veh                                | 0.0<br>4.2 | 0.0         | 0.0      | 0.0        | 0.0          | 0.0      | 0.0<br>83.7 | 0.0           | 0.0      | 0.0<br>17.9 | 0.0          | 0.0        |
| %ile BackOfQ(50%),veh/ln<br>Unsig. Movement Delay, s/veh |            | 0.0         | 0.0      | 31.0       | 0.0          | 0.0      | 83.7        | 0.0           | 0.0      | 17.9        | 0.0          | 27.4       |
| LnGrp Delay(d),s/veh                                     | 19.4       | 0.0         | 0.0      | 131.9      | 0.0          | 0.0      | 621.0       | 0.0           | 0.0      | 171.0       | 0.0          | 270.1      |
| LnGrp LOS                                                | 19.4<br>B  | 0.0<br>A    | 0.0<br>A | 131.9<br>F | 0.0<br>A     | 0.0<br>A | 021.0<br>F  | 0.0<br>A      | 0.0<br>A | 171.0<br>F  | 0.0<br>A     | 270.1<br>F |
| -                                                        | ь          |             | A        | Г          |              | A        | Г           |               | A        | Г           |              | Г          |
| Approach Vol, veh/h                                      |            | 322<br>19.4 |          |            | 805<br>131.9 |          |             | 1056<br>621.0 |          |             | 889<br>225.5 |            |
| Approach Delay, s/veh Approach LOS                       |            | 19.4<br>B   |          |            | 131.9<br>F   |          |             |               |          |             | 225.5<br>F   |            |
| Approach LOS                                             |            | D           |          |            | Г            |          |             | F             |          |             | Г            |            |
| Timer - Assigned Phs                                     |            | 2           |          | 4          |              | 6        |             | 8             |          |             |              |            |
| Phs Duration (G+Y+Rc), s                                 |            | 23.6        |          | 34.1       |              | 19.1     |             | 34.1          |          |             |              |            |
| Change Period (Y+Rc), s                                  |            | 4.6         |          | * 5.4      |              | 5.4      |             | 5.4           |          |             |              |            |
| Max Green Setting (Gmax), s                              |            | 19.0        |          | * 24       |              | 13.7     |             | 28.7          |          |             |              |            |
| Max Q Clear Time (g_c+I1), s                             |            | 21.0        |          | 13.5       |              | 15.7     |             | 30.7          |          |             |              |            |
| Green Ext Time (p_c), s                                  |            | 0.0         |          | 0.7        |              | 0.0      |             | 0.0           |          |             |              |            |
| Intersection Summary                                     |            |             |          |            |              |          |             |               |          |             |              |            |
| HCM 6th Ctrl Delay                                       |            |             | 315.3    |            |              |          |             |               |          |             |              |            |
| HCM 6th LOS                                              |            |             | F        |            |              |          |             |               |          |             |              |            |

| €                            | •      | •       | •    | Ť       |       | -    | ţ        |
|------------------------------|--------|---------|------|---------|-------|------|----------|
| Movement WB                  | _ WBR  | WBL     | NBR  | NBT     | NBR   | SBL  | SBT      |
|                              | i i    | ሻ       | 7    | <b></b> | 7     | ሻ    | <b>↑</b> |
|                              |        | 453     | 32   | 725     | 922   | 32   | 340      |
| Future Volume (veh/h) 45     | 32     | 453     | 32   | 725     | 922   | 32   | 340      |
| Initial Q (Qb), veh          | ) (    | 0       | 0    | 0       | 0     | 0    | 0        |
| Ped-Bike Adj(A_pbT) 1.0      | 1.00   | 1.00    | 1.00 |         | 1.00  | 1.00 |          |
|                              | 1.00   | 1.00    | 1.00 | 1.00    | 1.00  | 1.00 | 1.00     |
| Work Zone On Approach N      | )      | ch No   |      | No      |       |      | No       |
| • • •                        |        | 1870    | 1870 | 1870    | 1870  | 1870 | 1870     |
| Adj Flow Rate, veh/h 47      | 7 9    | 477     | 9    | 763     | 971   | 34   | 358      |
|                              | 0.95   | 0.95    | 0.95 | 0.95    | 0.95  | 0.95 | 0.95     |
| Percent Heavy Veh, %         | 2 2    | 2       | 2    | 2       | 2     | 2    | 2        |
|                              | 9 462  | 519     | 462  | 813     | 689   | 49   | 1033     |
|                              | 9 0.29 | 0.29    | 0.29 | 0.43    | 0.43  | 0.03 | 0.55     |
| Sat Flow, veh/h 178          | 1 1585 | 1781    | 1585 | 1870    | 1585  | 1781 | 1870     |
|                              |        | 477     | 9    | 763     | 971   | 34   | 358      |
| Grp Sat Flow(s), veh/h/ln178 |        |         |      | 1870    | 1585  | 1781 | 1870     |
| •                            |        | 17.9    |      | 26.9    | 30.0  | 1.3  | 7.3      |
|                              |        | 17.9    |      | 26.9    | 30.0  | 1.3  | 7.3      |
| ) \ <u>\</u>                 |        | 1.00    | 1.00 | 20.7    | 1.00  | 1.00 | 7.0      |
| Lane Grp Cap(c), veh/h 51    |        |         | 462  | 813     | 689   | 49   | 1033     |
|                              |        | 0.92    |      | 0.94    | 1.41  | 0.69 | 0.35     |
| . ,                          |        | 774     | 689  | 813     | 689   | 310  | 1033     |
| ,                            |        | 1.00    | 1.00 | 1.00    | 1.00  | 1.00 | 1.00     |
|                              |        | 1.00    | 1.00 | 1.00    | 1.00  | 1.00 | 1.00     |
| Uniform Delay (d), s/veh 23. |        |         | 17.4 | 18.6    | 19.5  | 33.3 | 8.6      |
|                              |        | 9.3     | 0.0  | 18.1    | 19.5  | 6.1  | 0.0      |
| 3 1 7                        |        |         |      |         |       |      |          |
| Initial Q Delay(d3),s/veh 0. |        |         | 0.0  | 0.0     | 0.0   | 0.0  | 0.0      |
| %ile BackOfQ(50%),veh/lr8.   |        |         | 0.1  | 13.8    | 46.0  | 0.6  | 2.3      |
| Unsig. Movement Delay, s/v   |        |         | 17 / | 2/7     | 212.2 | 20.4 | 0.7      |
| 1 3 1 7                      |        | 32.9    |      |         | 212.2 | 39.4 | 8.6      |
|                              |        | С       | В    | D       | F     | D    | <u> </u> |
| • •                          |        | 486     |      | 1734    |       |      | 392      |
| 11                           |        |         | 1    | 135.0   |       |      | 11.3     |
| Approach LOS (               |        | С       |      | F       |       |      | В        |
| Timer - Assigned Phs         | 1 2    | 1       | 2    |         | 4     |      | 6        |
| Phs Duration (G+Y+Rc), s8.   | 1 36.2 | ), s8.1 | 36.2 |         | 24.7  |      | 44.3     |
| Change Period (Y+Rc), s 6.   | 2 6.2  | s 6.2   | 6.2  |         | 4.6   |      | 6.2      |
| Max Green Setting (Gmax)     |        |         | 30.0 |         | 30.0  |      | 30.0     |
| Max Q Clear Time (g_c+l13),  |        |         | 32.0 |         | 19.9  |      | 9.3      |
| Green Ext Time (p_c), s 0.   |        |         | 0.0  |         | 0.2   |      | 0.6      |
| ų — ,                        |        |         |      |         |       |      |          |
| Intersection Summary         |        |         |      | 07.4    |       |      |          |
| HCM 6th Ctrl Delay           |        |         |      | 97.4    |       |      |          |
| HCM 6th LOS                  |        |         |      | F       |       |      |          |
| Notes                        |        |         |      |         |       |      |          |

| Intersection                      |        |       |      |        |      |       |        |      |        |        |       |       |
|-----------------------------------|--------|-------|------|--------|------|-------|--------|------|--------|--------|-------|-------|
| Int Delay, s/veh                  | 2.8    |       |      |        |      |       |        |      |        |        |       |       |
|                                   |        | EDT   | EDD  | WDL    | MOT  | MDD   | NDI    | NDT  | NDD    | CDI    | CDT   | CDD   |
| Movement                          | EBL    | EBT   | EBR  | WBL    | WBT  | WBR   | NBL    | NBT  | NBR    | SBL    | SBT   | SBR   |
| Lane Configurations               |        | f)    | _    |        | ₽    |       |        | 4    |        |        | 4     |       |
| Traffic Vol, veh/h                | 30     | 425   | 5    | 25     | 515  | 30    | 5      | 5    | 20     | 35     | 10    | 30    |
| Future Vol, veh/h                 | 30     | 425   | 5    | 25     | 515  | 30    | 5      | 5    | 20     | 35     | 10    | 30    |
| Conflicting Peds, #/hr            | 0      | 0     | 0    | 0      | 0    | 0     | 0      | 0    | 0      | 0      | 0     | 0     |
| Sign Control                      | Free   | Free  | Free | Free   | Free | Free  | Stop   | Stop | Stop   | Stop   | Stop  | Stop  |
| RT Channelized                    | -      | -     | None | -      | -    | None  | -      | -    | None   | -      | -     | None  |
| Storage Length                    | 90     | -     | -    | 90     | -    | -     | -      | -    | -      | -      | -     | -     |
| Veh in Median Storage             | e,# -  | 0     | -    | -      | 0    | -     | -      | 0    | -      | -      | 0     | -     |
| Grade, %                          | -      | 0     | -    | -      | 0    | -     | -      | 0    | -      | -      | 0     | -     |
| Peak Hour Factor                  | 95     | 95    | 95   | 95     | 95   | 95    | 95     | 95   | 95     | 95     | 95    | 95    |
| Heavy Vehicles, %                 | 2      | 2     | 2    | 2      | 2    | 2     | 2      | 2    | 2      | 2      | 2     | 2     |
| Mvmt Flow                         | 32     | 447   | 5    | 26     | 542  | 32    | 5      | 5    | 21     | 37     | 11    | 32    |
|                                   |        |       |      |        |      |       |        |      |        |        |       |       |
| Major/Minor                       | Major1 |       |      | Major2 |      | 1     | Minor1 |      |        | Minor2 |       |       |
| Conflicting Flow All              | 574    | 0     | 0    | 452    | 0    | 0     | 1146   | 1140 | 450    | 1137   | 1126  | 558   |
| Stage 1                           | 5/4    | -     | U    | 452    | -    | -     | 514    | 514  | 430    | 610    | 610   | 330   |
| Stage 2                           | -      | -     | -    | -      | -    | -     | 632    | 626  | -      | 527    | 516   | -     |
| Critical Hdwy                     | 4.12   | -     | -    | 4.12   | -    | -     | 7.12   | 6.52 | 6.22   | 7.12   | 6.52  | 6.22  |
| Critical Hdwy Stg 1               | 4.12   | -     | -    | 4.12   | -    | -     | 6.12   | 5.52 | 0.22   | 6.12   | 5.52  | 0.22  |
|                                   | -      | -     | -    | -      | -    | -     | 6.12   | 5.52 | -      | 6.12   | 5.52  | -     |
| Critical Hdwy Stg 2               | 2.218  | -     | -    | 2.218  |      |       | 3.518  |      | 3.318  | 3.518  | 4.018 | 3.318 |
| Follow-up Hdwy Pot Cap-1 Maneuver | 999    | -     | -    |        | -    | -     | 176    | 201  | 609    | 179    | 205   | 529   |
| •                                 |        | -     | -    | 1109   | -    | -     |        |      |        |        |       |       |
| Stage 1                           | -      | -     | -    | -      | -    | -     | 543    | 535  | -      | 482    | 485   | -     |
| Stage 2                           | -      | -     | -    | -      | -    | -     | 468    | 477  | -      | 535    | 534   | -     |
| Platoon blocked, %                | 000    | -     | -    | 1100   | -    | -     | 150    | 100  | (00    | 1/0    | 104   | F20   |
| Mov Cap-1 Maneuver                | 999    | -     | -    | 1109   | -    | -     | 152    | 190  | 609    | 162    | 194   | 529   |
| Mov Cap-2 Maneuver                | -      | -     | -    | -      | -    | -     | 152    | 190  | -      | 162    | 194   | -     |
| Stage 1                           | -      | -     | -    | -      | -    | -     | 526    | 518  | -      | 467    | 474   | -     |
| Stage 2                           | -      | -     | -    | -      | -    | -     | 420    | 466  | -      | 495    | 517   | -     |
|                                   |        |       |      |        |      |       |        |      |        |        |       |       |
| Approach                          | EB     |       |      | WB     |      |       | NB     |      |        | SB     |       |       |
| HCM Control Delay, s              | 0.6    |       |      | 0.4    |      |       | 17.2   |      |        | 28.5   |       |       |
| HCM LOS                           |        |       |      |        |      |       | С      |      |        | D      |       |       |
|                                   |        |       |      |        |      |       |        |      |        |        |       |       |
| Minor Lane/Major Mvn              | nt I   | NBLn1 | EBL  | EBT    | EBR  | \\/DI | WBT    | WBR  | SRI n1 |        |       |       |
|                                   | It     |       |      | LDI    | LDK  | WBL   | VVDI   | WDK. |        |        |       |       |
| Capacity (veh/h)                  |        | 326   | 999  | -      | -    | 1109  | -      | -    | 231    |        |       |       |
| HCM Card at Data (2)              |        | 0.097 |      | -      | -    | 0.024 | -      |      | 0.342  |        |       |       |
| HCM Control Delay (s)             |        | 17.2  | 8.7  | -      | -    | 8.3   | -      | -    | 28.5   |        |       |       |
| HCM Lane LOS                      | ,      | С     | A    | -      | -    | A     | -      | -    | D      |        |       |       |
| HCM 95th %tile Q(veh              | )      | 0.3   | 0.1  | -      | -    | 0.1   | -      | -    | 1.4    |        |       |       |

|                              | ۶         | <b>→</b> | •         | •         | <b>←</b> | •     | 4         | <b>†</b>   | /         | <b>&gt;</b> | ļ          | 4         |
|------------------------------|-----------|----------|-----------|-----------|----------|-------|-----------|------------|-----------|-------------|------------|-----------|
| Movement                     | EBL       | EBT      | EBR       | WBL       | WBT      | WBR   | NBL       | NBT        | NBR       | SBL         | SBT        | SBR       |
| Lane Configurations          | ¥         | ĵ»       |           | ¥         | f)       |       | Ţ         | <b>↑</b> } |           | *           | <b>↑</b> ↑ |           |
| Traffic Volume (veh/h)       | 130       | 390      | 73        | 83        | 420      | 270   | 82        | 285        | 122       | 270         | 300        | 130       |
| Future Volume (veh/h)        | 130       | 390      | 73        | 83        | 420      | 270   | 82        | 285        | 122       | 270         | 300        | 130       |
| Initial Q (Qb), veh          | 0         | 0        | 0         | 0         | 0        | 0     | 0         | 0          | 0         | 0           | 0          | 0         |
| Ped-Bike Adj(A_pbT)          | 1.00      |          | 1.00      | 1.00      |          | 1.00  | 1.00      |            | 0.98      | 1.00        |            | 0.99      |
| Parking Bus, Adj             | 1.00      | 1.00     | 1.00      | 1.00      | 1.00     | 1.00  | 1.00      | 1.00       | 1.00      | 1.00        | 1.00       | 1.00      |
| Work Zone On Approach        |           | No       |           |           | No       |       |           | No         |           |             | No         |           |
| Adj Sat Flow, veh/h/ln       | 1870      | 1870     | 1870      | 1870      | 1870     | 1870  | 1870      | 1870       | 1870      | 1870        | 1870       | 1870      |
| Adj Flow Rate, veh/h         | 137       | 411      | 72        | 87        | 442      | 265   | 86        | 300        | 82        | 284         | 316        | 92        |
| Peak Hour Factor             | 0.95      | 0.95     | 0.95      | 0.95      | 0.95     | 0.95  | 0.95      | 0.95       | 0.95      | 0.95        | 0.95       | 0.95      |
| Percent Heavy Veh, %         | 2         | 2        | 2         | 2         | 2        | 2     | 2         | 2          | 2         | 2           | 2          | 2         |
| Cap, veh/h                   | 213       | 558      | 98        | 195       | 382      | 229   | 194       | 436        | 117       | 318         | 618        | 177       |
| Arrive On Green              | 0.12      | 0.36     | 0.36      | 0.11      | 0.35     | 0.35  | 0.11      | 0.16       | 0.16      | 0.18        | 0.23       | 0.23      |
| Sat Flow, veh/h              | 1781      | 1549     | 271       | 1781      | 1093     | 656   | 1781      | 2760       | 740       | 1781        | 2719       | 778       |
| Grp Volume(v), veh/h         | 137       | 0        | 483       | 87        | 0        | 707   | 86        | 191        | 191       | 284         | 205        | 203       |
| Grp Sat Flow(s), veh/h/ln    | 1781      | 0        | 1820      | 1781      | 0        | 1749  | 1781      | 1777       | 1723      | 1781        | 1777       | 1720      |
| Q Serve(g_s), s              | 6.5       | 0.0      | 20.5      | 4.1       | 0.0      | 31.0  | 4.0       | 9.0        | 9.3       | 13.8        | 8.9        | 9.2       |
| Cycle Q Clear(q_c), s        | 6.5       | 0.0      | 20.5      | 4.1       | 0.0      | 31.0  | 4.0       | 9.0        | 9.3       | 13.8        | 8.9        | 9.2       |
| Prop In Lane                 | 1.00      | 0.0      | 0.15      | 1.00      | 0.0      | 0.37  | 1.00      | 7.0        | 0.43      | 1.00        | 0.7        | 0.45      |
| Lane Grp Cap(c), veh/h       | 213       | 0        | 655       | 195       | 0        | 612   | 194       | 281        | 272       | 318         | 404        | 391       |
| V/C Ratio(X)                 | 0.64      | 0.00     | 0.74      | 0.45      | 0.00     | 1.16  | 0.44      | 0.68       | 0.70      | 0.89        | 0.51       | 0.52      |
| Avail Cap(c_a), veh/h        | 523       | 0.00     | 655       | 523       | 0.00     | 612   | 221       | 541        | 525       | 322         | 541        | 524       |
| HCM Platoon Ratio            | 1.00      | 1.00     | 1.00      | 1.00      | 1.00     | 1.00  | 1.00      | 1.00       | 1.00      | 1.00        | 1.00       | 1.00      |
| Upstream Filter(I)           | 1.00      | 0.00     | 1.00      | 1.00      | 0.00     | 1.00  | 1.00      | 1.00       | 1.00      | 1.00        | 1.00       | 1.00      |
| Uniform Delay (d), s/veh     | 37.2      | 0.00     | 24.7      | 36.9      | 0.00     | 28.8  | 37.0      | 35.2       | 35.3      | 35.6        | 29.9       | 30.0      |
| Incr Delay (d2), s/veh       | 3.2       | 0.0      | 4.4       | 1.6       | 0.0      | 87.6  | 1.6       | 2.9        | 3.3       | 25.4        | 1.0        | 1.1       |
| Initial Q Delay(d3),s/veh    | 0.0       | 0.0      | 0.0       | 0.0       | 0.0      | 0.0   | 0.0       | 0.0        | 0.0       | 0.0         | 0.0        | 0.0       |
| %ile BackOfQ(50%),veh/ln     | 2.9       | 0.0      | 8.8       | 1.8       | 0.0      | 26.8  | 1.7       | 3.9        | 3.9       | 8.0         | 3.8        | 3.8       |
| Unsig. Movement Delay, s/veh |           | 0.0      | 0.0       | 1.0       | 0.0      | 20.0  | 1.7       | 3.7        | 3.7       | 0.0         | 3.0        | 3.0       |
| LnGrp Delay(d),s/veh         | 40.4      | 0.0      | 29.1      | 38.5      | 0.0      | 116.4 | 38.5      | 38.1       | 38.6      | 61.0        | 30.9       | 31.1      |
| LnGrp LOS                    | 40.4<br>D | 0.0<br>A | 29.1<br>C | 30.3<br>D | 0.0<br>A | F     | 30.3<br>D | 30.1<br>D  | 30.0<br>D | 61.0<br>E   | 30.9<br>C  | 31.1<br>C |
|                              | D         |          | C         | U         |          | Г     | U         |            | U         |             |            |           |
| Approach Vol, veh/h          |           | 620      |           |           | 794      |       |           | 468        |           |             | 692        |           |
| Approach Delay, s/veh        |           | 31.6     |           |           | 107.8    |       |           | 38.4       |           |             | 43.3       |           |
| Approach LOS                 |           | С        |           |           | F        |       |           | D          |           |             | D          |           |
| Timer - Assigned Phs         | 1         | 2        | 3         | 4         | 5        | 6     | 7         | 8          |           |             |            |           |
| Phs Duration (G+Y+Rc), s     | 13.7      | 25.1     | 14.6      | 35.2      | 19.8     | 19.0  | 13.7      | 36.1       |           |             |            |           |
| Change Period (Y+Rc), s      | 4.0       | 5.0      | 4.0       | * 4.2     | 4.0      | 5.0   | 4.0       | * 4.2      |           |             |            |           |
| Max Green Setting (Gmax), s  | 11.0      | 27.0     | 26.0      | * 31      | 16.0     | 27.0  | 26.0      | * 31       |           |             |            |           |
| Max Q Clear Time (g_c+I1), s | 6.0       | 11.2     | 8.5       | 33.0      | 15.8     | 11.3  | 6.1       | 22.5       |           |             |            |           |
| Green Ext Time (p_c), s      | 0.1       | 2.1      | 0.3       | 0.0       | 0.0      | 1.8   | 0.2       | 1.8        |           |             |            |           |
| Intersection Summary         |           |          |           |           |          |       |           |            |           |             |            |           |
| HCM 6th Ctrl Delay           |           |          | 59.5      |           |          |       |           |            |           |             |            |           |
| HCM 6th LOS                  |           |          | 37.3<br>E |           |          |       |           |            |           |             |            |           |
| Notes                        |           |          |           |           |          |       |           |            |           |             |            |           |

<sup>\*</sup> HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

# ATTACHMENT C-5 MITIGATED CONDITIONS OUPUTS



| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1. Old Rodwood Tilly  | <u> </u> | 101111 |      |          |         |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|--------|------|----------|---------|------|
| Lane Configurations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | •        | •      | 1    | <b>†</b> | <b></b> | 4    |
| Traffic Volume (veh/h)         182         40         40         194         866         408           Future Volume (veh/h)         182         40         40         194         866         408           Initial Q (Qb), veh         0         0         0         0         0         0         0           Ped-Bike Adj(A_pbT)         1.00         1.00         1.00         1.00         1.00         1.00           Adj Sat Flow, veh/h/In         1870         1870         1870         1870         1870         1870           Adj Flow Rate, veh/h         192         42         42         204         912         429           Peak Hour Factor         0.95         0.95         0.95         0.95         0.95         0.95         0.95           Percent Heavy Veh, %         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <t< th=""><th>Movement</th><th>EBL</th><th>EBR</th><th>NBL</th><th>NBT</th><th>SBT</th><th>SBR</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Movement              | EBL      | EBR    | NBL  | NBT      | SBT     | SBR  |
| Traffic Volume (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |          |        |      |          |         |      |
| Future Volume (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |          |        |      |          |         |      |
| Initial Q (Qb), veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |          |        |      |          |         |      |
| Ped-Bike Adj(A_pbT)         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00 </td <td>` ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ` ,                   |          |        |      |          |         |      |
| Parking Bus, Adj         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |          |        |      |          |         |      |
| Work Zone On Approach         No         No         No         No           Adj Sat Flow, veh/h/ln         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |          |        |      | 1 00     | 1.00    |      |
| Adj Sat Flow, veh/h/ln         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |          | 1.00   | 1.00 |          |         | 1.00 |
| Adj Flow Rate, veh/h         192         42         42         204         912         429           Peak Hour Factor         0.95         0.95         0.95         0.95         0.95         0.95           Percent Heavy Veh, %         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2 <td></td> <td></td> <td>1970</td> <td>1970</td> <td></td> <td></td> <td>1970</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |          | 1970   | 1970 |          |         | 1970 |
| Peak Hour Factor         0.95         0.95         0.95         0.95         0.95         0.95           Percent Heavy Veh, %         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                     |          |        |      |          |         |      |
| Percent Heavy Veh, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |          |        |      |          |         |      |
| Cap, veh/h         255         227         76         1306         1078         913           Arrive On Green         0.14         0.14         0.04         0.70         0.58         0.58           Sat Flow, veh/h         1781         1585         1781         1870         1870         1585           Grp Volume(v), veh/h         192         42         42         204         912         429           Grp Sat Flow(s), veh/h/In         1781         1585         1781         1870         1870         1585           O Serve(g_s), s         5.9         1.3         1.3         2.1         22.9         8.9           Cycle Q Clear(g_c), s         5.9         1.3         1.3         2.1         22.9         8.9           Prop In Lane         1.00         1.00         1.00         1.00         1.00         1.00           Lane Grp Cap(c), veh/h         255         227         76         1306         1078         913           V/C Ratio(X)         0.75         0.18         0.55         0.16         0.85         0.47           Avail Cap(c_a), veh/h         565         503         157         1747         1434         1215           HCM Pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |          |        |      |          |         |      |
| Arrive On Green         0.14         0.14         0.04         0.70         0.58         0.58           Sat Flow, veh/h         1781         1585         1781         1870         1870         1585           Grp Volume(v), veh/h         192         42         42         204         912         429           Grp Sat Flow(s), veh/h/In         1781         1585         1781         1870         1870         1585           Q Serve(g_s), s         5.9         1.3         1.3         2.1         22.9         8.9           Cycle Q Clear(g_c), s         5.9         1.3         1.3         2.1         22.9         8.9           Prop In Lane         1.00         1.00         1.00         1.00         1.00         1.00           Lane Grp Cap(c), veh/h         255         227         76         1306         1078         913           V/C Ratio(X)         0.75         0.18         0.55         0.16         0.85         0.47           Avail Cap(c_a), veh/h         565         503         157         1747         1434         1215           HCM Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                     |          |        |      |          |         |      |
| Sat Flow, veh/h         1781         1585         1781         1870         1870         1585           Grp Volume(v), veh/h         192         42         42         204         912         429           Grp Sat Flow(s), veh/h/ln         1781         1585         1781         1870         1870         1585           Q Serve(g_s), s         5.9         1.3         1.3         2.1         22.9         8.9           Cycle Q Clear(g_c), s         5.9         1.3         1.3         2.1         22.9         8.9           Prop In Lane         1.00         1.00         1.00         1.00         1.00         1.00           Lane Grp Cap(c), veh/h         255         227         76         1306         1078         913           V/C Ratio(X)         0.75         0.18         0.55         0.16         0.85         0.47           Avail Cap(c_a), veh/h         565         503         157         1747         1434         1215           HCM Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |          |        |      |          |         |      |
| Grp Volume(v), veh/h         192         42         42         204         912         429           Grp Sat Flow(s),veh/h/ln         1781         1585         1781         1870         1870         1585           Q Serve(g_s), s         5.9         1.3         1.3         2.1         22.9         8.9           Cycle Q Clear(g_c), s         5.9         1.3         1.3         2.1         22.9         8.9           Prop In Lane         1.00         1.00         1.00         1.00         1.00         1.00           Lane Grp Cap(c), veh/h         255         227         76         1306         1078         913           V/C Ratio(X)         0.75         0.18         0.55         0.16         0.85         0.47           Avail Cap(c_a), veh/h         565         503         157         1747         1434         1215           HCM Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |          |        |      |          |         |      |
| Grp Sat Flow(s),veh/h/ln         1781         1585         1781         1870         1870         1585           Q Serve(g_s), s         5.9         1.3         1.3         2.1         22.9         8.9           Cycle Q Clear(g_c), s         5.9         1.3         1.3         2.1         22.9         8.9           Prop In Lane         1.00         1.00         1.00         1.00         1.00           Lane Grp Cap(c), veh/h         255         227         76         1306         1078         913           V/C Ratio(X)         0.75         0.18         0.55         0.16         0.85         0.47           Avail Cap(c_a), veh/h         565         503         157         1747         1434         1215           HCM Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |          |        |      |          |         |      |
| Q Serve(g_s), s 5.9 1.3 1.3 2.1 22.9 8.9 Cycle Q Clear(g_c), s 5.9 1.3 1.3 2.1 22.9 8.9 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 Lane Grp Cap(c), veh/h 255 227 76 1306 1078 913 V/C Ratio(X) 0.75 0.18 0.55 0.16 0.85 0.47 Avail Cap(c_a), veh/h 565 503 157 1747 1434 1215 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |          |        |      |          |         |      |
| Cycle Q Člear(g_c), s         5.9         1.3         1.3         2.1         22.9         8.9           Prop In Lane         1.00         1.00         1.00         1.00           Lane Grp Cap(c), veh/h         255         227         76         1306         1078         913           V/C Ratio(X)         0.75         0.18         0.55         0.16         0.85         0.47           Avail Cap(c_a), veh/h         565         503         157         1747         1434         1215           HCM Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00           Upstream Filter(I)         1.00         1.00         1.00         1.00         1.00         1.00         1.00           Uniform Delay (d), s/veh         23.3         21.4         26.6         2.9         9.9         7.0           Incr Delay (d2), s/veh         4.5         0.4         6.1         0.1         3.7         0.4           Initial Q Delay(d3), s/veh         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |          |        |      |          |         |      |
| Prop In Lane         1.00         1.00         1.00         1.00           Lane Grp Cap(c), veh/h         255         227         76         1306         1078         913           V/C Ratio(X)         0.75         0.18         0.55         0.16         0.85         0.47           Avail Cap(c_a), veh/h         565         503         157         1747         1434         1215           HCM Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00           Upstream Filter(I)         1.00         1.00         1.00         1.00         1.00         1.00         1.00           Uniform Delay (d), s/veh         23.3         21.4         26.6         2.9         9.9         7.0           Incr Delay (d2), s/veh         4.5         0.4         6.1         0.1         3.7         0.4           Initial Q Delay(d3), s/veh         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q Serve(g_s), s       |          |        |      |          | 22.9    | 8.9  |
| Lane Grp Cap(c), veh/h         255         227         76         1306         1078         913           V/C Ratio(X)         0.75         0.18         0.55         0.16         0.85         0.47           Avail Cap(c_a), veh/h         565         503         157         1747         1434         1215           HCM Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00           Upstream Filter(I)         1.00         1.00         1.00         1.00         1.00         1.00           Uniform Delay (d), s/veh         23.3         21.4         26.6         2.9         9.9         7.0           Incr Delay (d2), s/veh         4.5         0.4         6.1         0.1         3.7         0.4           Initial O Delay(d3), s/veh         0.0         0.0         0.0         0.0         0.0         0.0         0.0           Wile BackOfQ(50%), veh/ln         2.6         1.3         0.6         0.4         6.7         1.9           Unsig. Movement Delay, s/veh         27.8         21.8         32.8         3.0         13.7         7.4           LnGrp LOS         C         C         C         A         B         A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cycle Q Clear(g_c), s | 5.9      | 1.3    | 1.3  | 2.1      | 22.9    | 8.9  |
| Lane Grp Cap(c), veh/h       255       227       76       1306       1078       913         V/C Ratio(X)       0.75       0.18       0.55       0.16       0.85       0.47         Avail Cap(c_a), veh/h       565       503       157       1747       1434       1215         HCM Platoon Ratio       1.00       1.00       1.00       1.00       1.00       1.00         Upstream Filter(I)       1.00       1.00       1.00       1.00       1.00       1.00         Uniform Delay (d), s/veh       23.3       21.4       26.6       2.9       9.9       7.0         Incr Delay (d2), s/veh       4.5       0.4       6.1       0.1       3.7       0.4         Initial Q Delay(d3),s/veh       0.0       0.0       0.0       0.0       0.0       0.0       0.0         Wile BackOfQ(50%),veh/ln       2.6       1.3       0.6       0.4       6.7       1.9         Unsig. Movement Delay, s/veh       27.8       21.8       32.8       3.0       13.7       7.4         LnGrp LOS       C       C       C       A       B       A         Approach Vol, veh/h       234       246       1341       1341      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Prop In Lane          | 1.00     | 1.00   | 1.00 |          |         | 1.00 |
| V/C Ratio(X)         0.75         0.18         0.55         0.16         0.85         0.47           Avail Cap(c_a), veh/h         565         503         157         1747         1434         1215           HCM Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00           Upstream Filter(I)         1.00         1.00         1.00         1.00         1.00         1.00           Uniform Delay (d), s/veh         23.3         21.4         26.6         2.9         9.9         7.0           Incr Delay (d2), s/veh         4.5         0.4         6.1         0.1         3.7         0.4           Initial Q Delay(d3), s/veh         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       | 255      | 227    | 76   | 1306     | 1078    | 913  |
| Avail Cap(c_a), veh/h HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |          |        |      | 0.16     | 0.85    | 0.47 |
| HCM Platoon Ratio  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00  1.00 | ` ,                   |          |        |      |          |         |      |
| Upstream Filter(I)         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |          |        |      |          |         |      |
| Uniform Delay (d), s/veh 23.3 21.4 26.6 2.9 9.9 7.0 Incr Delay (d2), s/veh 4.5 0.4 6.1 0.1 3.7 0.4 Initial Q Delay(d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |          |        |      |          |         |      |
| Incr Delay (d2), s/veh         4.5         0.4         6.1         0.1         3.7         0.4           Initial Q Delay(d3),s/veh         0.0         0.0         0.0         0.0         0.0         0.0         0.0           %ile BackOfQ(50%),veh/ln         2.6         1.3         0.6         0.4         6.7         1.9           Unsig. Movement Delay, s/veh         27.8         21.8         32.8         3.0         13.7         7.4           LnGrp Delay(d),s/veh         234         246         1341         13.7         7.4           Approach Vol, veh/h         234         246         1341         1341         1341           Approach LOS         C         A         B         B         11.7         45         6         9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |          |        |      |          |         |      |
| Initial Q Delay(d3),s/veh       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |          |        |      |          |         |      |
| %ile BackOfQ(50%),veh/ln       2.6       1.3       0.6       0.4       6.7       1.9         Unsig. Movement Delay, s/veh       27.8       21.8       32.8       3.0       13.7       7.4         LnGrp Delay(d),s/veh       27.8       21.8       32.8       3.0       13.7       7.4         LnGrp LOS       C       C       C       A       B       A         Approach Vol, veh/h       234       246       1341       1341         Approach Delay, s/veh       26.7       8.0       11.7         Approach LOS       C       A       B       B         Timer - Assigned Phs       2       4       5       6         Phs Duration (G+Y+Rc), s       44.1       12.6       6.9       37.2         Change Period (Y+Rc), s       4.5       4.5       4.5       4.5         Max Green Setting (Gmax), s       53.0       18.0       5.0       43.5         Max Q Clear Time (g_c+l1), s       4.1       7.9       3.3       24.9         Green Ext Time (p_c), s       1.2       0.5       0.0       7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |          |        |      |          |         |      |
| Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 27.8 21.8 32.8 3.0 13.7 7.4 LnGrp LOS C C C A B A Approach Vol, veh/h 234 246 1341 Approach Delay, s/veh 26.7 8.0 11.7 Approach LOS C A B  Timer - Assigned Phs 2 4 5 6 Phs Duration (G+Y+Rc), s 44.1 12.6 6.9 37.2 Change Period (Y+Rc), s 4.5 4.5 4.5 4.5 Max Green Setting (Gmax), s 53.0 18.0 5.0 43.5 Max Q Clear Time (g_c+I1), s 4.1 7.9 3.3 24.9 Green Ext Time (p_c), s 1.2 0.5 0.0 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |          |        |      |          |         |      |
| LnGrp Delay(d),s/veh         27.8         21.8         32.8         3.0         13.7         7.4           LnGrp LOS         C         C         C         C         A         B         A           Approach Vol, veh/h         234         246         1341           Approach Delay, s/veh         26.7         8.0         11.7           Approach LOS         C         A         B           Timer - Assigned Phs         2         4         5         6           Phs Duration (G+Y+Rc), s         44.1         12.6         6.9         37.2           Change Period (Y+Rc), s         4.5         4.5         4.5         4.5           Max Green Setting (Gmax), s         53.0         18.0         5.0         43.5           Max Q Clear Time (g_c+I1), s         4.1         7.9         3.3         24.9           Green Ext Time (p_c), s         1.2         0.5         0.0         7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |          | 1.3    | 0.0  | 0.4      | 0.7     | 1.7  |
| LnGrp LOS         C         C         C         C         A         B         A           Approach Vol, veh/h         234         246         1341           Approach Delay, s/veh         26.7         8.0         11.7           Approach LOS         C         A         B           Timer - Assigned Phs         2         4         5         6           Phs Duration (G+Y+Rc), s         44.1         12.6         6.9         37.2           Change Period (Y+Rc), s         4.5         4.5         4.5         4.5           Max Green Setting (Gmax), s         53.0         18.0         5.0         43.5           Max Q Clear Time (g_c+l1), s         4.1         7.9         3.3         24.9           Green Ext Time (p_c), s         1.2         0.5         0.0         7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |          | 21.0   | 22.0 | 2.0      | 107     | 7.1  |
| Approach Vol, veh/h       234       246       1341         Approach Delay, s/veh       26.7       8.0       11.7         Approach LOS       C       A       B         Timer - Assigned Phs       2       4       5       6         Phs Duration (G+Y+Rc), s       44.1       12.6       6.9       37.2         Change Period (Y+Rc), s       4.5       4.5       4.5       4.5         Max Green Setting (Gmax), s       53.0       18.0       5.0       43.5         Max Q Clear Time (g_c+l1), s       4.1       7.9       3.3       24.9         Green Ext Time (p_c), s       1.2       0.5       0.0       7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |          |        |      |          |         |      |
| Approach Delay, s/veh       26.7       8.0       11.7         Approach LOS       C       A       B         Timer - Assigned Phs       2       4       5       6         Phs Duration (G+Y+Rc), s       44.1       12.6       6.9       37.2         Change Period (Y+Rc), s       4.5       4.5       4.5       4.5         Max Green Setting (Gmax), s       53.0       18.0       5.0       43.5         Max Q Clear Time (g_c+l1), s       4.1       7.9       3.3       24.9         Green Ext Time (p_c), s       1.2       0.5       0.0       7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |          | U      | C    |          |         | А    |
| Approach LOS         C         A         B           Timer - Assigned Phs         2         4         5         6           Phs Duration (G+Y+Rc), s         44.1         12.6         6.9         37.2           Change Period (Y+Rc), s         4.5         4.5         4.5         4.5           Max Green Setting (Gmax), s         53.0         18.0         5.0         43.5           Max Q Clear Time (g_c+l1), s         4.1         7.9         3.3         24.9           Green Ext Time (p_c), s         1.2         0.5         0.0         7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • •                   |          |        |      |          |         |      |
| Timer - Assigned Phs         2         4         5         6           Phs Duration (G+Y+Rc), s         44.1         12.6         6.9         37.2           Change Period (Y+Rc), s         4.5         4.5         4.5         4.5           Max Green Setting (Gmax), s         53.0         18.0         5.0         43.5           Max Q Clear Time (g_c+l1), s         4.1         7.9         3.3         24.9           Green Ext Time (p_c), s         1.2         0.5         0.0         7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _ 1 1                 |          |        |      |          |         |      |
| Phs Duration (G+Y+Rc), s       44.1       12.6       6.9       37.2         Change Period (Y+Rc), s       4.5       4.5       4.5       4.5         Max Green Setting (Gmax), s       53.0       18.0       5.0       43.5         Max Q Clear Time (g_c+l1), s       4.1       7.9       3.3       24.9         Green Ext Time (p_c), s       1.2       0.5       0.0       7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Approach LOS          | С        |        |      | Α        | В       |      |
| Phs Duration (G+Y+Rc), s       44.1       12.6       6.9       37.2         Change Period (Y+Rc), s       4.5       4.5       4.5       4.5         Max Green Setting (Gmax), s       53.0       18.0       5.0       43.5         Max Q Clear Time (g_c+l1), s       4.1       7.9       3.3       24.9         Green Ext Time (p_c), s       1.2       0.5       0.0       7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Timer - Assigned Phs  |          | 2      |      | 4        | 5       | 6    |
| Change Period (Y+Rc), s       4.5       4.5       4.5       4.5         Max Green Setting (Gmax), s       53.0       18.0       5.0       43.5         Max Q Clear Time (g_c+l1), s       4.1       7.9       3.3       24.9         Green Ext Time (p_c), s       1.2       0.5       0.0       7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |          |        |      |          |         |      |
| Max Green Setting (Gmax), s       53.0       18.0       5.0       43.5         Max Q Clear Time (g_c+I1), s       4.1       7.9       3.3       24.9         Green Ext Time (p_c), s       1.2       0.5       0.0       7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |          |        |      |          |         |      |
| Max Q Clear Time (g_c+l1), s       4.1       7.9       3.3       24.9         Green Ext Time (p_c), s       1.2       0.5       0.0       7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |          |        |      |          |         |      |
| Green Ext Time (p_c), s 1.2 0.5 0.0 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |          |        |      |          |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |          |        |      |          |         |      |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · ·                   |          | 1.2    |      | 0.5      | 0.0     | 7.0  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |          |        |      |          |         |      |
| HCM 6th Ctrl Delay 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |          |        | 13.1 |          |         |      |
| HCM 6th LOS B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HCM 6th LOS           |          |        | В    |          |         |      |

| Intersection                                                                                                                                                                                 |                                                                               |                                                                                            |                                                                                             |                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Intersection Delay, s/veh                                                                                                                                                                    | 9.7                                                                           |                                                                                            |                                                                                             |                                                       |
| Intersection LOS                                                                                                                                                                             | А                                                                             |                                                                                            |                                                                                             |                                                       |
| Approach                                                                                                                                                                                     | EB                                                                            | NB                                                                                         |                                                                                             | SB                                                    |
| Entry Lanes                                                                                                                                                                                  | 1                                                                             | 1                                                                                          |                                                                                             | 2                                                     |
| Conflicting Circle Lanes                                                                                                                                                                     | 1                                                                             | 1                                                                                          |                                                                                             | 1                                                     |
| Adj Approach Flow, veh/h                                                                                                                                                                     | 234                                                                           | 246                                                                                        |                                                                                             | 1341                                                  |
| Demand Flow Rate, veh/h                                                                                                                                                                      | 239                                                                           | 251                                                                                        |                                                                                             | 1368                                                  |
| Vehicles Circulating, veh/h                                                                                                                                                                  | 930                                                                           | 196                                                                                        |                                                                                             | 43                                                    |
| Vehicles Exiting, veh/h                                                                                                                                                                      | 481                                                                           | 973                                                                                        |                                                                                             | 404                                                   |
| Ped Vol Crossing Leg, #/h                                                                                                                                                                    | 0                                                                             | 0                                                                                          |                                                                                             | 0                                                     |
| Ped Cap Adj                                                                                                                                                                                  | 1.000                                                                         | 1.000                                                                                      |                                                                                             | 1.000                                                 |
| Approach Delay, s/veh                                                                                                                                                                        | 14.6                                                                          | 5.3                                                                                        |                                                                                             | 9.7                                                   |
| Approach LOS                                                                                                                                                                                 | В                                                                             | А                                                                                          |                                                                                             | Α                                                     |
| Lane                                                                                                                                                                                         | Left                                                                          | Left                                                                                       | Left                                                                                        | Right                                                 |
|                                                                                                                                                                                              |                                                                               |                                                                                            | Loit                                                                                        |                                                       |
| Designated Moves                                                                                                                                                                             | LR                                                                            | LT                                                                                         | LT                                                                                          | R                                                     |
| Designated Moves Assumed Moves                                                                                                                                                               | LR<br>LR                                                                      |                                                                                            |                                                                                             | R<br>R                                                |
|                                                                                                                                                                                              |                                                                               | LT                                                                                         | LT                                                                                          |                                                       |
| Assumed Moves                                                                                                                                                                                |                                                                               | LT                                                                                         | LT                                                                                          |                                                       |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s                                                                                                                                  | LR                                                                            | LT<br>LT                                                                                   | LT<br>LT                                                                                    | R                                                     |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s                                                                                                              | LR<br>1.000<br>2.609<br>4.976                                                 | LT<br>LT<br>1.000<br>2.609<br>4.976                                                        | LT<br>LT<br>0.680<br>2.535<br>4.544                                                         | R<br>0.320<br>2.535<br>4.544                          |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h                                                                                            | LR<br>1.000<br>2.609<br>4.976<br>239                                          | LT<br>LT<br>1.000<br>2.609<br>4.976<br>251                                                 | LT<br>LT<br>0.680<br>2.535<br>4.544<br>930                                                  | R 0.320 2.535 4.544 438                               |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h                                                                      | LR  1.000 2.609 4.976 239 534                                                 | LT<br>LT<br>1.000<br>2.609<br>4.976                                                        | LT<br>LT<br>0.680<br>2.535<br>4.544<br>930<br>1366                                          | R<br>0.320<br>2.535<br>4.544                          |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor                                                  | LR  1.000 2.609 4.976 239 534 0.979                                           | LT<br>LT<br>1.000<br>2.609<br>4.976<br>251                                                 | LT<br>LT<br>0.680<br>2.535<br>4.544<br>930                                                  | R 0.320 2.535 4.544 438 1366 0.979                    |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h                                | LR  1.000 2.609 4.976 239 534 0.979 234                                       | LT<br>LT<br>1.000<br>2.609<br>4.976<br>251<br>1130<br>0.980<br>246                         | 0.680<br>2.535<br>4.544<br>930<br>1366<br>0.980<br>912                                      | R 0.320 2.535 4.544 438 1366 0.979 429                |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h               | LR  1.000 2.609 4.976 239 534 0.979 234 523                                   | LT<br>LT<br>1.000<br>2.609<br>4.976<br>251<br>1130<br>0.980                                | 0.680<br>2.535<br>4.544<br>930<br>1366<br>0.980<br>912<br>1339                              | R 0.320 2.535 4.544 438 1366 0.979 429 1338           |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio     | LR  1.000 2.609 4.976 239 534 0.979 234 523 0.447                             | LT<br>LT<br>1.000<br>2.609<br>4.976<br>251<br>1130<br>0.980<br>246<br>1107<br>0.222        | 0.680<br>2.535<br>4.544<br>930<br>1366<br>0.980<br>912<br>1339<br>0.681                     | R 0.320 2.535 4.544 438 1366 0.979 429 1338 0.321     |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h V/C Ratio Control Delay, s/veh | 1.000<br>2.609<br>4.976<br>239<br>534<br>0.979<br>234<br>523<br>0.447<br>14.6 | LT<br>LT<br>1.000<br>2.609<br>4.976<br>251<br>1130<br>0.980<br>246<br>1107<br>0.222<br>5.3 | LT<br>LT<br>0.680<br>2.535<br>4.544<br>930<br>1366<br>0.980<br>912<br>1339<br>0.681<br>11.6 | R 0.320 2.535 4.544 438 1366 0.979 429 1338 0.321 5.6 |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio     | LR  1.000 2.609 4.976 239 534 0.979 234 523 0.447                             | LT<br>LT<br>1.000<br>2.609<br>4.976<br>251<br>1130<br>0.980<br>246<br>1107<br>0.222        | 0.680<br>2.535<br>4.544<br>930<br>1366<br>0.980<br>912<br>1339<br>0.681                     | R 0.320 2.535 4.544 438 1366 0.979 429 1338 0.321     |

|                              | ۶     | <b>→</b> | *     | •      | <b>←</b> | 4     | 1     | <b>†</b> | <i>&gt;</i> | <b>/</b> | <b>†</b> | 1    |
|------------------------------|-------|----------|-------|--------|----------|-------|-------|----------|-------------|----------|----------|------|
| Movement                     | EBL   | EBT      | EBR   | WBL    | WBT      | WBR   | NBL   | NBT      | NBR         | SBL      | SBT      | SBR  |
| Lane Configurations          | ሻ     | <b>†</b> | 7     | Ť      | <b>₽</b> |       | ሻ     | <b>↑</b> | 7           |          | 4        |      |
| Traffic Volume (veh/h)       | 81    | 341      | 210   | 232    | 623      | 30    | 720   | 181      | 161         | 40       | 282      | 266  |
| Future Volume (veh/h)        | 81    | 341      | 210   | 232    | 623      | 30    | 720   | 181      | 161         | 40       | 282      | 266  |
| Initial Q (Qb), veh          | 0     | 0        | 0     | 0      | 0        | 0     | 0     | 0        | 0           | 0        | 0        | 0    |
| Ped-Bike Adj(A_pbT)          | 1.00  |          | 0.99  | 1.00   |          | 0.99  | 1.00  |          | 0.99        | 1.00     |          | 0.99 |
| Parking Bus, Adj             | 1.00  | 1.00     | 1.00  | 1.00   | 1.00     | 1.00  | 1.00  | 1.00     | 1.00        | 1.00     | 1.00     | 1.00 |
| Work Zone On Approach        |       | No       |       |        | No       |       |       | No       |             |          | No       |      |
| Adj Sat Flow, veh/h/ln       | 1870  | 1870     | 1870  | 1870   | 1870     | 1870  | 1870  | 1870     | 1870        | 1870     | 1870     | 1870 |
| Adj Flow Rate, veh/h         | 85    | 359      | 41    | 244    | 656      | 31    | 758   | 191      | 35          | 42       | 297      | 255  |
| Peak Hour Factor             | 0.95  | 0.95     | 0.95  | 0.95   | 0.95     | 0.95  | 0.95  | 0.95     | 0.95        | 0.95     | 0.95     | 0.95 |
| Percent Heavy Veh, %         | 2     | 2        | 2     | 2      | 2        | 2     | 2     | 2        | 2           | 2        | 2        | 2    |
| Cap, veh/h                   | 69    | 421      | 353   | 140    | 465      | 22    | 514   | 540      | 454         | 33       | 231      | 199  |
| Arrive On Green              | 0.04  | 0.22     | 0.22  | 0.08   | 0.26     | 0.26  | 0.29  | 0.29     | 0.29        | 0.27     | 0.27     | 0.27 |
| Sat Flow, veh/h              | 1781  | 1870     | 1567  | 1781   | 1771     | 84    | 1781  | 1870     | 1571        | 122      | 863      | 741  |
| Grp Volume(v), veh/h         | 85    | 359      | 41    | 244    | 0        | 687   | 758   | 191      | 35          | 594      | 0        | 0    |
| Grp Sat Flow(s),veh/h/ln     | 1781  | 1870     | 1567  | 1781   | 0        | 1854  | 1781  | 1870     | 1571        | 1726     | 0        | 0    |
| Q Serve(g_s), s              | 6.2   | 29.5     | 3.3   | 12.6   | 0.0      | 42.0  | 46.2  | 12.9     | 2.6         | 42.9     | 0.0      | 0.0  |
| Cycle Q Clear(g_c), s        | 6.2   | 29.5     | 3.3   | 12.6   | 0.0      | 42.0  | 46.2  | 12.9     | 2.6         | 42.9     | 0.0      | 0.0  |
| Prop In Lane                 | 1.00  |          | 1.00  | 1.00   |          | 0.05  | 1.00  |          | 1.00        | 0.07     | _        | 0.43 |
| Lane Grp Cap(c), veh/h       | 69    | 421      | 353   | 140    | 0        | 487   | 514   | 540      | 454         | 463      | 0        | 0    |
| V/C Ratio(X)                 | 1.23  | 0.85     | 0.12  | 1.74   | 0.00     | 1.41  | 1.47  | 0.35     | 0.08        | 1.28     | 0.00     | 0.00 |
| Avail Cap(c_a), veh/h        | 69    | 421      | 353   | 140    | 0        | 487   | 514   | 540      | 454         | 463      | 0        | 0    |
| HCM Platoon Ratio            | 1.00  | 1.00     | 1.00  | 1.00   | 1.00     | 1.00  | 1.00  | 1.00     | 1.00        | 1.00     | 1.00     | 1.00 |
| Upstream Filter(I)           | 1.00  | 1.00     | 1.00  | 1.00   | 0.00     | 1.00  | 1.00  | 1.00     | 1.00        | 1.00     | 0.00     | 0.00 |
| Uniform Delay (d), s/veh     | 76.9  | 59.5     | 49.3  | 73.7   | 0.0      | 59.0  | 56.9  | 45.1     | 41.4        | 58.6     | 0.0      | 0.0  |
| Incr Delay (d2), s/veh       | 183.1 | 14.8     | 0.1   | 360.6  | 0.0      | 197.0 | 223.5 | 0.1      | 0.0         | 143.3    | 0.0      | 0.0  |
| Initial Q Delay(d3),s/veh    | 0.0   | 0.0      | 0.0   | 0.0    | 0.0      | 0.0   | 0.0   | 0.0      | 0.0         | 0.0      | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln     | 6.3   | 15.5     | 1.3   | 19.8   | 0.0      | 46.1  | 52.2  | 6.0      | 1.0         | 37.0     | 0.0      | 0.0  |
| Unsig. Movement Delay, s/veh |       | 74.0     | 40.4  | 40.4.0 | 0.0      | 25/ 0 | 200.4 | 45.0     | 41.4        | 201.0    | 0.0      | 0.0  |
| LnGrp Delay(d),s/veh         | 260.0 | 74.3     | 49.4  | 434.3  | 0.0      | 256.0 | 280.4 | 45.2     | 41.4        | 201.8    | 0.0      | 0.0  |
| LnGrp LOS                    | F     | E        | D     | F      | A        | F     | F     | D        | D           | F        | A        | A    |
| Approach Vol, veh/h          |       | 485      |       |        | 931      |       |       | 984      |             |          | 594      |      |
| Approach Delay, s/veh        |       | 104.7    |       |        | 302.7    |       |       | 226.3    |             |          | 201.8    |      |
| Approach LOS                 |       | F        |       |        | F        |       |       | F        |             |          | F        |      |
| Timer - Assigned Phs         | 1     | 2        |       | 4      | 5        | 6     |       | 8        |             |          |          |      |
| Phs Duration (G+Y+Rc), s     | 18.0  | 42.0     |       | 48.0   | 12.0     | 48.0  |       | 52.0     |             |          |          |      |
| Change Period (Y+Rc), s      | 5.4   | 6.0      |       | 5.1    | 5.8      | 6.0   |       | 5.8      |             |          |          |      |
| Max Green Setting (Gmax), s  | 12.6  | 36.0     |       | 42.9   | 6.2      | 42.0  |       | 46.2     |             |          |          |      |
| Max Q Clear Time (g_c+l1), s | 14.6  | 31.5     |       | 44.9   | 8.2      | 44.0  |       | 48.2     |             |          |          |      |
| Green Ext Time (p_c), s      | 0.0   | 0.6      |       | 0.0    | 0.0      | 0.0   |       | 0.0      |             |          |          |      |
| Intersection Summary         |       |          |       |        |          |       |       |          |             |          |          |      |
| HCM 6th Ctrl Delay           |       |          | 225.5 |        |          |       |       |          |             |          |          |      |
| HCM 6th LOS                  |       |          | F     |        |          |       |       |          |             |          |          |      |
| Notos                        |       |          |       |        |          |       |       |          |             |          |          |      |

User approved pedestrian interval to be less than phase max green.

|                              | •        | <b>→</b> | •    | •    | <b>←</b> | •    | •        | †        | <i>&gt;</i> | <b>/</b> | <b>+</b> | ✓     |
|------------------------------|----------|----------|------|------|----------|------|----------|----------|-------------|----------|----------|-------|
| Movement                     | EBL      | EBT      | EBR  | WBL  | WBT      | WBR  | NBL      | NBT      | NBR         | SBL      | SBT      | SBR   |
| Lane Configurations          |          | 4        |      |      | 4        |      | Ţ        | <b>†</b> | 7           | ¥        | ĵ»       |       |
| Traffic Volume (veh/h)       | 60       | 20       | 30   | 182  | 20       | 20   | 20       | 437      | 110         | 30       | 1108     | 30    |
| Future Volume (veh/h)        | 60       | 20       | 30   | 182  | 20       | 20   | 20       | 437      | 110         | 30       | 1108     | 30    |
| Initial Q (Qb), veh          | 0        | 0        | 0    | 0    | 0        | 0    | 0        | 0        | 0           | 0        | 0        | 0     |
| Ped-Bike Adj(A_pbT)          | 1.00     |          | 1.00 | 1.00 |          | 1.00 | 1.00     |          | 1.00        | 1.00     |          | 1.00  |
| Parking Bus, Adj             | 1.00     | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00     | 1.00        | 1.00     | 1.00     | 1.00  |
| Work Zone On Approach        |          | No       |      |      | No       |      |          | No       |             |          | No       |       |
| Adj Sat Flow, veh/h/ln       | 1870     | 1870     | 1870 | 1870 | 1870     | 1870 | 1870     | 1870     | 1870        | 1870     | 1870     | 1870  |
| Adj Flow Rate, veh/h         | 63       | 21       | 32   | 192  | 21       | 21   | 21       | 460      | 116         | 32       | 1166     | 32    |
| Peak Hour Factor             | 0.95     | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 | 0.95     | 0.95     | 0.95        | 0.95     | 0.95     | 0.95  |
| Percent Heavy Veh, %         | 2        | 2        | 2    | 2    | 2        | 2    | 2        | 2        | 2           | 2        | 2        | 2     |
| Cap, veh/h                   | 77       | 26       | 39   | 207  | 23       | 23   | 36       | 1147     | 972         | 47       | 1122     | 31    |
| Arrive On Green              | 0.08     | 0.08     | 0.08 | 0.14 | 0.14     | 0.14 | 0.02     | 0.61     | 0.61        | 0.03     | 0.62     | 0.62  |
| Sat Flow, veh/h              | 943      | 314      | 479  | 1452 | 159      | 159  | 1781     | 1870     | 1585        | 1781     | 1812     | 50    |
| Grp Volume(v), veh/h         | 116      | 0        | 0    | 234  | 0        | 0    | 21       | 460      | 116         | 32       | 0        | 1198  |
| Grp Sat Flow(s),veh/h/ln     | 1737     | 0        | 0    | 1769 | 0        | 0    | 1781     | 1870     | 1585        | 1781     | 0        | 1861  |
| Q Serve(g_s), s              | 8.7      | 0.0      | 0.0  | 17.3 | 0.0      | 0.0  | 1.5      | 16.7     | 4.0         | 2.4      | 0.0      | 82.1  |
| Cycle Q Clear(g_c), s        | 8.7      | 0.0      | 0.0  | 17.3 | 0.0      | 0.0  | 1.5      | 16.7     | 4.0         | 2.4      | 0.0      | 82.1  |
| Prop In Lane                 | 0.54     |          | 0.28 | 0.82 |          | 0.09 | 1.00     |          | 1.00        | 1.00     |          | 0.03  |
| Lane Grp Cap(c), veh/h       | 143      | 0        | 0    | 252  | 0        | 0    | 36       | 1147     | 972         | 47       | 0        | 1153  |
| V/C Ratio(X)                 | 0.81     | 0.00     | 0.00 | 0.93 | 0.00     | 0.00 | 0.58     | 0.40     | 0.12        | 0.69     | 0.00     | 1.04  |
| Avail Cap(c_a), veh/h        | 255      | 0        | 0    | 252  | 0        | 0    | 155      | 1158     | 982         | 155      | 0        | 1153  |
| HCM Platoon Ratio            | 1.00     | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00     | 1.00        | 1.00     | 1.00     | 1.00  |
| Upstream Filter(I)           | 1.00     | 0.00     | 0.00 | 1.00 | 0.00     | 0.00 | 1.00     | 1.00     | 1.00        | 1.00     | 0.00     | 1.00  |
| Uniform Delay (d), s/veh     | 59.8     | 0.0      | 0.0  | 56.2 | 0.0      | 0.0  | 64.4     | 13.1     | 10.7        | 64.0     | 0.0      | 25.2  |
| Incr Delay (d2), s/veh       | 10.5     | 0.0      | 0.0  | 37.7 | 0.0      | 0.0  | 13.9     | 0.2      | 0.1         | 16.5     | 0.0      | 37.3  |
| Initial Q Delay(d3),s/veh    | 0.0      | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0      | 0.0         | 0.0      | 0.0      | 0.0   |
| %ile BackOfQ(50%),veh/ln     | 4.3      | 0.0      | 0.0  | 10.3 | 0.0      | 0.0  | 0.8      | 6.9      | 1.4         | 1.3      | 0.0      | 45.0  |
| Unsig. Movement Delay, s/veh |          | 0.0      | 0.0  | 02.0 | 0.0      | 0.0  | 70.0     | 10.4     | 10.7        | 00.5     | 0.0      | / 2 F |
| LnGrp Delay(d),s/veh         | 70.4     | 0.0      | 0.0  | 93.8 | 0.0      | 0.0  | 78.2     | 13.4     | 10.7        | 80.5     | 0.0      | 62.5  |
| LnGrp LOS                    | <u>E</u> | A        | A    | F    | A 224    | A    | <u>E</u> | B        | В           | F        | A 1220   | F     |
| Approach Vol, veh/h          |          | 116      |      |      | 234      |      |          | 597      |             |          | 1230     |       |
| Approach Delay, s/veh        |          | 70.4     |      |      | 93.8     |      |          | 15.1     |             |          | 63.0     |       |
| Approach LOS                 |          | Е        |      |      | F        |      |          | В        |             |          | Е        |       |
| Timer - Assigned Phs         |          | 2        | 3    | 4    |          | 6    | 7        | 8        |             |          |          |       |
| Phs Duration (G+Y+Rc), s     |          | 15.4     | 8.0  | 85.8 |          | 23.4 | 7.2      | 86.6     |             |          |          |       |
| Change Period (Y+Rc), s      |          | 4.5      | 4.5  | 4.5  |          | 4.5  | 4.5      | 4.5      |             |          |          |       |
| Max Green Setting (Gmax), s  |          | 19.5     | 11.5 | 82.1 |          | 18.9 | 11.5     | 82.1     |             |          |          |       |
| Max Q Clear Time (g_c+I1), s |          | 10.7     | 4.4  | 18.7 |          | 19.3 | 3.5      | 84.1     |             |          |          |       |
| Green Ext Time (p_c), s      |          | 0.3      | 0.0  | 3.5  |          | 0.0  | 0.0      | 0.0      |             |          |          |       |
| Intersection Summary         |          |          |      |      |          |      |          |          |             |          |          |       |
| HCM 6th Ctrl Delay           |          |          | 53.6 |      |          |      |          |          |             |          |          |       |
| HCM 6th LOS                  |          |          | D    |      |          |      |          |          |             |          |          |       |

|                                          | •           | <b>→</b>  | <b>←</b>    | •           | <b>\</b>    | 4          |      |
|------------------------------------------|-------------|-----------|-------------|-------------|-------------|------------|------|
| Movement                                 | EBL         | EBT       | WBT         | WBR         | SBL         | SBR        |      |
| Lane Configurations                      |             | 4         | <b>†</b>    | 7           | ሻ           | 7          |      |
| Traffic Volume (veh/h)                   | 105         | 375       | 225         | 236         | 512         | 43         |      |
| Future Volume (veh/h)                    | 105         | 375       | 225         | 236         | 512         | 43         |      |
| Initial Q (Qb), veh                      | 0           | 0         | 0           | 0           | 0           | 0          |      |
| Ped-Bike Adj(A_pbT)                      | 1.00        |           |             | 1.00        | 1.00        | 1.00       |      |
| Parking Bus, Adj                         | 1.00        | 1.00      | 1.00        | 1.00        | 1.00        | 1.00       |      |
| Work Zone On Approach                    | 4070        | No        | No          | 4070        | No          | 4070       |      |
| Adj Sat Flow, veh/h/ln                   | 1870        | 1870      | 1870        | 1870        | 1870        | 1870       |      |
| Adj Flow Rate, veh/h<br>Peak Hour Factor | 111<br>0.95 | 395       | 237<br>0.95 | 248<br>0.95 | 539<br>0.95 | 45<br>0.95 |      |
|                                          | 0.95        | 0.95      | 0.95        | 0.95        | 0.95        | 0.95       |      |
| Percent Heavy Veh, % Cap, veh/h          | 213         | 540       | 743         | 630         | 659         | 586        |      |
| Arrive On Green                          | 0.40        | 0.40      | 0.40        | 0.40        | 0.37        | 0.37       |      |
| Sat Flow, veh/h                          | 249         | 1359      | 1870        | 1585        | 1781        | 1585       |      |
| Grp Volume(v), veh/h                     | 506         | 0         | 237         | 248         | 539         | 45         |      |
| Grp Sat Flow(s), veh/h/ln                | 1608        | 0         | 1870        | 1585        | 1781        | 1585       |      |
| Q Serve(g_s), s                          | 6.4         | 0.0       | 3.4         | 4.3         | 10.6        | 0.7        |      |
| Cycle Q Clear(g_c), s                    | 10.3        | 0.0       | 3.4         | 4.3         | 10.6        | 0.7        |      |
| Prop In Lane                             | 0.22        |           |             | 1.00        | 1.00        | 1.00       |      |
| Lane Grp Cap(c), veh/h                   | 752         | 0         | 743         | 630         | 659         | 586        |      |
| V/C Ratio(X)                             | 0.67        | 0.00      | 0.32        | 0.39        | 0.82        | 0.08       |      |
| Avail Cap(c_a), veh/h                    | 1348        | 0         | 1477        | 1251        | 1406        | 1251       |      |
| HCM Platoon Ratio                        | 1.00        | 1.00      | 1.00        | 1.00        | 1.00        | 1.00       |      |
| Upstream Filter(I)                       | 1.00        | 0.00      | 1.00        | 1.00        | 1.00        | 1.00       |      |
| Uniform Delay (d), s/veh                 | 9.9         | 0.0       | 8.0         | 8.3         | 11.0        | 7.9        |      |
| Incr Delay (d2), s/veh                   | 1.1         | 0.0       | 0.2         | 0.4         | 2.6         | 0.1        |      |
| Initial Q Delay(d3),s/veh                | 0.0         | 0.0       | 0.0         | 0.0         | 0.0         | 0.0        |      |
| %ile BackOfQ(50%),veh/ln                 | 2.2         | 0.0       | 1.1         | 1.2         | 2.9         | 0.2        |      |
| Unsig. Movement Delay, s/veh             | 10.0        | 0.0       | 0.0         | 0.7         | 10 /        | 0.0        |      |
| LnGrp Delay(d),s/veh                     | 10.9        | 0.0       | 8.3         | 8.7         | 13.6        | 8.0        |      |
| LnGrp LOS                                | В           | A F0/     | A 405       | A           | В           | A          |      |
| Approach Vol, veh/h                      |             | 506       | 485         |             | 584         |            |      |
| Approach LOS                             |             | 10.9<br>B | 8.5         |             | 13.2        |            |      |
| Approach LOS                             |             | В         | А           |             | В           |            |      |
| Timer - Assigned Phs                     |             |           |             | 4           |             | 6          | 8    |
| Phs Duration (G+Y+Rc), s                 |             |           |             | 19.9        |             | 18.8       | 19.9 |
| Change Period (Y+Rc), s                  |             |           |             | 4.5         |             | 4.5        | 4.5  |
| Max Green Setting (Gmax), s              |             |           |             | 30.5        |             | 30.5       | 30.5 |
| Max Q Clear Time (g_c+l1), s             |             |           |             | 12.3        |             | 12.6       | 6.3  |
| Green Ext Time (p_c), s                  |             |           |             | 3.1         |             | 1.7        | 2.4  |
| Intersection Summary                     |             |           |             |             |             |            |      |
| HCM 6th Ctrl Delay                       |             |           | 11.0        |             |             |            |      |
| HCM 6th LOS                              |             |           | В           |             |             |            |      |

| Intersection                                                                                                                                                                             |                                                                                   |                                                                            |                                                                                     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
| Intersection Delay, s/veh                                                                                                                                                                | 11.2                                                                              |                                                                            |                                                                                     |  |
| Intersection LOS                                                                                                                                                                         | В                                                                                 |                                                                            |                                                                                     |  |
| Approach                                                                                                                                                                                 | EB                                                                                | WB                                                                         | SB                                                                                  |  |
| Entry Lanes                                                                                                                                                                              | 1                                                                                 | 1                                                                          | 1                                                                                   |  |
| Conflicting Circle Lanes                                                                                                                                                                 | 1                                                                                 | 1                                                                          | 1                                                                                   |  |
| Adj Approach Flow, veh/h                                                                                                                                                                 | 506                                                                               | 485                                                                        | 584                                                                                 |  |
| Demand Flow Rate, veh/h                                                                                                                                                                  | 516                                                                               | 495                                                                        | 596                                                                                 |  |
| Vehicles Circulating, veh/h                                                                                                                                                              | 550                                                                               | 113                                                                        | 242                                                                                 |  |
| Vehicles Exiting, veh/h                                                                                                                                                                  | 288                                                                               | 953                                                                        | 366                                                                                 |  |
| Ped Vol Crossing Leg, #/h                                                                                                                                                                | 0                                                                                 | 0                                                                          | 0                                                                                   |  |
| Ped Cap Adj                                                                                                                                                                              | 1.000                                                                             | 1.000                                                                      | 1.000                                                                               |  |
| Approach Delay, s/veh                                                                                                                                                                    | 16.3                                                                              | 7.0                                                                        | 10.3                                                                                |  |
| Approach LOS                                                                                                                                                                             | С                                                                                 | А                                                                          | В                                                                                   |  |
| Lane                                                                                                                                                                                     | Left                                                                              | Left                                                                       | Left                                                                                |  |
| Lanc                                                                                                                                                                                     |                                                                                   |                                                                            |                                                                                     |  |
| Designated Moyes                                                                                                                                                                         |                                                                                   |                                                                            |                                                                                     |  |
| Designated Moves                                                                                                                                                                         | LT                                                                                | TR                                                                         | LR                                                                                  |  |
| Assumed Moves                                                                                                                                                                            |                                                                                   |                                                                            |                                                                                     |  |
| Assumed Moves<br>RT Channelized                                                                                                                                                          | LT<br>LT                                                                          | TR<br>TR                                                                   | LR<br>LR                                                                            |  |
| Assumed Moves<br>RT Channelized<br>Lane Util                                                                                                                                             | LT<br>LT<br>1.000                                                                 | TR<br>TR<br>1.000                                                          | LR<br>LR<br>1.000                                                                   |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s                                                                                                                              | LT<br>LT<br>1.000<br>2.609                                                        | TR<br>TR<br>1.000<br>2.609                                                 | LR<br>LR<br>1.000<br>2.609                                                          |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s                                                                                                          | LT<br>LT<br>1.000<br>2.609<br>4.976                                               | TR<br>TR<br>1.000                                                          | LR<br>LR<br>1.000<br>2.609<br>4.976                                                 |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h                                                                                        | LT<br>LT<br>1.000<br>2.609                                                        | TR<br>TR<br>1.000<br>2.609<br>4.976                                        | LR<br>LR<br>1.000<br>2.609                                                          |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h                                                                  | LT<br>LT<br>1.000<br>2.609<br>4.976<br>516                                        | TR<br>TR<br>1.000<br>2.609<br>4.976<br>495                                 | LR<br>LR<br>1.000<br>2.609<br>4.976<br>596                                          |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor                                              | LT<br>LT<br>1.000<br>2.609<br>4.976<br>516<br>787                                 | TR<br>TR<br>1.000<br>2.609<br>4.976<br>495<br>1230                         | LR<br>LR<br>1.000<br>2.609<br>4.976<br>596<br>1078                                  |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h                                                                  | LT<br>LT<br>1.000<br>2.609<br>4.976<br>516<br>787<br>0.981                        | TR<br>TR<br>1.000<br>2.609<br>4.976<br>495<br>1230<br>0.980                | LR<br>LR<br>1.000<br>2.609<br>4.976<br>596<br>1078<br>0.980                         |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h                            | LT<br>LT<br>1.000<br>2.609<br>4.976<br>516<br>787<br>0.981<br>506                 | TR<br>TR<br>1.000<br>2.609<br>4.976<br>495<br>1230<br>0.980<br>485         | LR<br>LR<br>1.000<br>2.609<br>4.976<br>596<br>1078<br>0.980<br>584                  |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h           | LT<br>LT<br>1.000<br>2.609<br>4.976<br>516<br>787<br>0.981<br>506<br>772          | TR<br>TR<br>1.000<br>2.609<br>4.976<br>495<br>1230<br>0.980<br>485<br>1205 | LR<br>LR<br>1.000<br>2.609<br>4.976<br>596<br>1078<br>0.980<br>584<br>1056          |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio | LT<br>LT<br>1.000<br>2.609<br>4.976<br>516<br>787<br>0.981<br>506<br>772<br>0.655 | TR TR  1.000 2.609 4.976 495 1230 0.980 485 1205 0.403                     | LR<br>LR<br>1.000<br>2.609<br>4.976<br>596<br>1078<br>0.980<br>584<br>1056<br>0.553 |  |

|                              | ۶    | <b>→</b> | •    | •    | <b>—</b> | •    | •    | <b>†</b> | ~    | <b>/</b> | <b>+</b> | ✓        |
|------------------------------|------|----------|------|------|----------|------|------|----------|------|----------|----------|----------|
| Movement                     | EBL  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR  | SBL      | SBT      | SBR      |
| Lane Configurations          | 7    | î,       |      | 7    | <b>^</b> | 7    |      | 4        |      |          | र्स      | 7        |
| Traffic Volume (veh/h)       | 72   | 549      | 20   | 20   | 535      | 409  | 20   | 20       | 20   | 385      | 20       | 92       |
| Future Volume (veh/h)        | 72   | 549      | 20   | 20   | 535      | 409  | 20   | 20       | 20   | 385      | 20       | 92       |
| Initial Q (Qb), veh          | 0    | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0    | 0        | 0        | 0        |
| Ped-Bike Adj(A_pbT)          | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00 | 1.00     |          | 1.00     |
| Parking Bus, Adj             | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00     | 1.00     |
| Work Zone On Approach        |      | No       |      |      | No       |      |      | No       |      |          | No       |          |
| Adj Sat Flow, veh/h/ln       | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870 | 1870     | 1870     | 1870     |
| Adj Flow Rate, veh/h         | 76   | 578      | 21   | 21   | 563      | 431  | 21   | 21       | 21   | 405      | 21       | 97       |
| Peak Hour Factor             | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 | 0.95     | 0.95     | 0.95     |
| Percent Heavy Veh, %         | 2    | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2    | 2        | 2        | 2        |
| Cap, veh/h                   | 98   | 728      | 26   | 42   | 701      | 594  | 28   | 28       | 28   | 487      | 25       | 455      |
| Arrive On Green              | 0.05 | 0.41     | 0.41 | 0.02 | 0.37     | 0.37 | 0.05 | 0.05     | 0.05 | 0.29     | 0.29     | 0.29     |
| Sat Flow, veh/h              | 1781 | 1793     | 65   | 1781 | 1870     | 1585 | 579  | 579      | 579  | 1697     | 88       | 1585     |
| Grp Volume(v), veh/h         | 76   | 0        | 599  | 21   | 563      | 431  | 63   | 0        | 0    | 426      | 0        | 97       |
| Grp Sat Flow(s),veh/h/ln     | 1781 | 0        | 1859 | 1781 | 1870     | 1585 | 1737 | 0        | 0    | 1785     | 0        | 1585     |
| Q Serve(g_s), s              | 3.2  | 0.0      | 21.6 | 0.9  | 20.6     | 17.9 | 2.7  | 0.0      | 0.0  | 17.1     | 0.0      | 3.6      |
| Cycle Q Clear(g_c), s        | 3.2  | 0.0      | 21.6 | 0.9  | 20.6     | 17.9 | 2.7  | 0.0      | 0.0  | 17.1     | 0.0      | 3.6      |
| Prop In Lane                 | 1.00 |          | 0.04 | 1.00 |          | 1.00 | 0.33 |          | 0.33 | 0.95     |          | 1.00     |
| Lane Grp Cap(c), veh/h       | 98   | 0        | 755  | 42   | 701      | 594  | 84   | 0        | 0    | 512      | 0        | 455      |
| V/C Ratio(X)                 | 0.78 | 0.00     | 0.79 | 0.50 | 0.80     | 0.73 | 0.75 | 0.00     | 0.00 | 0.83     | 0.00     | 0.21     |
| Avail Cap(c_a), veh/h        | 175  | 0        | 1991 | 140  | 1967     | 1667 | 170  | 0        | 0    | 851      | 0        | 756      |
| HCM Platoon Ratio            | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00     | 1.00     | 1.00     |
| Upstream Filter(I)           | 1.00 | 0.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 0.00     | 0.00 | 1.00     | 0.00     | 1.00     |
| Uniform Delay (d), s/veh     | 35.7 | 0.0      | 19.9 | 36.9 | 21.4     | 20.6 | 36.0 | 0.0      | 0.0  | 25.6     | 0.0      | 20.7     |
| Incr Delay (d2), s/veh       | 12.3 | 0.0      | 1.9  | 9.0  | 2.2      | 1.7  | 12.7 | 0.0      | 0.0  | 3.6      | 0.0      | 0.2      |
| Initial Q Delay(d3),s/veh    | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0      | 0.0      | 0.0      |
| %ile BackOfQ(50%),veh/ln     | 1.7  | 0.0      | 8.8  | 0.5  | 8.6      | 6.3  | 1.4  | 0.0      | 0.0  | 7.4      | 0.0      | 1.3      |
| Unsig. Movement Delay, s/veh |      |          |      |      |          |      |      |          |      |          |          |          |
| LnGrp Delay(d),s/veh         | 48.0 | 0.0      | 21.9 | 45.9 | 23.6     | 22.3 | 48.6 | 0.0      | 0.0  | 29.1     | 0.0      | 21.0     |
| LnGrp LOS                    | D    | A        | С    | D    | С        | С    | D    | A        | A    | С        | A        | <u>C</u> |
| Approach Vol, veh/h          |      | 675      |      |      | 1015     |      |      | 63       |      |          | 523      |          |
| Approach Delay, s/veh        |      | 24.8     |      |      | 23.5     |      |      | 48.6     |      |          | 27.6     |          |
| Approach LOS                 |      | С        |      |      | С        |      |      | D        |      |          | С        |          |
| Timer - Assigned Phs         |      | 2        | 3    | 4    |          | 6    | 7    | 8        |      |          |          |          |
| Phs Duration (G+Y+Rc), s     |      | 8.2      | 6.3  | 35.6 |          | 26.5 | 8.7  | 33.2     |      |          |          |          |
| Change Period (Y+Rc), s      |      | 4.5      | 4.5  | 4.5  |          | 4.5  | 4.5  | 4.5      |      |          |          |          |
| Max Green Setting (Gmax), s  |      | 7.5      | 6.0  | 82.0 |          | 36.5 | 7.5  | 80.5     |      |          |          |          |
| Max Q Clear Time (g_c+I1), s |      | 4.7      | 2.9  | 23.6 |          | 19.1 | 5.2  | 22.6     |      |          |          |          |
| Green Ext Time (p_c), s      |      | 0.0      | 0.0  | 4.5  |          | 2.9  | 0.0  | 6.1      |      |          |          |          |
| Intersection Summary         |      |          |      |      |          |      |      |          |      |          |          |          |
| HCM 6th Ctrl Delay           |      |          | 25.5 |      |          |      |      |          |      |          |          |          |
| HCM 6th LOS                  |      |          | С    |      |          |      |      |          |      |          |          |          |

|                                                      | ۶    | <b>→</b>  | •        | •            | <b>←</b>   | 4        | 1          | <b>†</b> | ~          | <b>/</b> | <b>†</b> | 1    |
|------------------------------------------------------|------|-----------|----------|--------------|------------|----------|------------|----------|------------|----------|----------|------|
| Movement                                             | EBL  | EBT       | EBR      | WBL          | WBT        | WBR      | NBL        | NBT      | NBR        | SBL      | SBT      | SBR  |
| Lane Configurations                                  |      | र्स       | 7        | ሻ            | ₽          |          | ሻ          | र्स      | 7          |          | 4        |      |
| Traffic Volume (veh/h)                               | 0    | 530       | 424      | 420          | 337        | 0        | 627        | 0        | 207        | 0        | 0        | 0    |
| Future Volume (veh/h)                                | 0    | 530       | 424      | 420          | 337        | 0        | 627        | 0        | 207        | 0        | 0        | 0    |
| Initial Q (Qb), veh                                  | 0    | 0         | 0        | 0            | 0          | 0        | 0          | 0        | 0          | 0        | 0        | 0    |
| Ped-Bike Adj(A_pbT)                                  | 1.00 |           | 1.00     | 1.00         |            | 1.00     | 1.00       |          | 1.00       | 1.00     |          | 1.00 |
| Parking Bus, Adj                                     | 1.00 | 1.00      | 1.00     | 1.00         | 1.00       | 1.00     | 1.00       | 1.00     | 1.00       | 1.00     | 1.00     | 1.00 |
| Work Zone On Approach                                |      | No        |          |              | No         |          |            | No       |            |          | No       |      |
| Adj Sat Flow, veh/h/ln                               | 984  | 1870      | 1870     | 1870         | 1870       | 1870     | 1870       | 1870     | 1870       | 1870     | 1870     | 1870 |
| Adj Flow Rate, veh/h                                 | 0    | 558       | 446      | 442          | 355        | 0        | 660        | 0        | 146        | 0        | 0        | 0    |
| Peak Hour Factor                                     | 0.95 | 0.95      | 0.95     | 0.95         | 0.95       | 0.95     | 0.95       | 0.95     | 0.95       | 0.95     | 0.95     | 0.95 |
| Percent Heavy Veh, %                                 | 2    | 2         | 2        | 2            | 2          | 2        | 2          | 2        | 2          | 2        | 2        | 2    |
| Cap, veh/h                                           | 0    | 667       | 932      | 524          | 550        | 0        | 824        | 0        | 366        | 0        | 2        | 0    |
| Arrive On Green                                      | 0.00 | 0.36      | 0.36     | 0.29         | 0.29       | 0.00     | 0.23       | 0.00     | 0.23       | 0.00     | 0.00     | 0.00 |
| Sat Flow, veh/h                                      | 0    | 1870      | 1585     | 1781         | 1870       | 0        | 3563       | 0        | 1585       | 0        | 1870     | 0    |
| Grp Volume(v), veh/h                                 | 0    | 558       | 446      | 442          | 355        | 0        | 660        | 0        | 146        | 0        | 0        | 0    |
| Grp Sat Flow(s), veh/h/ln                            | 0    | 1870      | 1585     | 1781         | 1870       | 0        | 1781       | 0        | 1585       | 0        | 1870     | 0    |
| Q Serve(g_s), s                                      | 0.0  | 21.3      | 12.6     | 18.1         | 12.9       | 0.0      | 13.6       | 0.0      | 6.1        | 0.0      | 0.0      | 0.0  |
| Cycle Q Clear(g_c), s                                | 0.0  | 21.3      | 12.6     | 18.1         | 12.9       | 0.0      | 13.6       | 0.0      | 6.1        | 0.0      | 0.0      | 0.0  |
| Prop In Lane                                         | 0.00 |           | 1.00     | 1.00         |            | 0.00     | 1.00       |          | 1.00       | 0.00     |          | 0.00 |
| Lane Grp Cap(c), veh/h                               | 0    | 667       | 932      | 524          | 550        | 0        | 824        | 0        | 366        | 0        | 2        | 0    |
| V/C Ratio(X)                                         | 0.00 | 0.84      | 0.48     | 0.84         | 0.65       | 0.00     | 0.80       | 0.00     | 0.40       | 0.00     | 0.00     | 0.00 |
| Avail Cap(c_a), veh/h                                | 0    | 885       | 1116     | 710          | 745        | 0        | 1190       | 0        | 530        | 0        | 96       | 0    |
| HCM Platoon Ratio                                    | 1.00 | 1.00      | 1.00     | 1.00         | 1.00       | 1.00     | 1.00       | 1.00     | 1.00       | 1.00     | 1.00     | 1.00 |
| Upstream Filter(I)                                   | 0.00 | 1.00      | 1.00     | 1.00         | 1.00       | 0.00     | 1.00       | 0.00     | 1.00       | 0.00     | 0.00     | 0.00 |
| Uniform Delay (d), s/veh                             | 0.0  | 22.9      | 9.2      | 25.8         | 23.9       | 0.0      | 28.2       | 0.0      | 25.3       | 0.0      | 0.0      | 0.0  |
| Incr Delay (d2), s/veh                               | 0.0  | 5.4       | 0.4      | 6.9          | 1.3        | 0.0      | 2.6        | 0.0      | 0.7        | 0.0      | 0.0      | 0.0  |
| Initial Q Delay(d3),s/veh                            | 0.0  | 0.0       | 0.0      | 0.0<br>8.2   | 0.0<br>5.5 | 0.0      | 0.0<br>5.9 | 0.0      | 0.0<br>2.3 | 0.0      | 0.0      | 0.0  |
| %ile BackOfQ(50%),veh/ln                             | 0.0  | 9.6       | 0.0      | 0.2          | 5.5        | 0.0      | 5.9        | 0.0      | 2.3        | 0.0      | 0.0      | 0.0  |
| Unsig. Movement Delay, s/veh<br>LnGrp Delay(d),s/veh | 0.0  | 28.4      | 9.6      | 32.7         | 25.2       | 0.0      | 30.8       | 0.0      | 26.0       | 0.0      | 0.0      | 0.0  |
| LnGrp LOS                                            | Α    | 20.4<br>C | 9.0<br>A | 32. <i>1</i> | 25.2<br>C  | 0.0<br>A | 30.6<br>C  | 0.0<br>A | 20.0<br>C  | Α        | 0.0<br>A | Α    |
| Approach Vol, veh/h                                  |      | 1004      |          | <u> </u>     | 797        |          | C          | 806      |            | A        | 0        |      |
| • •                                                  |      | 20.0      |          |              | 29.4       |          |            | 29.9     |            |          | 0.0      |      |
| Approach Delay, s/veh Approach LOS                   |      | 20.0<br>C |          |              | 29.4<br>C  |          |            | _        |            |          | 0.0      |      |
| Approach LO3                                         |      | C         |          |              | C          |          |            | С        |            |          |          |      |
| Timer - Assigned Phs                                 |      | 2         |          | 4            |            | 6        |            | 8        |            |          |          |      |
| Phs Duration (G+Y+Rc), s                             |      | 0.0       |          | 30.9         |            | 21.0     |            | 25.9     |            |          |          |      |
| Change Period (Y+Rc), s                              |      | 3.0       |          | 3.2          |            | 3.0      |            | 3.0      |            |          |          |      |
| Max Green Setting (Gmax), s                          |      | 4.0       |          | 36.8         |            | 26.0     |            | 31.0     |            |          |          |      |
| Max Q Clear Time (g_c+I1), s                         |      | 0.0       |          | 23.3         |            | 15.6     |            | 20.1     |            |          |          |      |
| Green Ext Time (p_c), s                              |      | 0.0       |          | 4.5          |            | 2.4      |            | 2.7      |            |          |          |      |
| Intersection Summary                                 |      |           |          |              |            |          |            |          |            |          |          |      |
| HCM 6th Ctrl Delay                                   |      |           | 25.9     |              |            |          |            |          |            |          |          |      |
| HCM 6th LOS                                          |      |           | С        |              |            |          |            |          |            |          |          |      |

User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for turning movement.

| Intersection                                                                                                                                                                                                                   |                                                                                       |                                                                                       |                                                                                   |                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Intersection Delay, s/veh                                                                                                                                                                                                      | 7.3                                                                                   |                                                                                       |                                                                                   |                                                                                     |
| Intersection LOS                                                                                                                                                                                                               | А                                                                                     |                                                                                       |                                                                                   |                                                                                     |
| Approach                                                                                                                                                                                                                       | EB                                                                                    | WB                                                                                    | NB                                                                                | SB                                                                                  |
| Entry Lanes                                                                                                                                                                                                                    | 1                                                                                     | 1                                                                                     | 1                                                                                 | 1                                                                                   |
| Conflicting Circle Lanes                                                                                                                                                                                                       | 1                                                                                     | 1                                                                                     | 1                                                                                 | 1                                                                                   |
| Adj Approach Flow, veh/h                                                                                                                                                                                                       | 392                                                                                   | 475                                                                                   | 96                                                                                | 247                                                                                 |
| Demand Flow Rate, veh/h                                                                                                                                                                                                        | 399                                                                                   | 484                                                                                   | 99                                                                                | 252                                                                                 |
| Vehicles Circulating, veh/h                                                                                                                                                                                                    | 298                                                                                   | 122                                                                                   | 536                                                                               | 451                                                                                 |
| Vehicles Exiting, veh/h                                                                                                                                                                                                        | 405                                                                                   | 513                                                                                   | 161                                                                               | 155                                                                                 |
| Ped Vol Crossing Leg, #/h                                                                                                                                                                                                      | 0                                                                                     | 0                                                                                     | 0                                                                                 | 0                                                                                   |
| Ped Cap Adj                                                                                                                                                                                                                    | 1.000                                                                                 | 1.000                                                                                 | 1.000                                                                             | 1.000                                                                               |
| Approach Delay, s/veh                                                                                                                                                                                                          | 7.9                                                                                   | 7.0                                                                                   | 5.9                                                                               | 7.4                                                                                 |
| Approach LOS                                                                                                                                                                                                                   | А                                                                                     | А                                                                                     | А                                                                                 | Α                                                                                   |
| Lane                                                                                                                                                                                                                           | Left                                                                                  | Left                                                                                  | Left                                                                              | Left                                                                                |
| Lanc                                                                                                                                                                                                                           | Leit                                                                                  | Leit                                                                                  | Leit                                                                              | Leit                                                                                |
| Designated Moves                                                                                                                                                                                                               | LTR                                                                                   | LTR                                                                                   | LTR                                                                               | LTR                                                                                 |
|                                                                                                                                                                                                                                |                                                                                       |                                                                                       |                                                                                   |                                                                                     |
| Designated Moves                                                                                                                                                                                                               | LTR                                                                                   | LTR                                                                                   | LTR                                                                               | LTR                                                                                 |
| Designated Moves Assumed Moves                                                                                                                                                                                                 | LTR                                                                                   | LTR                                                                                   | LTR                                                                               | LTR                                                                                 |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s                                                                                                                                                   | LTR<br>LTR                                                                            | LTR<br>LTR                                                                            | LTR<br>LTR                                                                        | LTR<br>LTR                                                                          |
| Designated Moves Assumed Moves RT Channelized Lane Util                                                                                                                                                                        | LTR<br>LTR<br>1.000                                                                   | LTR<br>LTR<br>1.000                                                                   | LTR<br>LTR<br>1.000                                                               | LTR<br>LTR<br>1.000                                                                 |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s                                                                                                                                                   | LTR<br>LTR<br>1.000<br>2.609                                                          | LTR<br>LTR<br>1.000<br>2.609                                                          | LTR<br>LTR<br>1.000<br>2.609                                                      | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>252                                        |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h                                                                                       | LTR<br>LTR<br>1.000<br>2.609<br>4.976                                                 | LTR<br>LTR<br>1.000<br>2.609<br>4.976                                                 | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>99<br>799                                | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>252<br>871                                 |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor                                                                   | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>399<br>1018<br>0.982                         | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>484<br>1218<br>0.981                         | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>99                                       | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>252                                        |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h                                                                                       | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>399<br>1018                                  | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>484<br>1218                                  | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>99<br>799                                | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>252<br>871<br>0.982<br>247                 |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h                                | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>399<br>1018<br>0.982<br>392<br>1000          | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>484<br>1218<br>0.981<br>475                  | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>99<br>799<br>0.973<br>96<br>777          | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>252<br>871<br>0.982<br>247<br>855          |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h                                                 | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>399<br>1018<br>0.982<br>392                  | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>484<br>1218<br>0.981<br>475                  | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>99<br>799<br>0.973                       | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>252<br>871<br>0.982<br>247                 |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>399<br>1018<br>0.982<br>392<br>1000          | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>484<br>1218<br>0.981<br>475                  | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>99<br>799<br>0.973<br>96<br>777          | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>252<br>871<br>0.982<br>247<br>855          |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio                      | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>399<br>1018<br>0.982<br>392<br>1000<br>0.392 | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>484<br>1218<br>0.981<br>475<br>1196<br>0.397 | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>99<br>799<br>0.973<br>96<br>777<br>0.124 | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>252<br>871<br>0.982<br>247<br>855<br>0.289 |

|                              | ۶     | <b>→</b> | •     | •     | <b>←</b> | •    | •     | <b>†</b> | ~    | <b>/</b> | <b>+</b> | -√    |
|------------------------------|-------|----------|-------|-------|----------|------|-------|----------|------|----------|----------|-------|
| Movement                     | EBL   | EBT      | EBR   | WBL   | WBT      | WBR  | NBL   | NBT      | NBR  | SBL      | SBT      | SBR   |
| Lane Configurations          |       | 4        |       |       | 4        |      |       | 4        |      | 7        | f)       |       |
| Traffic Volume (veh/h)       | 64    | 264      | 100   | 20    | 132      | 410  | 60    | 283      | 20   | 510      | 664      | 71    |
| Future Volume (veh/h)        | 64    | 264      | 100   | 20    | 132      | 410  | 60    | 283      | 20   | 510      | 664      | 71    |
| Initial Q (Qb), veh          | 0     | 0        | 0     | 0     | 0        | 0    | 0     | 0        | 0    | 0        | 0        | 0     |
| Ped-Bike Adj(A_pbT)          | 1.00  |          | 0.99  | 1.00  |          | 0.99 | 1.00  |          | 1.00 | 1.00     |          | 0.99  |
| Parking Bus, Adj             | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00     | 1.00     | 1.00  |
| Work Zone On Approach        |       | No       |       |       | No       |      |       | No       |      |          | No       |       |
| Adj Sat Flow, veh/h/ln       | 1870  | 1870     | 1870  | 1870  | 1870     | 1870 | 1870  | 1870     | 1870 | 1870     | 1870     | 1870  |
| Adj Flow Rate, veh/h         | 67    | 278      | 105   | 21    | 139      | 432  | 63    | 298      | 21   | 537      | 699      | 75    |
| Peak Hour Factor             | 0.95  | 0.95     | 0.95  | 0.95  | 0.95     | 0.95 | 0.95  | 0.95     | 0.95 | 0.95     | 0.95     | 0.95  |
| Percent Heavy Veh, %         | 2     | 2        | 2     | 2     | 2        | 2    | 2     | 2        | 2    | 2        | 2        | 2     |
| Cap, veh/h                   | 72    | 241      | 85    | 42    | 138      | 403  | 54    | 255      | 18   | 646      | 601      | 65    |
| Arrive On Green              | 0.33  | 0.33     | 0.33  | 0.33  | 0.33     | 0.33 | 0.18  | 0.18     | 0.18 | 0.36     | 0.36     | 0.36  |
| Sat Flow, veh/h              | 112   | 725      | 255   | 33    | 417      | 1214 | 303   | 1433     | 101  | 1781     | 1659     | 178   |
| Grp Volume(v), veh/h         | 450   | 0        | 0     | 592   | 0        | 0    | 382   | 0        | 0    | 537      | 0        | 774   |
| Grp Sat Flow(s),veh/h/ln     | 1092  | 0        | 0     | 1664  | 0        | 0    | 1837  | 0        | 0    | 1781     | 0        | 1837  |
| Q Serve(g_s), s              | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0  | 21.4  | 0.0      | 0.0  | 33.1     | 0.0      | 43.6  |
| Cycle Q Clear(g_c), s        | 39.9  | 0.0      | 0.0   | 39.9  | 0.0      | 0.0  | 21.4  | 0.0      | 0.0  | 33.1     | 0.0      | 43.6  |
| Prop In Lane                 | 0.15  |          | 0.23  | 0.04  |          | 0.73 | 0.16  |          | 0.05 | 1.00     |          | 0.10  |
| Lane Grp Cap(c), veh/h       | 397   | 0        | 0     | 583   | 0        | 0    | 327   | 0        | 0    | 646      | 0        | 666   |
| V/C Ratio(X)                 | 1.13  | 0.00     | 0.00  | 1.02  | 0.00     | 0.00 | 1.17  | 0.00     | 0.00 | 0.83     | 0.00     | 1.16  |
| Avail Cap(c_a), veh/h        | 397   | 0        | 0     | 583   | 0        | 0    | 327   | 0        | 0    | 646      | 0        | 666   |
| HCM Platoon Ratio            | 1.00  | 1.00     | 1.00  | 1.00  | 1.00     | 1.00 | 1.00  | 1.00     | 1.00 | 1.00     | 1.00     | 1.00  |
| Upstream Filter(I)           | 1.00  | 0.00     | 0.00  | 1.00  | 0.00     | 0.00 | 1.00  | 0.00     | 0.00 | 1.00     | 0.00     | 1.00  |
| Uniform Delay (d), s/veh     | 39.7  | 0.0      | 0.0   | 41.4  | 0.0      | 0.0  | 49.5  | 0.0      | 0.0  | 35.0     | 0.0      | 38.4  |
| Incr Delay (d2), s/veh       | 87.1  | 0.0      | 0.0   | 41.3  | 0.0      | 0.0  | 103.9 | 0.0      | 0.0  | 8.6      | 0.0      | 89.1  |
| Initial Q Delay(d3),s/veh    | 0.0   | 0.0      | 0.0   | 0.0   | 0.0      | 0.0  | 0.0   | 0.0      | 0.0  | 0.0      | 0.0      | 0.0   |
| %ile BackOfQ(50%),veh/ln     | 21.5  | 0.0      | 0.0   | 23.7  | 0.0      | 0.0  | 19.3  | 0.0      | 0.0  | 15.5     | 0.0      | 35.5  |
| Unsig. Movement Delay, s/veh |       |          |       |       |          |      | .=.   |          |      |          |          |       |
| LnGrp Delay(d),s/veh         | 126.8 | 0.0      | 0.0   | 82.7  | 0.0      | 0.0  | 153.4 | 0.0      | 0.0  | 43.6     | 0.0      | 127.4 |
| LnGrp LOS                    | F     | A        | A     | F     | A        | A    | F     | A        | A    | D        | A        | F     |
| Approach Vol, veh/h          |       | 450      |       |       | 592      |      |       | 382      |      |          | 1311     |       |
| Approach Delay, s/veh        |       | 126.8    |       |       | 82.7     |      |       | 153.4    |      |          | 93.1     |       |
| Approach LOS                 |       | F        |       |       | F        |      |       | F        |      |          | F        |       |
| Timer - Assigned Phs         |       | 2        |       | 4     |          | 6    |       | 8        |      |          |          |       |
| Phs Duration (G+Y+Rc), s     |       | 26.0     |       | 45.3  |          | 49.0 |       | 45.3     |      |          |          |       |
| Change Period (Y+Rc), s      |       | 4.6      |       | * 5.4 |          | 5.4  |       | 5.4      |      |          |          |       |
| Max Green Setting (Gmax), s  |       | 21.4     |       | * 40  |          | 43.6 |       | 39.6     |      |          |          |       |
| Max Q Clear Time (g_c+l1), s |       | 23.4     |       | 41.9  |          | 45.6 |       | 41.9     |      |          |          |       |
| Green Ext Time (p_c), s      |       | 0.0      |       | 0.0   |          | 0.0  |       | 0.0      |      |          |          |       |
| Intersection Summary         |       |          |       |       |          |      |       |          |      |          |          |       |
| HCM 6th Ctrl Delay           |       |          | 104.8 |       |          |      |       |          |      |          |          |       |
| HCM 6th LOS                  |       |          | F     |       |          |      |       |          |      |          |          |       |

User approved pedestrian interval to be less than phase max green.
\* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | ۶    | •    | 1    | <b>†</b> | ţ       | 4    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|------|------|----------|---------|------|
| Traffic Volume (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Movement                | EBL  | EBR  | NBL  | NBT      | SBT     | SBR  |
| Traffic Volume (veh/h)         412         80         60         804         645         325           Future Volume (veh/h)         412         80         60         804         645         325           Initial Q (Qb), veh         0         0         0         0         0         0         0           Ped-Bike Adj(A_pbT)         1.00         1.00         1.00         1.00         1.00         1.00           Ped-Bike Adj(A_pbT)         1.00         1.00         1.00         1.00         1.00         1.00           Work Zone On Approach         No         No         No         No         No         No           Adj Flow Rate, veh/h         434         84         63         846         679         342           Peak Hour Factor         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95                                                                                                                                                                   |                         | ሻ    | 7    | ሻ    | <b></b>  | <b></b> | 7    |
| Initial Q (Ob), veh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |      | 80   |      |          |         | 325  |
| Ped-Bike Adj(A_pbT)         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00 </td <td>Future Volume (veh/h)</td> <td>412</td> <td>80</td> <td>60</td> <td>804</td> <td>645</td> <td>325</td> | Future Volume (veh/h)   | 412  | 80   | 60   | 804      | 645     | 325  |
| Parking Bus, Adj         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                    | Initial Q (Qb), veh     |      | 0    | 0    | 0        | 0       |      |
| Work Zone On Approach         No         No         No           Adj Sat Flow, veh/h/ln         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         342         Peak Hour Factor         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95 </td <td>Ped-Bike Adj(A_pbT)</td> <td>1.00</td> <td>1.00</td> <td>1.00</td> <td></td> <td></td> <td>1.00</td>  | Ped-Bike Adj(A_pbT)     | 1.00 | 1.00 | 1.00 |          |         | 1.00 |
| Work Zone On Approach         No         No         No         Adj Sat Flow, veh/h/ln         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         342         Peak Hour Factor         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.9                                                                                                      |                         | 1.00 | 1.00 | 1.00 | 1.00     | 1.00    | 1.00 |
| Adj Sat Flow, veh/h/ln         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         1870         342         Adj Flow Rate, veh/h         434         84         63         846         679         342         22         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         <                                                                                                                                                                                                     |                         | No   |      |      | No       | No      |      |
| Peak Hour Factor         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.96         0.96         0.80         0.86         0.87         0.19         0.64         0.80         0.43         0.43         0.43         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95                                                                                                                    |                         | 1870 | 1870 | 1870 | 1870     | 1870    | 1870 |
| Peak Hour Factor         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.96         0.80         0.85         0.80         0.85         0.80         0.85         0.80         0.83         0.43         0.44         0.83         0.84         679         342         342         342         342         342         342         342         342         342         342         342         342         342         342         342         342         342         342         342 <td>Adj Flow Rate, veh/h</td> <td>434</td> <td>84</td> <td>63</td> <td>846</td> <td>679</td> <td>342</td>                 | Adj Flow Rate, veh/h    | 434  | 84   | 63   | 846      | 679     | 342  |
| Cap, veh/h         501         446         98         1052         802         680           Arrive On Green         0.28         0.28         0.06         0.56         0.43         0.43           Sat Flow, veh/h         1781         1585         1781         1870         1870         1585           Grp Volume(v), veh/h         434         84         63         846         679         342           Grp Sat Flow(s), veh/h/ln         1781         1585         1781         1870         1870         1585           Q Serve(g_s), s         13.3         2.3         2.0         20.8         18.7         9.0           Cycle Q Clear(g_c), s         13.3         2.3         2.0         20.8         18.7         9.0           Prop In Lane         1.00         1.00         1.00         1.00         1.00         1.00           Lane Grp Cap(c), veh/h         501         446         98         1052         802         680           V/C Ratio(X)         0.87         0.19         0.64         0.80         0.85         0.50           Avail Cap(c_a), veh/h         635         565         155         1317         1008         864           HCM Pl                                                                                                                                                                            |                         | 0.95 | 0.95 | 0.95 | 0.95     | 0.95    | 0.95 |
| Cap, veh/h         501         446         98         1052         802         680           Arrive On Green         0.28         0.28         0.06         0.56         0.43         0.43           Sat Flow, veh/h         1781         1585         1781         1870         1870         1585           Grp Volume(v), veh/h         434         84         63         846         679         342           Grp Sat Flow(s), veh/h/ln         1781         1585         1781         1870         1870         1585           Q Serve(g_s), s         13.3         2.3         2.0         20.8         18.7         9.0           Cycle Q Clear(g_c), s         13.3         2.3         2.0         20.8         18.7         9.0           Prop In Lane         1.00         1.00         1.00         1.00         1.00         1.00           Lane Grp Cap(c), veh/h         501         446         98         1052         802         680           V/C Ratio(X)         0.87         0.19         0.64         0.80         0.85         0.50           Avail Cap(c_a), veh/h         635         565         155         1317         1008         84           HCM Pla                                                                                                                                                                            |                         | 2    |      | 2    | 2        | 2       | 2    |
| Arrive On Green         0.28         0.28         0.06         0.56         0.43         0.43           Sat Flow, veh/h         1781         1585         1781         1870         1870         1585           Grp Volume(v), veh/h         434         84         63         846         679         342           Grp Sat Flow(s), veh/h/ln         1781         1585         1781         1870         1870         1585           Q Serve(g_s), s         13.3         2.3         2.0         20.8         18.7         9.0           Cycle Q Clear(g_c), s         13.3         2.3         2.0         20.8         18.7         9.0           Prop In Lane         1.00         1.00         1.00         1.00         1.00         1.00           Lane Grp Cap(c), veh/h         501         446         98         1052         802         680           V/C Ratio(X)         0.87         0.19         0.64         98         1052         802         680           V/C Ratio(X)         0.87         0.19         0.64         98         1052         802         680           V/C Ratio(X)         0.87         0.19         0.64         0.80         0.85         0.50 <td></td> <td></td> <td>446</td> <td></td> <td></td> <td></td> <td>680</td>                                                                                            |                         |      | 446  |      |          |         | 680  |
| Sat Flow, veh/h         1781         1585         1781         1870         1870         1585           Grp Volume(v), veh/h         434         84         63         846         679         342           Grp Sat Flow(s), veh/h/ln         1781         1585         1781         1870         1870         1585           Q Serve(g_s), s         13.3         2.3         2.0         20.8         18.7         9.0           Cycle Q Clear(g_c), s         13.3         2.3         2.0         20.8         18.7         9.0           Prop In Lane         1.00         1.00         1.00         1.00         1.00         1.00           Lane Grp Cap(c), veh/h         501         446         98         1052         802         680           V/C Ratio(X)         0.87         0.19         0.64         0.80         0.85         0.50           Avail Cap(c_a), veh/h         635         565         155         1317         1008         854           HCM Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                    |                         |      |      |      |          |         |      |
| Grp Volume(v), veh/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |      |      |      |          |         | 1585 |
| Grp Sat Flow(s), veh/h/ln         1781         1585         1781         1870         1870         1585           Q Serve(g_s), s         13.3         2.3         2.0         20.8         18.7         9.0           Cycle Q Clear(g_c), s         13.3         2.3         2.0         20.8         18.7         9.0           Prop In Lane         1.00         1.00         1.00         1.00         1.00           Lane Grp Cap(c), veh/h         501         446         98         1052         802         680           V/C Ratio(X)         0.87         0.19         0.64         0.80         0.85         0.50           Avail Cap(c_a), veh/h         635         565         155         1317         1008         854           HCM Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                                   |                         |      |      |      |          |         |      |
| Q Serve(g_s), s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |      |      |      |          |         |      |
| Cycle Q Clear(g_c), s         13.3         2.3         2.0         20.8         18.7         9.0           Prop In Lane         1.00         1.00         1.00         1.00         1.00           Lane Grp Cap(c), veh/h         501         446         98         1052         802         680           V/C Ratio(X)         0.87         0.19         0.64         0.80         0.85         0.50           Avail Cap(c_a), veh/h         635         565         155         1317         1008         854           HCM Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00                                                                                                                                             | . , .                   |      |      |      |          |         |      |
| Prop In Lane         1.00         1.00         1.00         1.00           Lane Grp Cap(c), veh/h         501         446         98         1052         802         680           V/C Ratio(X)         0.87         0.19         0.64         0.80         0.85         0.50           Avail Cap(c_a), veh/h         635         565         155         1317         1008         854           HCM Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1                                                                                                                                      |                         |      |      |      |          |         |      |
| Lane Grp Cap(c), veh/h       501       446       98       1052       802       680         V/C Ratio(X)       0.87       0.19       0.64       0.80       0.85       0.50         Avail Cap(c_a), veh/h       635       565       155       1317       1008       854         HCM Platoon Ratio       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00                                                                                                                                                                                                                      |                         |      |      |      | 20.0     | 10.7    |      |
| V/C Ratio(X)         0.87         0.19         0.64         0.80         0.85         0.50           Avail Cap(c_a), veh/h         635         565         155         1317         1008         854           HCM Platoon Ratio         1.00         1.00         1.00         1.00         1.00         1.00         1.00           Upstream Filter(I)         1.00         1.00         1.00         1.00         1.00         1.00         1.00         1.00           Uniform Delay (d), s/veh         19.7         15.7         26.6         10.1         14.7         12.0           Incr Delay (d2), s/veh         10.1         0.2         6.8         3.0         5.6         0.6           Initial Q Delay(d3), s/veh         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         1.0                                                                                                                                                           |                         |      |      |      | 1052     | 802     |      |
| Avail Cap(c_a), veh/h 635 565 155 1317 1008 854 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |      |      |      |          |         |      |
| HCM Platoon Ratio       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       1.00       12.5       1.00       12.5       1.00       12.5       1.00       12.5       1.00       12.5       12                                                                                                                                                                                                        |                         |      |      |      |          |         |      |
| Upstream Filter(I)       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.00       1.0.1       12.0       12.0       1.0       1.0       1.0       1.0       1.0       1.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                               |                         |      |      |      |          |         |      |
| Uniform Delay (d), s/veh 19.7 15.7 26.6 10.1 14.7 12.0 Incr Delay (d2), s/veh 10.1 0.2 6.8 3.0 5.6 0.6 Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |      |      |      |          |         |      |
| Incr Delay (d2), s/veh         10.1         0.2         6.8         3.0         5.6         0.6           Initial Q Delay(d3),s/veh         0.0         0.0         0.0         0.0         0.0         0.0           %ile BackOfQ(50%),veh/ln         6.2         0.0         1.0         6.9         7.2         2.5           Unsig. Movement Delay, s/veh         29.7         15.9         33.4         13.0         20.3         12.5           LnGrp Dolay(d),s/veh         29.7         15.9         33.4         13.0         20.3         12.5           LnGrp LOS         C         B         C         B         C         B           Approach Vol, veh/h         518         909         1021           Approach Delay, s/veh         27.5         14.5         17.7           Approach LOS         C         B         B           Timer - Assigned Phs         2         4         5         6           Phs Duration (G+Y+Rc), s         36.9         20.7         7.7         29.2           Change Period (Y+Rc), s         4.5         4.5         4.5         4.5           Max Green Setting (Gmax), s         40.5         20.5         5.0         31.0                                                                                                                                                                                    | 1                       |      |      |      |          |         |      |
| Initial Q Delay(d3),s/veh       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       2.5       2.5       0.3       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5       12.5                                                                                                                                                                                                                                |                         |      |      |      |          |         |      |
| %ile BackOfQ(50%),veh/ln       6.2       0.0       1.0       6.9       7.2       2.5         Unsig. Movement Delay, s/veh       29.7       15.9       33.4       13.0       20.3       12.5         LnGrp Delay(d),s/veh       29.7       15.9       33.4       13.0       20.3       12.5         LnGrp LOS       C       B       C       B       C       B         Approach Vol, veh/h       518       909       1021         Approach Delay, s/veh       27.5       14.5       17.7         Approach LOS       C       B       B         Timer - Assigned Phs       2       4       5       6         Phs Duration (G+Y+Rc), s       36.9       20.7       7.7       29.2         Change Period (Y+Rc), s       4.5       4.5       4.5       4.5         Max Green Setting (Gmax), s       40.5       20.5       5.0       31.0         Max Q Clear Time (g_c+I1), s       22.8       15.3       4.0       20.7         Green Ext Time (p_c), s       5.9       0.9       0.0       4.0         Intersection Summary         HCM 6th Ctrl Delay       18.6                                                                                                                                                                                                                                                                                                     |                         |      |      |      |          |         |      |
| Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 29.7 15.9 33.4 13.0 20.3 12.5 LnGrp LOS C B C B C B C B Approach Vol, veh/h 518 Approach Delay, s/veh 27.5 14.5 17.7 Approach LOS C B B B  Timer - Assigned Phs 2 4 5 6 Phs Duration (G+Y+Rc), s Change Period (Y+Rc), s 4.5 Max Green Setting (Gmax), s Max Q Clear Time (g_c+I1), s Green Ext Time (p_c), s  Intersection Summary HCM 6th Ctrl Delay  15.9 33.4 13.0 20.3 12.5 B C B C B C B C B C B C B C B C B C B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |      |      |      |          |         |      |
| LnGrp Delay(d),s/veh         29.7         15.9         33.4         13.0         20.3         12.5           LnGrp LOS         C         B         C         B         C         B           Approach Vol, veh/h         518         909         1021           Approach Delay, s/veh         27.5         14.5         17.7           Approach LOS         C         B         B           Timer - Assigned Phs         2         4         5         6           Phs Duration (G+Y+Rc), s         36.9         20.7         7.7         29.2           Change Period (Y+Rc), s         4.5         4.5         4.5         4.5           Max Green Setting (Gmax), s         40.5         20.5         5.0         31.0           Max Q Clear Time (g_c+I1), s         22.8         15.3         4.0         20.7           Green Ext Time (p_c), s         5.9         0.9         0.0         4.0           Intersection Summary         HCM 6th Ctrl Delay         18.6                                                                                                                                                                                                                                                                                                                                                                                       |                         |      | 0.0  | 1.0  | 0.9      | 1.2     | 2.5  |
| LnGrp LOS         C         B         C         B         C         B           Approach Vol, veh/h         518         909         1021           Approach Delay, s/veh         27.5         14.5         17.7           Approach LOS         C         B         B           Timer - Assigned Phs         2         4         5         6           Phs Duration (G+Y+Rc), s         36.9         20.7         7.7         29.2           Change Period (Y+Rc), s         4.5         4.5         4.5         4.5           Max Green Setting (Gmax), s         40.5         20.5         5.0         31.0           Max Q Clear Time (g_c+l1), s         22.8         15.3         4.0         20.7           Green Ext Time (p_c), s         5.9         0.9         0.0         4.0           Intersection Summary           HCM 6th Ctrl Delay         18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |      | 15.0 | 20.4 | 10.0     | 20.2    | 10.5 |
| Approach Vol, veh/h         518         909         1021           Approach Delay, s/veh         27.5         14.5         17.7           Approach LOS         C         B         B           Timer - Assigned Phs         2         4         5         6           Phs Duration (G+Y+Rc), s         36.9         20.7         7.7         29.2           Change Period (Y+Rc), s         4.5         4.5         4.5         4.5           Max Green Setting (Gmax), s         40.5         20.5         5.0         31.0           Max Q Clear Time (g_c+l1), s         22.8         15.3         4.0         20.7           Green Ext Time (p_c), s         5.9         0.9         0.0         4.0           Intersection Summary           HCM 6th Ctrl Delay         18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 3 . ,                 |      |      |      |          |         |      |
| Approach Delay, s/veh       27.5       14.5       17.7         Approach LOS       C       B       B         Timer - Assigned Phs       2       4       5       6         Phs Duration (G+Y+Rc), s       36.9       20.7       7.7       29.2         Change Period (Y+Rc), s       4.5       4.5       4.5       4.5         Max Green Setting (Gmax), s       40.5       20.5       5.0       31.0         Max Q Clear Time (g_c+I1), s       22.8       15.3       4.0       20.7         Green Ext Time (p_c), s       5.9       0.9       0.0       4.0         Intersection Summary         HCM 6th Ctrl Delay       18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |      | В    | С    |          |         | В    |
| Approach LOS         C         B         B           Timer - Assigned Phs         2         4         5         6           Phs Duration (G+Y+Rc), s         36.9         20.7         7.7         29.2           Change Period (Y+Rc), s         4.5         4.5         4.5         4.5           Max Green Setting (Gmax), s         40.5         20.5         5.0         31.0           Max Q Clear Time (g_c+I1), s         22.8         15.3         4.0         20.7           Green Ext Time (p_c), s         5.9         0.9         0.0         4.0           Intersection Summary           HCM 6th Ctrl Delay         18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |      |      |      |          |         |      |
| Timer - Assigned Phs         2         4         5         6           Phs Duration (G+Y+Rc), s         36.9         20.7         7.7         29.2           Change Period (Y+Rc), s         4.5         4.5         4.5         4.5           Max Green Setting (Gmax), s         40.5         20.5         5.0         31.0           Max Q Clear Time (g_c+I1), s         22.8         15.3         4.0         20.7           Green Ext Time (p_c), s         5.9         0.9         0.0         4.0           Intersection Summary           HCM 6th Ctrl Delay         18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Approach Delay, s/veh   | 27.5 |      |      | 14.5     | 17.7    |      |
| Phs Duration (G+Y+Rc), s       36.9       20.7       7.7       29.2         Change Period (Y+Rc), s       4.5       4.5       4.5       4.5         Max Green Setting (Gmax), s       40.5       20.5       5.0       31.0         Max Q Clear Time (g_c+I1), s       22.8       15.3       4.0       20.7         Green Ext Time (p_c), s       5.9       0.9       0.0       4.0         Intersection Summary         HCM 6th Ctrl Delay       18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Approach LOS            | С    |      |      | В        | В       |      |
| Phs Duration (G+Y+Rc), s       36.9       20.7       7.7       29.2         Change Period (Y+Rc), s       4.5       4.5       4.5       4.5         Max Green Setting (Gmax), s       40.5       20.5       5.0       31.0         Max Q Clear Time (g_c+I1), s       22.8       15.3       4.0       20.7         Green Ext Time (p_c), s       5.9       0.9       0.0       4.0         Intersection Summary         HCM 6th Ctrl Delay       18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Timer - Assigned Phs    |      | 2    |      | 4        | 5       | 6    |
| Change Period (Y+Rc), s       4.5       4.5       4.5         Max Green Setting (Gmax), s       40.5       20.5       5.0       31.0         Max Q Clear Time (g_c+I1), s       22.8       15.3       4.0       20.7         Green Ext Time (p_c), s       5.9       0.9       0.0       4.0         Intersection Summary         HCM 6th Ctrl Delay       18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |      |      |      |          |         |      |
| Max Green Setting (Gmax), s       40.5       20.5       5.0       31.0         Max Q Clear Time (g_c+l1), s       22.8       15.3       4.0       20.7         Green Ext Time (p_c), s       5.9       0.9       0.0       4.0         Intersection Summary         HCM 6th Ctrl Delay       18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |      |      |      |          |         |      |
| Max Q Clear Time (g_c+I1), s       22.8       15.3       4.0       20.7         Green Ext Time (p_c), s       5.9       0.9       0.0       4.0         Intersection Summary         HCM 6th Ctrl Delay       18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |      |      |      |          |         |      |
| Green Ext Time (p_c), s 5.9 0.9 0.0 4.0  Intersection Summary  HCM 6th Ctrl Delay 18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |      |      |      |          |         |      |
| Intersection Summary HCM 6th Ctrl Delay 18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .0_ ,                   |      |      |      |          |         |      |
| HCM 6th Ctrl Delay 18.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Green Ext Time (p_c), S |      | 5.9  |      | 0.9      | 0.0     | 4.0  |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Intersection Summary    |      |      |      |          |         |      |
| HCM 6th LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HCM 6th Ctrl Delay      |      |      | 18.6 |          |         |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HCM 6th LOS             |      |      | В    |          |         |      |

| Intersection                |       |       |       |       |       |  |
|-----------------------------|-------|-------|-------|-------|-------|--|
| Intersection Delay, s/veh   | 33.6  |       |       |       |       |  |
| Intersection LOS            | D     |       |       |       |       |  |
| Approach                    |       | EB    | NB    |       | SB    |  |
| Entry Lanes                 |       | 1     | 1     |       | 2     |  |
| Conflicting Circle Lanes    |       | 1     | 1     |       | 1     |  |
| Adj Approach Flow, veh/h    |       | 518   | 909   |       | 1021  |  |
| Demand Flow Rate, veh/h     |       | 529   | 927   |       | 1042  |  |
| Vehicles Circulating, veh/h |       | 693   | 443   |       | 64    |  |
| Vehicles Exiting, veh/h     |       | 413   | 779   |       | 1306  |  |
| Ped Vol Crossing Leg, #/h   |       | 0     | 0     |       | 0     |  |
| Ped Cap Adj                 |       | .000  | 1.000 |       | 1.000 |  |
| Approach Delay, s/veh       | 2     | 25.5  | 67.9  |       | 7.1   |  |
| Approach LOS                |       | D     | F     |       | Α     |  |
| Lane                        | Left  | Left  |       | Left  | Right |  |
| Designated Moves            | LR    | LT    |       | LT    | R     |  |
| Assumed Moves               | LR    | LT    |       | LT    | R     |  |
| RT Channelized              |       |       |       |       |       |  |
| Lane Util                   | 1.000 | 1.000 |       | 0.665 | 0.335 |  |
| Follow-Up Headway, s        | 2.609 | 2.609 |       | 2.535 | 2.535 |  |
| Critical Headway, s         | 4.976 | 4.976 |       | 4.544 | 4.544 |  |
| Entry Flow, veh/h           | 529   | 927   |       | 693   | 349   |  |
| Cap Entry Lane, veh/h       | 681   | 878   |       | 1340  | 1340  |  |
| Entry HV Adj Factor         | 0.979 | 0.981 |       | 0.980 | 0.980 |  |
| Flow Entry, veh/h           | 518   | 909   |       | 679   | 342   |  |
| Cap Entry, veh/h            | 666   | 861   |       | 1313  | 1313  |  |
| V/C Ratio                   | 0.777 | 1.056 |       | 0.517 | 0.260 |  |
| Control Delay, s/veh        | 25.5  | 67.9  |       | 8.2   | 5.0   |  |
| LOS                         | D     | F     |       | А     | Α     |  |
| 95th %tile Queue, veh       | 7     | 22    |       | 3     | 1     |  |

|                                    | ۶          | <b>→</b> | •          | •           | <b>←</b>   | •          | 1          | †           | <b>/</b>    | <b>/</b>   | ļ            | ✓          |  |
|------------------------------------|------------|----------|------------|-------------|------------|------------|------------|-------------|-------------|------------|--------------|------------|--|
| Movement                           | EBL        | EBT      | EBR        | WBL         | WBT        | WBR        | NBL        | NBT         | NBR         | SBL        | SBT          | SBR        |  |
| Lane Configurations                |            | 4        |            |             | 4          |            | 1          | <b>↑</b>    | 7           | <b>ነ</b>   | ₽            |            |  |
| Traffic Volume (veh/h)             | 20         | 20       | 30         | 101         | 20         | 60         | 30         | 929         | 172         | 50         | 1005         | 50         |  |
| Future Volume (veh/h)              | 20         | 20       | 30         | 101         | 20         | 60         | 30         | 929         | 172         | 50         | 1005         | 50         |  |
| Initial Q (Qb), veh                | 0          | 0        | 0          | 0           | 0          | 0          | 0          | 0           | 0           | 0          | 0            | 0          |  |
| Ped-Bike Adj(A_pbT)                | 1.00       |          | 1.00       | 1.00        |            | 1.00       | 1.00       |             | 1.00        | 1.00       |              | 1.00       |  |
| Parking Bus, Adj                   | 1.00       | 1.00     | 1.00       | 1.00        | 1.00       | 1.00       | 1.00       | 1.00        | 1.00        | 1.00       | 1.00         | 1.00       |  |
| Work Zone On Approac               |            | No       | 1070       | 1070        | No         | 1070       | 1070       | No          | 1070        | 1070       | No           | 1070       |  |
|                                    | 1870       | 1870     | 1870       | 1870        | 1870       | 1870       | 1870       | 1870        | 1870        | 1870       | 1870         | 1870       |  |
| Adj Flow Rate, veh/h               | 21<br>0.95 | 21       | 32<br>0.95 | 106<br>0.95 | 21<br>0.95 | 63<br>0.95 | 32<br>0.95 | 978<br>0.95 | 181<br>0.95 | 53<br>0.95 | 1058<br>0.95 | 53<br>0.95 |  |
| Peak Hour Factor                   | 0.95       | 0.95     | 0.95       | 0.95        | 0.95       | 0.95       | 0.95       | 0.95        | 0.95        | 0.95       | 0.95         | 0.95       |  |
| Percent Heavy Veh, %<br>Cap, veh/h | 27         | 27       | 42         | 124         | 25         | 74         | 50         | 1146        | 971         | 69         | 1100         | 55         |  |
| Arrive On Green                    | 0.06       | 0.06     | 0.06       | 0.13        | 0.13       | 0.13       | 0.03       | 0.61        | 0.61        | 0.04       | 0.62         | 0.62       |  |
| Sat Flow, veh/h                    | 486        | 486      | 741        | 959         | 190        | 570        | 1781       | 1870        | 1585        | 1781       | 1766         | 88         |  |
| Grp Volume(v), veh/h               | 74         | 0        | 0          | 190         | 0          | 0          | 32         | 978         | 181         | 53         | 0            | 1111       |  |
| Grp Sat Flow(s), veh/h/lr          |            | 0        | 0          | 1720        | 0          | 0          | 1781       | 1870        | 1585        | 1781       | 0            | 1854       |  |
| Q Serve(g_s), s                    | 4.7        | 0.0      | 0.0        | 11.9        | 0.0        | 0.0        | 2.0        | 46.8        | 5.5         | 3.2        | 0.0          | 62.1       |  |
| Cycle Q Clear(q_c), s              | 4.7        | 0.0      | 0.0        | 11.9        | 0.0        | 0.0        | 2.0        | 46.8        | 5.5         | 3.2        | 0.0          | 62.1       |  |
| Prop In Lane                       | 0.28       | 0.0      | 0.43       | 0.56        | 0.0        | 0.33       | 1.00       | 1010        | 1.00        | 1.00       | 0.0          | 0.05       |  |
| Lane Grp Cap(c), veh/h             |            | 0        | 0          | 222         | 0          | 0          | 50         | 1146        | 971         | 69         | 0            | 1156       |  |
| V/C Ratio(X)                       | 0.77       | 0.00     | 0.00       | 0.86        | 0.00       | 0.00       | 0.63       | 0.85        | 0.19        | 0.77       | 0.00         | 0.96       |  |
| Avail Cap(c_a), veh/h              | 284        | 0        | 0          | 281         | 0          | 0          | 234        | 1208        | 1024        | 234        | 0            | 1198       |  |
| HCM Platoon Ratio                  | 1.00       | 1.00     | 1.00       | 1.00        | 1.00       | 1.00       | 1.00       | 1.00        | 1.00        | 1.00       | 1.00         | 1.00       |  |
| Upstream Filter(I)                 | 1.00       | 0.00     | 0.00       | 1.00        | 0.00       | 0.00       | 1.00       | 1.00        | 1.00        | 1.00       | 0.00         | 1.00       |  |
| Uniform Delay (d), s/veł           |            | 0.0      | 0.0        | 47.0        | 0.0        | 0.0        | 53.0       | 17.3        | 9.3         | 52.5       | 0.0          | 19.5       |  |
| Incr Delay (d2), s/veh             | 12.0       | 0.0      | 0.0        | 18.5        | 0.0        | 0.0        | 12.4       | 5.9         | 0.1         | 16.4       | 0.0          | 17.3       |  |
| Initial Q Delay(d3),s/veh          |            | 0.0      | 0.0        | 0.0         | 0.0        | 0.0        | 0.0        | 0.0         | 0.0         | 0.0        | 0.0          | 0.0        |  |
| %ile BackOfQ(50%),vel              |            | 0.0      | 0.0        | 6.2         | 0.0        | 0.0        | 1.0        | 19.8        | 1.8         | 1.8        | 0.0          | 28.9       |  |
| Unsig. Movement Delay              |            |          |            |             |            |            |            |             |             |            |              |            |  |
| LnGrp Delay(d),s/veh               | 63.3       | 0.0      | 0.0        | 65.5        | 0.0        | 0.0        | 65.4       | 23.2        | 9.4         | 68.9       | 0.0          | 36.8       |  |
| LnGrp LOS                          | E          | A        | A          | E           | A          | Α          | E          | C           | Α           | E          | A            | D          |  |
| Approach Vol, veh/h                |            | 74       |            |             | 190        |            |            | 1191        |             |            | 1164         |            |  |
| Approach Delay, s/veh              |            | 63.3     |            |             | 65.5       |            |            | 22.2        |             |            | 38.3         |            |  |
| Approach LOS                       |            | Е        |            |             | Е          |            |            | С           |             |            | D            |            |  |
| Timer - Assigned Phs               |            | 2        | 3          | 4           |            | 6          | 7          | 8           |             |            |              |            |  |
| Phs Duration (G+Y+Rc)              |            | 10.7     | 8.8        | 72.1        |            | 18.7       | 7.6        | 73.2        |             |            |              |            |  |
| Change Period (Y+Rc),              |            | 4.5      | 4.5        | 4.5         |            | 4.5        | 4.5        | 4.5         |             |            |              |            |  |
| Max Green Setting (Gm              |            | 18.3     | 14.5       | 71.2        |            | 18.0       | 14.5       | 71.2        |             |            |              |            |  |
| Max Q Clear Time (g_c-             |            | 6.7      | 5.2        | 48.8        |            | 13.9       | 4.0        | 64.1        |             |            |              |            |  |
| Green Ext Time (p_c), s            |            | 0.2      | 0.1        | 8.9         |            | 0.3        | 0.0        | 4.6         |             |            |              |            |  |
| Intersection Summary               |            |          |            |             |            |            |            |             |             |            |              |            |  |
| HCM 6th Ctrl Delay                 |            |          | 33.7       |             |            |            |            |             |             |            |              |            |  |
| HCM 6th LOS                        |            |          | С          |             |            |            |            |             |             |            |              |            |  |

|                           | ۶    | <b>→</b> | •         | •    | •    | •    | •    | <b>†</b> | /    | <b>&gt;</b> | ļ        | ✓    |  |
|---------------------------|------|----------|-----------|------|------|------|------|----------|------|-------------|----------|------|--|
| Movement                  | EBL  | EBT      | EBR       | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL         | SBT      | SBR  |  |
| Lane Configurations       |      | 4        |           |      | 4    | 7    | ሻ    | <b>†</b> | 7    | ሻ           | <b>†</b> | 7    |  |
| Traffic Volume (veh/h)    | 20   | 20       | 20        | 199  | 20   | 158  | 40   | 894      | 216  | 115         | 921      | 20   |  |
| Future Volume (veh/h)     | 20   | 20       | 20        | 199  | 20   | 158  | 40   | 894      | 216  | 115         | 921      | 20   |  |
| Initial Q (Qb), veh       | 0    | 0        | 0         | 0    | 0    | 0    | 0    | 0        | 0    | 0           | 0        | 0    |  |
| Ped-Bike Adj(A_pbT)       | 1.00 |          | 0.99      | 1.00 |      | 0.99 | 1.00 |          | 1.00 | 1.00        |          | 1.00 |  |
| Parking Bus, Adj          | 1.00 | 1.00     | 1.00      | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |  |
| Work Zone On Approacl     |      | No       |           |      | No   |      |      | No       |      |             | No       |      |  |
|                           | 1870 | 1870     | 1870      | 1870 | 1870 | 1870 | 1870 | 1870     | 1870 | 1870        | 1870     | 1870 |  |
| Adj Flow Rate, veh/h      | 21   | 21       | 21        | 209  | 21   | 166  | 42   | 941      | 227  | 121         | 969      | 21   |  |
| Peak Hour Factor          | 0.95 | 0.95     | 0.95      | 0.95 | 0.95 | 0.95 | 0.95 | 0.95     | 0.95 | 0.95        | 0.95     | 0.95 |  |
| Percent Heavy Veh, %      | 2    | 2        | 2         | 2    | 2    | 2    | 2    | 2        | 2    | 2           | 2        | 2    |  |
| Cap, veh/h                | 42   | 41       | 20        | 225  | 17   | 417  | 54   | 978      | 825  | 147         | 1076     | 908  |  |
| Arrive On Green           | 0.27 | 0.27     | 0.27      | 0.27 | 0.27 | 0.27 | 0.03 | 0.52     | 0.52 | 0.08        | 0.58     | 0.58 |  |
| Sat Flow, veh/h           | 0    | 154      | 77        | 620  | 62   | 1570 | 1781 | 1870     | 1577 | 1781        | 1870     | 1578 |  |
| Grp Volume(v), veh/h      | 63   | 0        | 0         | 230  | 0    | 166  | 42   | 941      | 227  | 121         | 969      | 21   |  |
| Grp Sat Flow(s),veh/h/ln  |      | 0        | 0         | 683  | 0    | 1570 | 1781 | 1870     | 1577 | 1781        | 1870     | 1578 |  |
| Q Serve(g_s), s           | 0.0  | 0.0      | 0.0       | 0.0  | 0.0  | 9.9  | 2.7  | 55.3     | 9.2  | 7.7         | 52.3     | 0.7  |  |
| Cycle Q Clear(g_c), s     | 30.4 | 0.0      | 0.0       | 30.4 | 0.0  | 9.9  | 2.7  | 55.3     | 9.2  | 7.7         | 52.3     | 0.7  |  |
| Prop In Lane              | 0.33 |          | 0.33      | 0.91 |      | 1.00 | 1.00 |          | 1.00 | 1.00        |          | 1.00 |  |
| Lane Grp Cap(c), veh/h    |      | 0        | 0         | 241  | 0    | 417  | 54   | 978      | 825  | 147         | 1076     | 908  |  |
| V/C Ratio(X)              | 0.61 | 0.00     | 0.00      | 0.95 | 0.00 | 0.40 | 0.78 | 0.96     | 0.28 | 0.82        | 0.90     | 0.02 |  |
| Avail Cap(c_a), veh/h     | 103  | 0        | 0         | 241  | 0    | 417  | 62   | 1060     | 894  | 154         | 1156     | 976  |  |
| HCM Platoon Ratio         | 1.00 | 1.00     | 1.00      | 1.00 | 1.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |  |
| Upstream Filter(I)        | 1.00 | 0.00     | 0.00      | 1.00 | 0.00 | 1.00 | 1.00 | 1.00     | 1.00 | 1.00        | 1.00     | 1.00 |  |
| Uniform Delay (d), s/veh  |      | 0.0      | 0.0       | 45.3 | 0.0  | 34.5 | 55.2 | 26.2     | 15.2 | 51.7        | 21.4     | 10.5 |  |
| Incr Delay (d2), s/veh    | 7.4  | 0.0      | 0.0       | 44.7 | 0.0  | 0.2  | 35.6 | 18.1     | 0.1  | 26.0        | 8.9      | 0.0  |  |
| Initial Q Delay(d3),s/veh | 0.0  | 0.0      | 0.0       | 0.0  | 0.0  | 0.0  | 0.0  | 0.0      | 0.0  | 0.0         | 0.0      | 0.0  |  |
| %ile BackOfQ(50%),veh     |      | 0.0      | 0.0       | 9.7  | 0.0  | 3.8  | 1.7  | 27.8     | 3.2  | 4.4         | 23.6     | 0.2  |  |
| Jnsig. Movement Delay     |      | l        |           |      |      |      |      |          |      |             |          |      |  |
| LnGrp Delay(d),s/veh      | 42.5 | 0.0      | 0.0       | 90.0 | 0.0  | 34.8 | 90.7 | 44.3     | 15.3 | 77.7        | 30.3     | 10.5 |  |
| LnGrp LOS                 | D    | Α        | Α         | F    | Α    | С    | F    | D        | В    | Е           | С        | В    |  |
| Approach Vol, veh/h       |      | 63       |           |      | 396  |      |      | 1210     |      |             | 1111     |      |  |
| Approach Delay, s/veh     |      | 42.5     |           |      | 66.8 |      |      | 40.5     |      |             | 35.1     |      |  |
| Approach LOS              |      | D        |           |      | Ε    |      |      | D        |      |             | D        |      |  |
| Timer - Assigned Phs      |      | 2        | 3         | 4    |      | 6    | 7    | 8        |      |             |          |      |  |
| Phs Duration (G+Y+Rc)     | S    | 35.0     | 8.6       | 71.0 |      | 35.0 | 14.6 | 65.0     |      |             |          |      |  |
| Change Period (Y+Rc),     |      | 4.6      | 5.1       | 5.1  |      | 4.6  | 5.1  | 5.1      |      |             |          |      |  |
| Max Green Setting (Gm.    |      | 30.4     | 4.0       | 70.8 |      | 30.4 | 9.9  | 64.9     |      |             |          |      |  |
| Max Q Clear Time (q_c+    |      | 32.4     | 4.7       | 54.3 |      | 32.4 | 9.7  | 57.3     |      |             |          |      |  |
| Green Ext Time (p_c), s   |      | 0.0      | 0.0       | 3.5  |      | 0.0  | 0.0  | 2.5      |      |             |          |      |  |
| Intersection Summary      |      | 0.0      | 0.0       | 0.0  |      | 5.0  | 0.0  | 2.0      |      |             |          |      |  |
| HCM 6th Ctrl Delay        |      |          | 42.1      |      |      |      |      |          |      |             |          |      |  |
| HCM 6th LOS               |      |          | 42.1<br>D |      |      |      |      |          |      |             |          |      |  |
|                           |      |          | U         |      |      |      |      |          |      |             |          |      |  |
| Notes                     |      |          |           |      |      |      |      |          |      |             |          |      |  |

User approved pedestrian interval to be less than phase max green.

|                            | •     | <b>→</b> | <b>←</b>  | •    | /         | 4    |  |
|----------------------------|-------|----------|-----------|------|-----------|------|--|
| Movement E                 | EBL   | EBT      | WBT       | WBR  | SBL       | SBR  |  |
| Lane Configurations        |       | र्स      | <b>↑</b>  | 7    | Ť         | 7    |  |
| Traffic Volume (veh/h)     | 52    | 285      | 299       | 653  | 413       | 80   |  |
| Future Volume (veh/h)      | 52    | 285      | 299       | 653  | 413       | 80   |  |
| Initial Q (Qb), veh        | 0     | 0        | 0         | 0    | 0         | 0    |  |
| , –ı ,                     | 1.00  |          |           | 1.00 | 1.00      | 1.00 |  |
| J . ,                      | 1.00  | 1.00     | 1.00      | 1.00 | 1.00      | 1.00 |  |
| Work Zone On Approach      |       | No       | No        |      | No        |      |  |
| •                          | 870   | 1870     | 1870      | 1870 | 1870      | 1870 |  |
| Adj Flow Rate, veh/h       | 55    | 300      | 315       | 687  | 435       | 84   |  |
| Peak Hour Factor C         | 0.95  | 0.95     | 0.95      | 0.95 | 0.95      | 0.95 |  |
| Percent Heavy Veh, %       | 2     | 2        | 2         | 2    | 2         | 2    |  |
|                            | 154   | 733      | 951       | 806  | 534       | 475  |  |
|                            | 0.51  | 0.51     | 0.51      | 0.51 | 0.30      | 0.30 |  |
| Sat Flow, veh/h            | 129   | 1443     | 1870      | 1585 | 1781      | 1585 |  |
| Grp Volume(v), veh/h       | 355   | 0        | 315       | 687  | 435       | 84   |  |
| Grp Sat Flow(s), veh/h/ln1 | 571   | 0        | 1870      | 1585 | 1781      | 1585 |  |
|                            | 0.0   | 0.0      | 4.7       | 17.6 | 10.6      | 1.8  |  |
|                            | 5.4   | 0.0      | 4.7       | 17.6 | 10.6      | 1.8  |  |
|                            | 0.15  |          |           | 1.00 | 1.00      | 1.00 |  |
| Lane Grp Cap(c), veh/h     | 888   | 0        | 951       | 806  | 534       | 475  |  |
|                            | 0.40  | 0.00     | 0.33      | 0.85 | 0.82      | 0.18 |  |
|                            | 142   | 0        | 1297      | 1100 | 1084      | 964  |  |
|                            | 1.00  | 1.00     | 1.00      | 1.00 | 1.00      | 1.00 |  |
|                            | 1.00  | 0.00     | 1.00      | 1.00 | 1.00      | 1.00 |  |
| Uniform Delay (d), s/veh   |       | 0.0      | 6.8       | 10.0 | 15.2      | 12.1 |  |
|                            | 0.3   | 0.0      | 0.2       | 4.9  | 3.1       | 0.2  |  |
|                            | 0.0   | 0.0      | 0.0       | 0.0  | 0.0       | 0.0  |  |
| %ile BackOfQ(50%),veh/l    |       | 0.0      | 1.5       | 5.6  | 3.6       | 0.5  |  |
| Unsig. Movement Delay,     |       | 3.0      |           |      |           | 3.0  |  |
| LnGrp Delay(d),s/veh       | 7.3   | 0.0      | 7.0       | 14.9 | 18.3      | 12.3 |  |
| LnGrp LOS                  | Α     | Α        | Α.        | В    | В         | В    |  |
| Approach Vol, veh/h        | -,,   | 355      | 1002      |      | 519       |      |  |
| Approach Delay, s/veh      |       | 7.3      | 12.4      |      | 17.3      |      |  |
| Approach LOS               |       | 7.3<br>A | 12.4<br>B |      | 17.3<br>B |      |  |
|                            |       |          | U         |      | U         |      |  |
| Timer - Assigned Phs       |       |          |           | 4    |           | 6    |  |
| Phs Duration (G+Y+Rc), s   |       |          |           | 28.3 |           | 18.5 |  |
| Change Period (Y+Rc), s    |       |          |           | 4.5  |           | 4.5  |  |
| Max Green Setting (Gmax    |       |          |           | 32.5 |           | 28.5 |  |
| Max Q Clear Time (g_c+l    | 1), s |          |           | 7.4  |           | 12.6 |  |
| Green Ext Time (p_c), s    |       |          |           | 2.4  |           | 1.4  |  |
| Intersection Summary       |       |          |           |      |           |      |  |
|                            |       |          | 12.0      |      |           |      |  |
| HCM 6th Ctrl Delay         |       |          | 12.8      |      |           |      |  |
| HCM 6th LOS                |       |          | В         |      |           |      |  |

| Intersection                                                                                                                                                                                                  |                                                                              |                                                                                   |                                                              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------|--|
| Intersection Delay, s/veh                                                                                                                                                                                     | 13.2                                                                         |                                                                                   |                                                              |  |
| Intersection LOS                                                                                                                                                                                              | В                                                                            |                                                                                   |                                                              |  |
| Approach                                                                                                                                                                                                      | EB                                                                           | WB                                                                                | SB                                                           |  |
| Entry Lanes                                                                                                                                                                                                   | 1                                                                            | 1                                                                                 | 1                                                            |  |
| Conflicting Circle Lanes                                                                                                                                                                                      | 1                                                                            | 1                                                                                 | 1                                                            |  |
| Adj Approach Flow, veh/h                                                                                                                                                                                      | 355                                                                          | 1002                                                                              | 519                                                          |  |
| Demand Flow Rate, veh/h                                                                                                                                                                                       | 362                                                                          | 1022                                                                              | 530                                                          |  |
| Vehicles Circulating, veh/h                                                                                                                                                                                   | 444                                                                          | 56                                                                                | 321                                                          |  |
| Vehicles Exiting, veh/h                                                                                                                                                                                       | 407                                                                          | 750                                                                               | 757                                                          |  |
| Ped Vol Crossing Leg, #/h                                                                                                                                                                                     | 0                                                                            | 0                                                                                 | 0                                                            |  |
| Ped Cap Adj                                                                                                                                                                                                   | 1.000                                                                        | 1.000                                                                             | 1.000                                                        |  |
| Approach Delay, s/veh                                                                                                                                                                                         | 9.2                                                                          | 16.1                                                                              | 10.5                                                         |  |
| Approach LOS                                                                                                                                                                                                  | А                                                                            | С                                                                                 | В                                                            |  |
| Lane                                                                                                                                                                                                          | Left                                                                         | Left                                                                              | Left                                                         |  |
| Declarated Massa                                                                                                                                                                                              | LT                                                                           | TD                                                                                | LR                                                           |  |
| Designated Moves                                                                                                                                                                                              | LT                                                                           | TR                                                                                | LK                                                           |  |
| Assumed Moves                                                                                                                                                                                                 | LT                                                                           | TR                                                                                | LR<br>LR                                                     |  |
|                                                                                                                                                                                                               |                                                                              |                                                                                   |                                                              |  |
| Assumed Moves                                                                                                                                                                                                 |                                                                              |                                                                                   | LR<br>1.000                                                  |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s                                                                                                                                                   | LT<br>1.000<br>2.609                                                         | TR<br>1.000<br>2.609                                                              | LR<br>1.000<br>2.609                                         |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s                                                                                                                               | LT<br>1.000                                                                  | TR<br>1.000                                                                       | LR<br>1.000                                                  |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h                                                                                                             | 1.000<br>2.609<br>4.976<br>362                                               | TR  1.000 2.609 4.976 1022                                                        | LR<br>1.000<br>2.609<br>4.976<br>530                         |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h                                                                                       | 1.000<br>2.609<br>4.976<br>362<br>877                                        | TR  1.000 2.609 4.976 1022 1303                                                   | LR<br>1.000<br>2.609<br>4.976<br>530<br>995                  |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor                                                                   | 1.000<br>2.609<br>4.976<br>362<br>877<br>0.981                               | TR  1.000 2.609 4.976 1022 1303 0.980                                             | 1.000<br>2.609<br>4.976<br>530<br>995<br>0.979               |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h                                                 | 1.000<br>2.609<br>4.976<br>362<br>877<br>0.981<br>355                        | TR  1.000 2.609 4.976 1022 1303 0.980 1002                                        | LR  1.000 2.609 4.976 530 995 0.979 519                      |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h                                | 1.000<br>2.609<br>4.976<br>362<br>877<br>0.981<br>355<br>860                 | TR  1.000 2.609 4.976 1022 1303 0.980 1002 1277                                   | 1.000<br>2.609<br>4.976<br>530<br>995<br>0.979<br>519        |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio                      | 1.000<br>2.609<br>4.976<br>362<br>877<br>0.981<br>355<br>860<br>0.413        | TR  1.000 2.609 4.976 1022 1303 0.980 1002 1277 0.784                             | 1.000<br>2.609<br>4.976<br>530<br>995<br>0.979<br>519<br>974 |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh | 1.000<br>2.609<br>4.976<br>362<br>877<br>0.981<br>355<br>860<br>0.413<br>9.2 | 1.000<br>2.609<br>4.976<br>1022<br>1303<br>0.980<br>1002<br>1277<br>0.784<br>16.1 | 1.000<br>2.609<br>4.976<br>530<br>995<br>0.979<br>519        |  |
| Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio                      | 1.000<br>2.609<br>4.976<br>362<br>877<br>0.981<br>355<br>860<br>0.413        | TR  1.000 2.609 4.976 1022 1303 0.980 1002 1277 0.784                             | 1.000<br>2.609<br>4.976<br>530<br>995<br>0.979<br>519<br>974 |  |

| 9                                                     | <b>k</b>   | <b>→</b>  | •         | •         | <b>←</b> | •            | 4         | †         | <b>/</b> | <b>/</b>  | ţ    | 4         |  |
|-------------------------------------------------------|------------|-----------|-----------|-----------|----------|--------------|-----------|-----------|----------|-----------|------|-----------|--|
| Movement EE                                           |            | EBT       | EBR       | WBL       | WBT      | WBR          | NBL       | NBT       | NBR      | SBL       | SBT  | SBR       |  |
| Lane Configurations                                   | ķ          | ĵ.        |           | ň         | <b>+</b> | 7            |           | 4         |          |           | र्स  | 7         |  |
| ,                                                     | 72         | 748       | 20        | 30        | 625      | 490          | 20        | 30        | 30       | 505       | 30   | 42        |  |
|                                                       | 72         | 748       | 20        | 30        | 625      | 490          | 20        | 30        | 30       | 505       | 30   | 42        |  |
| Initial Q (Qb), veh                                   | 0          | 0         | 0         | 0         | 0        | 0            | 0         | 0         | 0        | 0         | 0    | 0         |  |
| Ped-Bike Adj(A_pbT) 1.0                               |            |           | 1.00      | 1.00      |          | 1.00         | 1.00      |           | 1.00     | 1.00      |      | 1.00      |  |
| Parking Bus, Adj 1.0                                  | 00         | 1.00      | 1.00      | 1.00      | 1.00     | 1.00         | 1.00      | 1.00      | 1.00     | 1.00      | 1.00 | 1.00      |  |
| Work Zone On Approach                                 | 70         | No        | 4070      | 4070      | No       | 4070         | 1070      | No        | 4070     | 1070      | No   | 1070      |  |
| Adj Sat Flow, veh/h/ln 183                            |            | 1870      | 1870      | 1870      | 1870     | 1870         | 1870      | 1870      | 1870     | 1870      | 1870 | 1870      |  |
|                                                       | 76         | 787       | 21        | 32        | 658      | 516          | 21        | 32        | 32       | 532       | 32   | 44        |  |
| Peak Hour Factor 0.9                                  |            | 0.95      | 0.95      | 0.95      | 0.95     | 0.95         | 0.95      | 0.95      | 0.95     | 0.95      | 0.95 | 0.95      |  |
| Percent Heavy Veh, %                                  | 2          | 2         | 2         | 2         | 2        | 2            | 2         | 2         | 2        | 2         | 2    | 2         |  |
|                                                       | 39         | 852       | 23        | 47        | 834      | 707          | 26        | 40        | 40       | 513       | 31   | 482       |  |
| Arrive On Green 0.0                                   |            | 0.47      | 0.47      | 0.03      | 0.45     | 0.45         | 0.06      | 0.06      | 0.06     | 0.30      | 0.30 | 0.30      |  |
| Sat Flow, veh/h 178                                   |            | 1813      | 48        | 1781      | 1870     | 1585         | 428       | 652       | 652      | 1685      | 101  | 1585      |  |
|                                                       | 76         | 0         | 808       | 32        | 658      | 516          | 85        | 0         | 0        | 564       | 0    | 44        |  |
| Grp Sat Flow(s), veh/h/ln178                          |            | 0         | 1862      | 1781      | 1870     | 1585         | 1732      | 0         | 0        | 1786      | 0    | 1585      |  |
| \ <del>0</del> — /·                                   | .5         | 0.0       | 52.8      | 2.3       | 39.0     | 34.7         | 6.3       | 0.0       | 0.0      | 39.5      | 0.0  | 2.6       |  |
| ,0_ ,                                                 | .5         | 0.0       | 52.8      | 2.3       | 39.0     | 34.7         | 6.3       | 0.0       | 0.0      | 39.5      | 0.0  | 2.6       |  |
| Prop In Lane 1.0                                      |            | 0         | 0.03      | 1.00      | 004      | 1.00         | 0.25      | 0         | 0.38     | 0.94      | 0    | 1.00      |  |
|                                                       | 39         | 0         | 875       | 47        | 834      | 707          | 106       | 0         | 0        | 543       | 0    | 482       |  |
| V/C Ratio(X) 0.8                                      |            | 0.00      | 0.92      | 0.68      | 0.79     | 0.73         | 0.81      | 0.00      | 0.00     | 1.04      | 0.00 | 0.09      |  |
| 1 \ - /-                                              | 39         | 1.00      | 1131      | 70        | 1116     | 946          | 113       | 0         | 1.00     | 543       | 1.00 | 482       |  |
| HCM Platoon Ratio 1.0                                 |            | 1.00      | 1.00      | 1.00      | 1.00     | 1.00         | 1.00      | 1.00      | 1.00     | 1.00      | 1.00 | 1.00      |  |
| Upstream Filter(I) 1.0<br>Uniform Delay (d), s/veh 61 |            | 0.00      | 1.00      | 1.00      | 1.00     | 1.00<br>29.5 | 1.00      | 0.00      | 0.00     | 45.2      | 0.00 | 1.00      |  |
| Incr Delay (d2), s/veh 50                             |            | 0.0       | 10.5      | 15.9      | 2.8      | 1.9          | 31.5      | 0.0       | 0.0      | 48.8      | 0.0  | 0.1       |  |
| Initial Q Delay(d3),s/veh 0                           |            | 0.0       | 0.0       | 0.0       | 0.0      | 0.0          | 0.0       | 0.0       | 0.0      | 0.0       | 0.0  | 0.0       |  |
| %ile BackOfQ(50%),veh/lr3                             |            | 0.0       | 25.4      | 1.3       | 17.8     | 13.3         | 3.7       | 0.0       | 0.0      | 24.7      | 0.0  | 1.0       |  |
| Unsig. Movement Delay, s/                             |            | 0.0       | 25.4      | 1.0       | 17.0     | 13.3         | 3.1       | 0.0       | 0.0      | 24.7      | 0.0  | 1.0       |  |
| LnGrp Delay(d),s/veh 111                              |            | 0.0       | 42.8      | 78.6      | 33.5     | 31.5         | 91.8      | 0.0       | 0.0      | 94.0      | 0.0  | 32.4      |  |
| LnGrp LOS                                             | . <i>7</i> | Α         | 42.0<br>D | 70.0<br>E | C        | C C          | 71.0<br>F | Α         | Α        | 74.0<br>F | Α    | 32.4<br>C |  |
| Approach Vol, veh/h                                   | <u> </u>   | 884       | <u>_</u>  |           | 1206     |              | '         | 85        |          | ı         | 608  |           |  |
| Approach Delay, s/veh                                 |            | 48.7      |           |           | 33.8     |              |           | 91.8      |          |           | 89.5 |           |  |
| Approach LOS                                          |            | 40.7<br>D |           |           | C        |              |           | 71.0<br>F |          |           | 07.5 |           |  |
|                                                       |            |           |           |           | C        |              |           | <u>'</u>  |          |           |      |           |  |
| Timer - Assigned Phs                                  |            | 2         | 3         | 4         |          | 6            | 7         | 8         |          |           |      |           |  |
| Phs Duration (G+Y+Rc), s                              |            | 12.4      | 7.9       | 65.5      |          | 44.0         | 11.0      | 62.4      |          |           |      |           |  |
| Change Period (Y+Rc), s                               |            | 4.5       | 4.5       | 4.5       |          | 4.5          | 4.5       | 4.5       |          |           |      |           |  |
| Max Green Setting (Gmax)                              |            | 8.5       | 5.1       | 78.9      |          | 39.5         | 6.5       | 77.5      |          |           |      |           |  |
| Max Q Clear Time (g_c+l1)                             | , S        | 8.3       | 4.3       | 54.8      |          | 41.5         | 7.5       | 41.0      |          |           |      |           |  |
| Green Ext Time (p_c), s                               |            | 0.0       | 0.0       | 6.2       |          | 0.0          | 0.0       | 7.5       |          |           |      |           |  |
| Intersection Summary                                  |            |           |           |           |          |              |           |           |          |           |      |           |  |
| HCM 6th Ctrl Delay                                    |            |           | 52.5      |           |          |              |           |           |          |           |      |           |  |
| HCM 6th LOS                                           |            |           | D         |           |          |              |           |           |          |           |      |           |  |

| J                           |     | <b>→</b> | •    | •    | <b>←</b> | •    | 4    | <b>†</b> | <b>/</b> | <b>/</b> | ļ    | 4    |
|-----------------------------|-----|----------|------|------|----------|------|------|----------|----------|----------|------|------|
| Movement EE                 | 3L  | EBT      | EBR  | WBL  | WBT      | WBR  | NBL  | NBT      | NBR      | SBL      | SBT  | SBR  |
| Lane Configurations         |     | र्स      | 7    | ሻ    | f)       |      | ሻ    | र्स      | 7        |          | 4    |      |
| Traffic Volume (veh/h)      | 0   | 585      | 698  | 460  | 413      | 0    | 732  | 0        | 197      | 0        | 0    | 0    |
| Future Volume (veh/h)       | 0   | 585      | 698  | 460  | 413      | 0    | 732  | 0        | 197      | 0        | 0    | 0    |
| Initial Q (Qb), veh         | 0   | 0        | 0    | 0    | 0        | 0    | 0    | 0        | 0        | 0        | 0    | 0    |
| Ped-Bike Adj(A_pbT) 1.0     | 00  |          | 1.00 | 1.00 |          | 1.00 | 1.00 |          | 1.00     | 1.00     |      | 1.00 |
| Parking Bus, Adj 1.0        | 00  | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00     | 1.00     | 1.00 | 1.00 |
| Work Zone On Approach       |     | No       |      |      | No       |      |      | No       |          |          | No   |      |
| Adj Sat Flow, veh/h/ln 98   | 34  | 1870     | 1870 | 1870 | 1870     | 1870 | 1870 | 1870     | 1870     | 1870     | 1870 | 1870 |
| Adj Flow Rate, veh/h        | 0   | 616      | 735  | 484  | 435      | 0    | 771  | 0        | 207      | 0        | 0    | 0    |
| Peak Hour Factor 0.9        | 95  | 0.95     | 0.95 | 0.95 | 0.95     | 0.95 | 0.95 | 0.95     | 0.95     | 0.95     | 0.95 | 0.95 |
| Percent Heavy Veh, %        | 2   | 2        | 2    | 2    | 2        | 2    | 2    | 2        | 2        | 2        | 2    | 2    |
| Cap, veh/h                  | 0   | 693      | 975  | 526  | 552      | 0    | 872  | 0        | 388      | 0        | 2    | 0    |
| Arrive On Green 0.0         | 00  | 0.37     | 0.37 | 0.30 | 0.30     | 0.00 | 0.24 | 0.00     | 0.24     | 0.00     | 0.00 | 0.00 |
| Sat Flow, veh/h             | 0   | 1870     | 1585 | 1781 | 1870     | 0    | 3563 | 0        | 1585     | 0        | 1870 | 0    |
| Grp Volume(v), veh/h        | 0   | 616      | 735  | 484  | 435      | 0    | 771  | 0        | 207      | 0        | 0    | 0    |
| Grp Sat Flow(s), veh/h/ln   | 0   | 1870     | 1585 | 1781 | 1870     | 0    | 1781 | 0        | 1585     | 0        | 1870 | 0    |
| , ,                         | .0  | 31.7     | 34.2 | 27.0 | 21.9     | 0.0  | 21.4 | 0.0      | 11.6     | 0.0      | 0.0  | 0.0  |
|                             | .0  | 31.7     | 34.2 | 27.0 | 21.9     | 0.0  | 21.4 | 0.0      | 11.6     | 0.0      | 0.0  | 0.0  |
| Prop In Lane 0.0            |     |          | 1.00 | 1.00 |          | 0.00 | 1.00 |          | 1.00     | 0.00     |      | 0.00 |
| Lane Grp Cap(c), veh/h      | 0   | 693      | 975  | 526  | 552      | 0    | 872  | 0        | 388      | 0        | 2    | 0    |
| V/C Ratio(X) 0.0            |     | 0.89     | 0.75 | 0.92 | 0.79     | 0.00 | 0.88 | 0.00     | 0.53     | 0.00     | 0.00 | 0.00 |
| Avail Cap(c_a), veh/h       | 0   | 711      | 990  | 555  | 583      | 0    | 965  | 0        | 429      | 0        | 73   | 0    |
| HCM Platoon Ratio 1.0       |     | 1.00     | 1.00 | 1.00 | 1.00     | 1.00 | 1.00 | 1.00     | 1.00     | 1.00     | 1.00 | 1.00 |
| Upstream Filter(I) 0.0      |     | 1.00     | 1.00 | 1.00 | 1.00     | 0.00 | 1.00 | 0.00     | 1.00     | 0.00     | 0.00 | 0.00 |
| Uniform Delay (d), s/veh 0  |     | 30.3     | 14.2 | 35.0 | 33.2     | 0.0  | 37.4 | 0.0      | 33.7     | 0.0      | 0.0  | 0.0  |
| J 1 1                       | .0  | 13.1     | 3.3  | 20.2 | 6.8      | 0.0  | 9.2  | 0.0      | 1.1      | 0.0      | 0.0  | 0.0  |
| Initial Q Delay(d3),s/veh 0 |     | 0.0      | 0.0  | 0.0  | 0.0      | 0.0  | 0.0  | 0.0      | 0.0      | 0.0      | 0.0  | 0.0  |
| %ile BackOfQ(50%),veh/lr0   |     | 16.2     | 19.5 | 14.2 | 10.7     | 0.0  | 10.3 | 0.0      | 4.6      | 0.0      | 0.0  | 0.0  |
| Unsig. Movement Delay, s/   |     |          |      |      |          |      |      |          |          |          |      |      |
|                             | .0  | 43.4     | 17.5 | 55.2 | 40.0     | 0.0  | 46.6 | 0.0      | 34.8     | 0.0      | 0.0  | 0.0  |
| . 3                         | Α   | D        | В    | E    | D        | А    | D    | А        | С        | А        | А    | Α    |
| Approach Vol, veh/h         |     | 1351     |      |      | 919      |      |      | 978      |          |          | 0    |      |
| Approach Delay, s/veh       |     | 29.3     |      |      | 48.0     |      |      | 44.1     |          |          | 0.0  |      |
| Approach LOS                |     | С        |      |      | D        |      |      | D        |          |          |      |      |
| Timer - Assigned Phs        |     | 2        |      | 4    |          | 6    |      | 8        |          |          |      |      |
| Phs Duration (G+Y+Rc), s    |     | 0.0      |      | 41.2 |          | 28.1 |      | 33.3     |          |          |      |      |
| Change Period (Y+Rc), s     |     | 3.0      |      | 3.2  |          | 3.0  |      | 3.0      |          |          |      |      |
| Max Green Setting (Gmax),   | ς   | 4.0      |      | 39.0 |          | 27.8 |      | 32.0     |          |          |      |      |
| Max Q Clear Time (g_c+l1)   |     | 0.0      |      | 36.2 |          | 23.4 |      | 29.0     |          |          |      |      |
| Green Ext Time (p_c), s     | , 3 | 0.0      |      | 1.9  |          | 1.7  |      | 1.3      |          |          |      |      |
| •                           |     | 0.0      |      | 1.7  |          | 1.7  |      | 1.0      |          |          |      |      |
| Intersection Summary        |     |          | 20.0 |      |          |      |      |          |          |          |      |      |
| HCM 6th Ctrl Delay          |     |          | 39.0 |      |          |      |      |          |          |          |      |      |
| HCM 6th LOS                 |     |          | D    |      |          |      |      |          |          |          |      |      |
| Notes                       |     |          |      |      |          |      |      |          |          |          |      |      |

User approved pedestrian interval to be less than phase max green.
User approved volume balancing among the lanes for turning movement.

| Intersection                                                                                                                                                                                                                   |                                                                                               |                                                                                               |                                                                                            |                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Intersection Delay, s/veh                                                                                                                                                                                                      | 10.2                                                                                          |                                                                                               |                                                                                            |                                                                                            |
| Intersection LOS                                                                                                                                                                                                               | В                                                                                             |                                                                                               |                                                                                            |                                                                                            |
| Approach                                                                                                                                                                                                                       | EB                                                                                            | WB                                                                                            | NB                                                                                         | SB                                                                                         |
| Entry Lanes                                                                                                                                                                                                                    | 1                                                                                             | 1                                                                                             | 1                                                                                          | 1                                                                                          |
| Conflicting Circle Lanes                                                                                                                                                                                                       | 1                                                                                             | 1                                                                                             | 1                                                                                          | 1                                                                                          |
| Adj Approach Flow, veh/h                                                                                                                                                                                                       | 589                                                                                           | 689                                                                                           | 159                                                                                        | 199                                                                                        |
| Demand Flow Rate, veh/h                                                                                                                                                                                                        | 601                                                                                           | 703                                                                                           | 163                                                                                        | 203                                                                                        |
| Vehicles Circulating, veh/h                                                                                                                                                                                                    | 241                                                                                           | 199                                                                                           | 552                                                                                        | 565                                                                                        |
| Vehicles Exiting, veh/h                                                                                                                                                                                                        | 527                                                                                           | 516                                                                                           | 290                                                                                        | 337                                                                                        |
| Ped Vol Crossing Leg, #/h                                                                                                                                                                                                      | 0                                                                                             | 0                                                                                             | 0                                                                                          | 0                                                                                          |
| Ped Cap Adj                                                                                                                                                                                                                    | 1.000                                                                                         | 1.000                                                                                         | 1.000                                                                                      | 1.000                                                                                      |
| Approach Delay, s/veh                                                                                                                                                                                                          | 10.4                                                                                          | 11.6                                                                                          | 7.0                                                                                        | 7.7                                                                                        |
| Approach LOS                                                                                                                                                                                                                   | В                                                                                             | В                                                                                             | А                                                                                          | Α                                                                                          |
| Lane                                                                                                                                                                                                                           | Left                                                                                          | Left                                                                                          | 1.4                                                                                        | 1 -4                                                                                       |
| Lunc                                                                                                                                                                                                                           | LCIL                                                                                          | Leit                                                                                          | Left                                                                                       | Left                                                                                       |
| Designated Moves                                                                                                                                                                                                               | LTR                                                                                           | LTR                                                                                           | LTR                                                                                        | Leit<br>LTR                                                                                |
|                                                                                                                                                                                                                                |                                                                                               |                                                                                               |                                                                                            |                                                                                            |
| Designated Moves                                                                                                                                                                                                               | LTR<br>LTR                                                                                    | LTR<br>LTR                                                                                    | LTR<br>LTR                                                                                 | LTR<br>LTR                                                                                 |
| Designated Moves<br>Assumed Moves<br>RT Channelized<br>Lane Util                                                                                                                                                               | LTR<br>LTR<br>1.000                                                                           | LTR<br>LTR<br>1.000                                                                           | LTR<br>LTR<br>1.000                                                                        | LTR<br>LTR<br>1.000                                                                        |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s                                                                                                                                                   | LTR<br>LTR<br>1.000<br>2.609                                                                  | LTR<br>LTR<br>1.000<br>2.609                                                                  | LTR<br>LTR<br>1.000<br>2.609                                                               | LTR<br>LTR<br>1.000<br>2.609                                                               |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s                                                                                                                               | LTR<br>LTR<br>1.000<br>2.609<br>4.976                                                         | LTR<br>LTR<br>1.000<br>2.609<br>4.976                                                         | LTR<br>LTR<br>1.000<br>2.609<br>4.976                                                      | LTR<br>LTR<br>1.000<br>2.609<br>4.976                                                      |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h                                                                                                             | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>601                                                  | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>703                                                  | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>163                                               | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>203                                               |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h                                                                                       | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>601<br>1079                                          | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>703<br>1126                                          | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>163<br>786                                        | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>203<br>775                                        |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor                                                                   | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>601<br>1079<br>0.981                                 | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>703<br>1126<br>0.980                                 | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>163<br>786<br>0.976                               | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>203<br>775<br>0.979                               |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h                                                 | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>601<br>1079<br>0.981<br>589                          | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>703<br>1126<br>0.980<br>689                          | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>163<br>786<br>0.976                               | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>203<br>775<br>0.979                               |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h                                | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>601<br>1079<br>0.981<br>589<br>1058                  | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>703<br>1126<br>0.980<br>689<br>1104                  | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>163<br>786<br>0.976<br>159<br>767                 | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>203<br>775<br>0.979<br>199<br>759                 |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio                      | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>601<br>1079<br>0.981<br>589<br>1058<br>0.557         | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>703<br>1126<br>0.980<br>689<br>1104<br>0.624         | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>163<br>786<br>0.976<br>159<br>767<br>0.207        | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>203<br>775<br>0.979<br>199<br>759                 |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio Control Delay, s/veh | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>601<br>1079<br>0.981<br>589<br>1058<br>0.557<br>10.4 | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>703<br>1126<br>0.980<br>689<br>1104<br>0.624<br>11.6 | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>163<br>786<br>0.976<br>159<br>767<br>0.207<br>7.0 | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>203<br>775<br>0.979<br>199<br>759<br>0.262<br>7.7 |
| Designated Moves Assumed Moves RT Channelized Lane Util Follow-Up Headway, s Critical Headway, s Entry Flow, veh/h Cap Entry Lane, veh/h Entry HV Adj Factor Flow Entry, veh/h Cap Entry, veh/h V/C Ratio                      | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>601<br>1079<br>0.981<br>589<br>1058<br>0.557         | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>703<br>1126<br>0.980<br>689<br>1104<br>0.624         | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>163<br>786<br>0.976<br>159<br>767<br>0.207        | LTR<br>LTR<br>1.000<br>2.609<br>4.976<br>203<br>775<br>0.979<br>199<br>759                 |

|                            | €         | •         | Ť        | /         | -         | ţ           |
|----------------------------|-----------|-----------|----------|-----------|-----------|-------------|
| Movement V                 | VBL       | WBR       | NBT      | NBR       | SBL       | SBT         |
| Lane Configurations        |           | 7         | <b>†</b> | 7         | ሻ         | <b>↑</b>    |
|                            | 453       | 32        | 725      | 922       | 32        | 340         |
| ,                          | 453       | 32        | 725      | 922       | 32        | 340         |
| Initial Q (Qb), veh        | 0         | 0         | 0        | 0         | 0         | 0           |
|                            | 1.00      | 1.00      |          | 1.00      | 1.00      |             |
|                            | 1.00      | 1.00      | 1.00     | 1.00      | 1.00      | 1.00        |
| Work Zone On Approach      | No        |           | No       |           |           | No          |
| Adj Sat Flow, veh/h/ln 1   | 870       | 1870      | 1870     | 1870      | 1870      | 1870        |
| Adj Flow Rate, veh/h       | 477       | 34        | 763      | 971       | 34        | 358         |
| Peak Hour Factor (         | 0.95      | 0.95      | 0.95     | 0.95      | 0.95      | 0.95        |
| Percent Heavy Veh, %       | 2         | 2         | 2        | 2         | 2         | 2           |
|                            | 456       | 405       | 1079     | 915       | 43        | 1222        |
|                            | 0.26      | 0.26      | 0.58     | 0.58      | 0.02      | 0.65        |
| Sat Flow, veh/h 1          | 781       | 1585      | 1870     | 1585      | 1781      | 1870        |
| Grp Volume(v), veh/h       | 477       | 34        | 763      | 971       | 34        | 358         |
| Grp Sat Flow(s), veh/h/ln1 |           | 1585      | 1870     | 1585      | 1781      | 1870        |
|                            | 30.4      | 1.9       | 34.6     | 68.6      | 2.3       | 9.8         |
|                            | 30.4      | 1.9       | 34.6     | 68.6      | 2.3       | 9.8         |
| 3                          | 1.00      | 1.00      |          | 1.00      | 1.00      |             |
| Lane Grp Cap(c), veh/h     |           | 405       | 1079     | 915       | 43        | 1222        |
|                            | 1.05      | 0.08      | 0.71     | 1.06      | 0.79      | 0.29        |
| . ,                        | 456       | 405       | 1079     | 915       | 60        | 1240        |
|                            | 1.00      | 1.00      | 1.00     | 1.00      | 1.00      | 1.00        |
|                            | 1.00      | 1.00      | 1.00     | 1.00      | 1.00      | 1.00        |
| Uniform Delay (d), s/veh 4 |           | 33.6      | 18.0     | 25.1      | 57.7      | 8.8         |
|                            | 55.0      | 0.0       | 1.8      | 47.5      | 25.3      | 0.0         |
| Initial Q Delay(d3),s/veh  |           | 0.0       | 0.0      | 0.0       | 0.0       | 0.0         |
| %ile BackOfQ(50%),veh/1    |           | 0.8       | 14.2     | 35.1      | 1.3       | 3.6         |
| Unsig. Movement Delay,     |           |           | 17.2     | 55.1      | 1.0       | 3.0         |
|                            | 99.3      | 33.7      | 19.8     | 72.6      | 83.0      | 8.9         |
| LnGrp LOS                  | 77.3<br>F | 33.7<br>C | В        | 72.0<br>F | 03.0<br>F | Α           |
|                            | 511       | C         | 1734     | <u> </u>  | 1         | 392         |
|                            | 94.9      |           | 49.4     |           |           | 392<br>15.3 |
|                            |           |           |          |           |           |             |
| Approach LOS               | F         |           | D        |           |           | В           |
| Timer - Assigned Phs       | 1         | 2         |          | 4         |           | 6           |
| Phs Duration (G+Y+Rc), s   |           | 74.8      |          | 35.0      |           | 83.9        |
| Change Period (Y+Rc), s    |           | 6.2       |          | 4.6       |           | 6.2         |
| Max Green Setting (Gmax    |           | 68.6      |          | 30.4      |           | 78.8        |
| Max Q Clear Time (g_c+l    | 14),3s    | 70.6      |          | 32.4      |           | 11.8        |
| Green Ext Time (p_c), s    | 0.0       | 0.0       |          | 0.0       |           | 0.6         |
| Intersection Summary       |           |           |          |           |           |             |
| HCM 6th Ctrl Delay         |           |           | 53.1     |           |           |             |
| HCM 6th LOS                |           |           | D        |           |           |             |
|                            |           |           | U        |           |           |             |
| Notes                      |           |           |          |           |           |             |

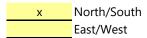
User approved pedestrian interval to be less than phase max green.

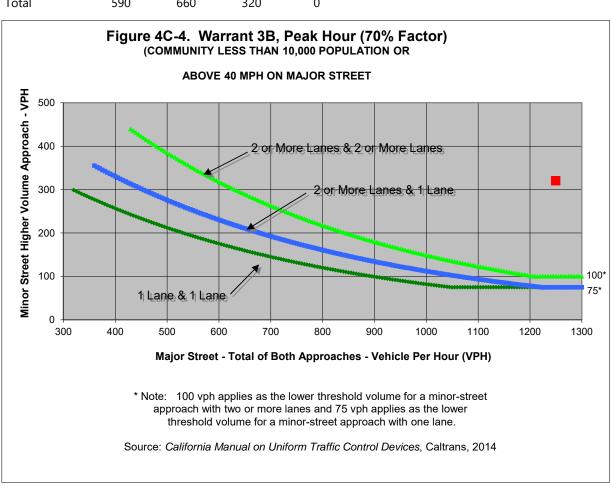
# ATTACHMENT D VOLUME FIGURES



**Major Street** Minor Street

Old Redwood Highway **Fulton Road** 


Project Scenario Sonoma County Housing Rezone **Existing Conditions** 


Peak Hour PM Peak Hour

**Turn Movement Volumes** 

|         | NB  | SB  | EB  | WB |
|---------|-----|-----|-----|----|
| Left    | 40  | 0   | 270 | 0  |
| Through | 550 | 440 | 0   | 0  |
| Right   | 0   | 220 | 50  | 0  |
| Total   | 590 | 660 | 320 | 0  |

**Major Street Direction** 



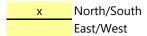


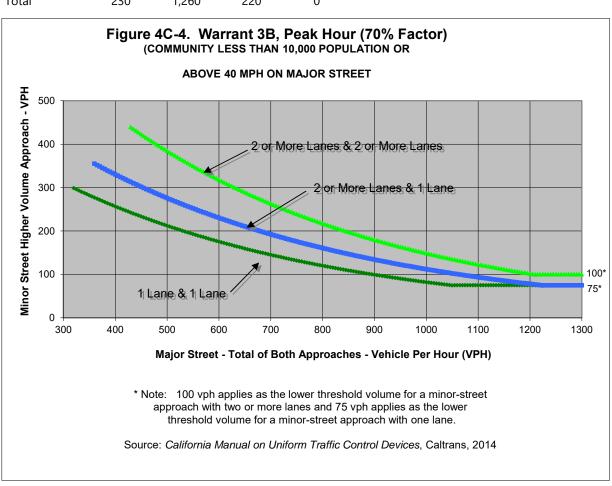
|                          | Major Street        | Minor Street | Warrant Met    |
|--------------------------|---------------------|--------------|----------------|
|                          | Old Redwood Highway | Fulton Road  | vvarrant iviet |
| Number of Approach Lanes | 1                   | 2            | VEC            |
| Traffic Volume (VPH) *   | 1,250               | 320          | <u>YES</u>     |

Major Street
Minor Street

Old Redwood Highway
Fulton Road

Project Scenario


Sonoma County Housing Rezone
Cumulative Conditions


Peak Hour AM Peak Hour

**Turn Movement Volumes** 

|         | NB  | SB    | EB  | WB |
|---------|-----|-------|-----|----|
| Left    | 40  | 0     | 180 | 0  |
| Through | 190 | 860   | 0   | 0  |
| Right   | 0   | 400   | 40  | 0  |
| Total   | 230 | 1,260 | 220 | 0  |

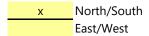
**Major Street Direction** 

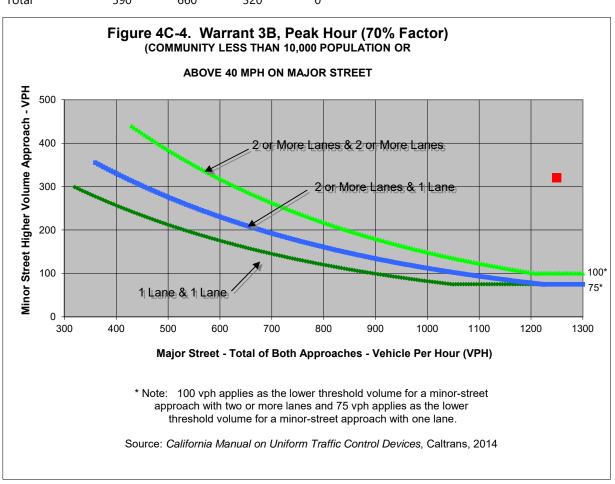




|                          | Major Street        | Minor Street | Warrant Met    |
|--------------------------|---------------------|--------------|----------------|
|                          | Old Redwood Highway | Fulton Road  | vvarrant iviet |
| Number of Approach Lanes | 2                   | 2            | VEC            |
| Traffic Volume (VPH) *   | 1,490               | 220          | <u>YES</u>     |

Major Street Minor Street Old Redwood Highway
Fulton Road


Project Scenario Sonoma County Housing Rezone
Cumulative Conditions


Peak Hour PM Peak Hour

**Turn Movement Volumes** 

|         | NB  | SB  | EB  | WB |
|---------|-----|-----|-----|----|
| Left    | 40  | 0   | 270 | 0  |
| Through | 550 | 440 | 0   | 0  |
| Right   | 0   | 220 | 50  | 0  |
| Total   | 590 | 660 | 320 | 0  |

**Major Street Direction** 

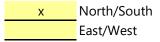


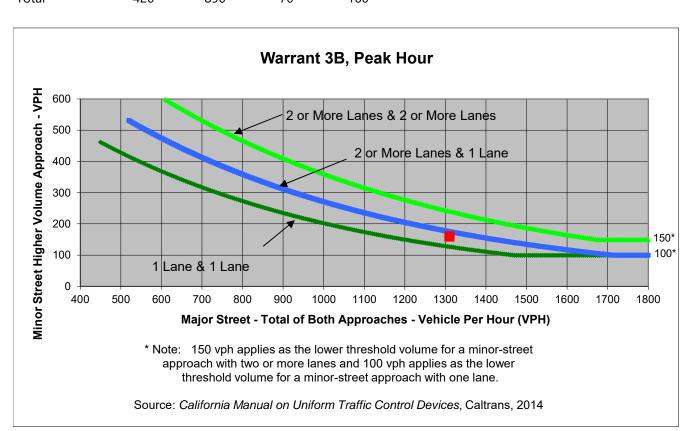


|                          | Major Street        | Minor Street | Warrant Met    |
|--------------------------|---------------------|--------------|----------------|
|                          | Old Redwood Highway | Fulton Road  | vvarrant iviet |
| Number of Approach Lanes | 1                   | 2            | VEC            |
| Traffic Volume (VPH) *   | 1,250               | 320          | <u>YES</u>     |

Major Street Minor Street Old Redwood Highway

Faught Road


Project Scenario Sonoma County Housing Rezone
Existing Conditions


Peak Hour AM Peak Hour

**Turn Movement Volumes** 

|         | NB  | SB  | EB | WB  |
|---------|-----|-----|----|-----|
| Left    | 10  | 20  | 40 | 140 |
| Through | 330 | 850 | 10 | 10  |
| Right   | 80  | 20  | 20 | 10  |
| Total   | 420 | 890 | 70 | 160 |

**Major Street Direction** 





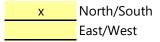
|                          | Major Street        | Minor Street | Warrant Met |
|--------------------------|---------------------|--------------|-------------|
|                          | Old Redwood Highway | Faught Road  | warrant wet |
| Number of Approach Lanes | 2                   | 1            | NO          |
| Traffic Volume (VPH) *   | 1,310               | 160          | <u>NO</u>   |

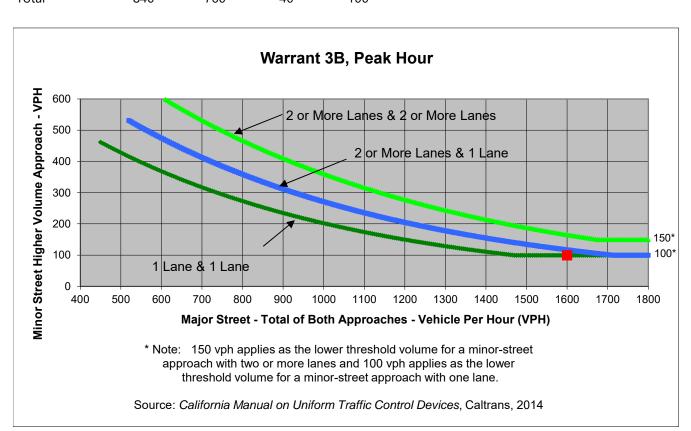
Major Street

Old Redwood Highway

Minor Street Faught Road

Project Scenario Sonoma County Housing Rezone


nario Existing Conditions


Peak Hour PM Peak Hour

**Turn Movement Volumes** 

|         | NB  | SB  | EB | WB  |
|---------|-----|-----|----|-----|
| Left    | 20  | 30  | 10 | 70  |
| Through | 700 | 700 | 10 | 10  |
| Right   | 120 | 30  | 20 | 20  |
| Total   | 840 | 760 | 40 | 100 |

#### **Major Street Direction**



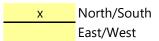


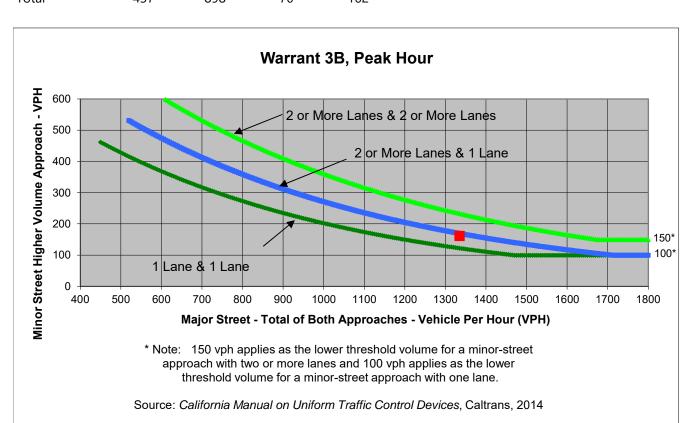
|                          | Major Street        | Minor Street | Warrant Met    |
|--------------------------|---------------------|--------------|----------------|
|                          | Old Redwood Highway | Faught Road  | vvarrant iviet |
| Number of Approach Lanes | 2                   | 1            | NO             |
| Traffic Volume (VPH) *   | 1,600               | 100          | <u>NO</u>      |

Major Street

Old Redwood Highway

Minor Street Faught Road


Project Scenario Sonoma County Housing Rezone
Existing + Program Conditions


Peak Hour AM Peak Hour

**Turn Movement Volumes** 

|         | NB  | SB  | EB | WB  |
|---------|-----|-----|----|-----|
| Left    | 10  | 20  | 40 | 142 |
| Through | 347 | 858 | 10 | 10  |
| Right   | 80  | 20  | 20 | 10  |
| Total   | 437 | 898 | 70 | 162 |

**Major Street Direction** 

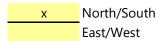


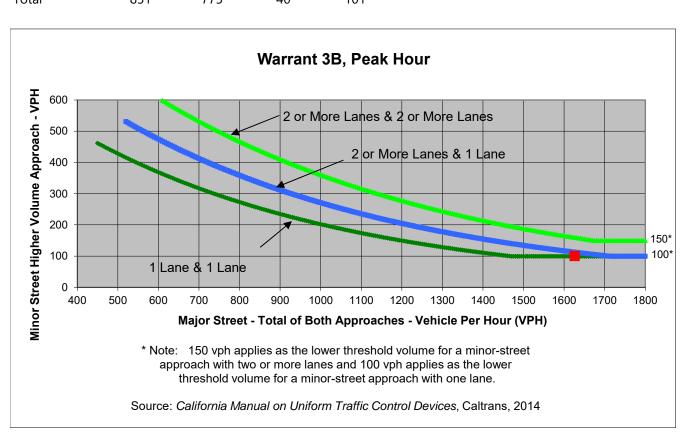


|                          | Major Street        | Minor Street | Warrant Met    |
|--------------------------|---------------------|--------------|----------------|
|                          | Old Redwood Highway | Faught Road  | vvairant iviet |
| Number of Approach Lanes | 2                   | 1            | NO             |
| Traffic Volume (VPH) *   | 1,335               | 162          | <u>NO</u>      |

Major Street Minor Street Old Redwood Highway

Faught Road


Project Scenario Sonoma County Housing Rezone
Existing + Program Conditions


Peak Hour PM Peak Hour

**Turn Movement Volumes** 

|         | NB  | SB  | EB | WB  |
|---------|-----|-----|----|-----|
| Left    | 20  | 30  | 10 | 71  |
| Through | 709 | 715 | 10 | 10  |
| Right   | 122 | 30  | 20 | 20  |
| Total   | 851 | 775 | 40 | 101 |

#### **Major Street Direction**

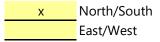


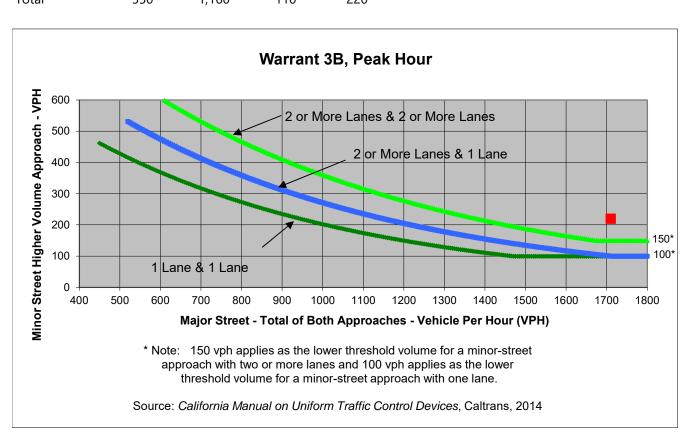


|                          | Major Street        | Minor Street | Warrant Met    |
|--------------------------|---------------------|--------------|----------------|
|                          | Old Redwood Highway | Faught Road  | vvarrant iviet |
| Number of Approach Lanes | 2                   | 1            | NO             |
| Traffic Volume (VPH) *   | 1,626               | 101          | <u>NO</u>      |

Major Street Minor Street Old Redwood Highway

Faught Road


Project Scenario Sonoma County Housing Rezone
Cumulative Conditions


Peak Hour AM Peak Hour

**Turn Movement Volumes** 

|         | NB  | SB    | EB  | WB  |
|---------|-----|-------|-----|-----|
| Left    | 20  | 30    | 60  | 180 |
| Through | 420 | 1,100 | 20  | 20  |
| Right   | 110 | 30    | 30  | 20  |
| Total   | 550 | 1 160 | 110 | 220 |

#### **Major Street Direction**



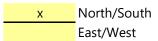


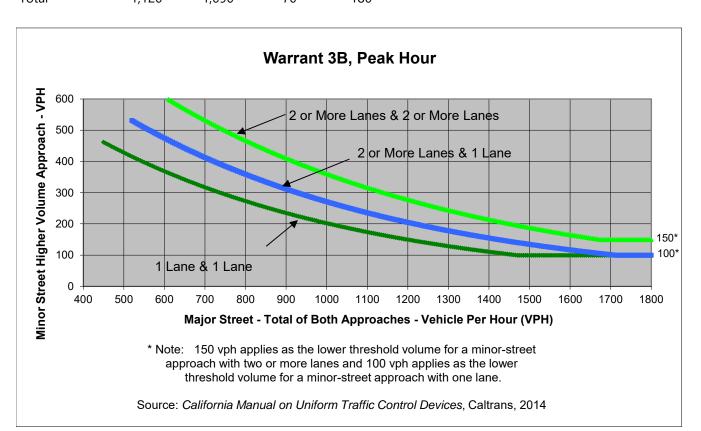
|                          | Major Street        | Minor Street | Warrant Met    |
|--------------------------|---------------------|--------------|----------------|
|                          | Old Redwood Highway | Faught Road  | vvarrant iviet |
| Number of Approach Lanes | 2                   | 1            | VEC            |
| Traffic Volume (VPH) *   | 1,710               | 220          | <u>YES</u>     |

Major Street Minor Street Old Redwood Highway

Faught Road

Project Scenario Sonoma County Housing Rezone


Cumulative Conditions


Peak Hour PM Peak Hour

**Turn Movement Volumes** 

|         | NB    | SB    | EB | WB  |
|---------|-------|-------|----|-----|
| Left    | 30    | 50    | 20 | 100 |
| Through | 920   | 990   | 20 | 20  |
| Right   | 170   | 50    | 30 | 60  |
| Total   | 1 120 | 1 090 | 70 | 180 |

**Major Street Direction** 

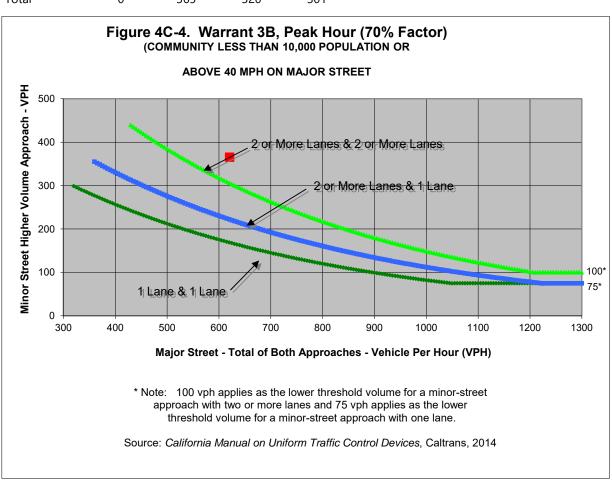




|                          | Major Street        | Minor Street | Warrant Met    |
|--------------------------|---------------------|--------------|----------------|
|                          | Old Redwood Highway | Faught Road  | vvarrant iviet |
| Number of Approach Lanes | 2                   | 1            | VEC            |
| Traffic Volume (VPH) *   | 2,210               | 180          | <u>YES</u>     |

Major Street Minor Street SR 116/Front Street
Mirabel Road


Project Scenario Sonoma County Housing Rezone
Existing + Program Conditions


Peak Hour AM Peak Hour

**Turn Movement Volumes** 

|         | NB | SB  | EB  | WB  |
|---------|----|-----|-----|-----|
| Left    | 0  | 342 | 65  | 0   |
| Through | 0  | 0   | 255 | 145 |
| Right   | 0  | 23  | 0   | 156 |
| Total   | 0  | 365 | 320 | 301 |

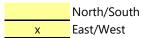
#### **Major Street Direction**

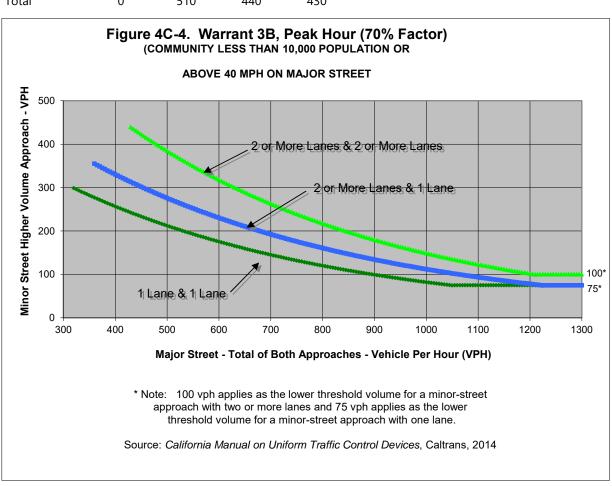




|                          | Major Street        | Minor Street | Warrant Met    |
|--------------------------|---------------------|--------------|----------------|
|                          | SR 116/Front Street | Mirabel Road | vvarrant iviet |
| Number of Approach Lanes | 1                   | 2            | <u>YES</u>     |
| Traffic Volume (VPH) *   | 621                 | 365          | <u>1E3</u>     |

Major Street Minor Street SR 116/Front Street
Mirabel Road


Project Scenario Sonoma County Housing Rezone
Cumulative Conditions


Peak Hour AM Peak Hour

**Turn Movement Volumes** 

|         | NB | SB  | EB  | WB  |
|---------|----|-----|-----|-----|
| Left    | 0  | 470 | 100 | 0   |
| Through | 0  | 0   | 340 | 220 |
| Right   | 0  | 40  | 0   | 210 |
| Total   | 0  | 510 | 440 | 430 |

**Major Street Direction** 

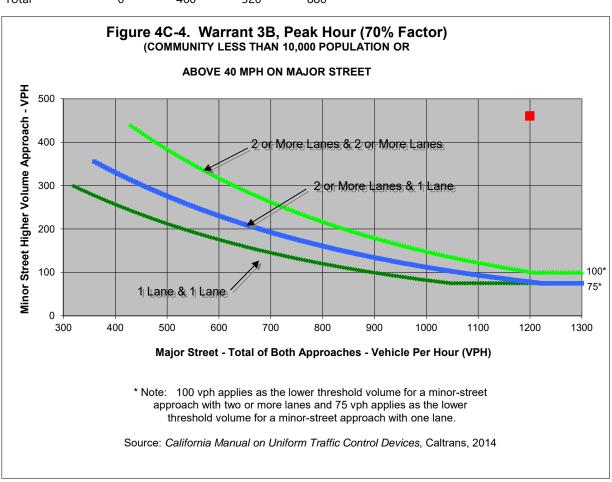




|                          | Major Street        | Minor Street | Warrant Met  |
|--------------------------|---------------------|--------------|--------------|
|                          | SR 116/Front Street | Mirabel Road | Wallant Mice |
| Number of Approach Lanes | 1                   | 2            | <u>YES</u>   |
| Traffic Volume (VPH) *   | 870                 | 510          | <u>1E3</u>   |

Major Street Minor Street SR 116/Front Street
Mirabel Road


Project Scenario Sonoma County Housing Rezone
Cumulative Conditions


Peak Hour PM Peak Hour

**Turn Movement Volumes** 

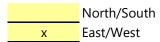
|         | NB | SB  | EB  | WB  |
|---------|----|-----|-----|-----|
| Left    | 0  | 380 | 50  | 0   |
| Through | 0  | 0   | 270 | 270 |
| Right   | 0  | 80  | 0   | 610 |
| Total   | 0  | 460 | 320 | 880 |

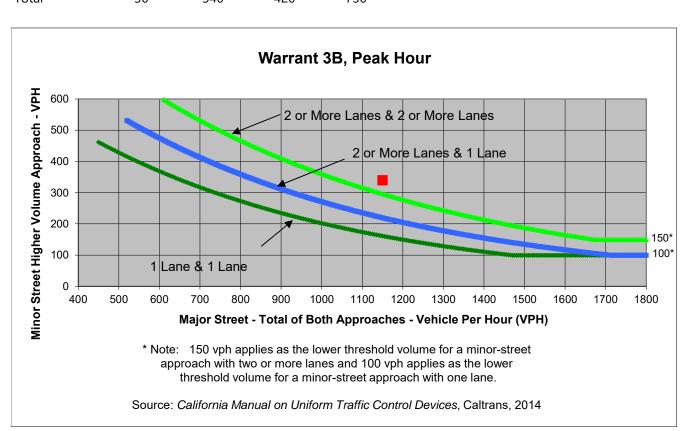
**Major Street Direction** 





|                          | Major Street        | Minor Street | Warrant Met    |
|--------------------------|---------------------|--------------|----------------|
|                          | SR 116/Front Street | Mirabel Road | vvairant iviet |
| Number of Approach Lanes | 1                   | 2            | VEC            |
| Traffic Volume (VPH) *   | 1,200               | 460          | <u>YES</u>     |


**Major Street** Minor Street **Todd Road** Moorland Avenue Project Scenario


Sonoma County Housing Rezone **Existing Conditions** Peak Hour AM Peak Hour

Turn Movement Volumes

|         | NB | SB  | EB  | WB  |
|---------|----|-----|-----|-----|
| Left    | 10 | 260 | 50  | 10  |
| Through | 10 | 10  | 360 | 410 |
| Right   | 10 | 70  | 10  | 310 |
| Total   | 30 | 340 | 420 | 730 |

#### **Major Street Direction**

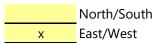


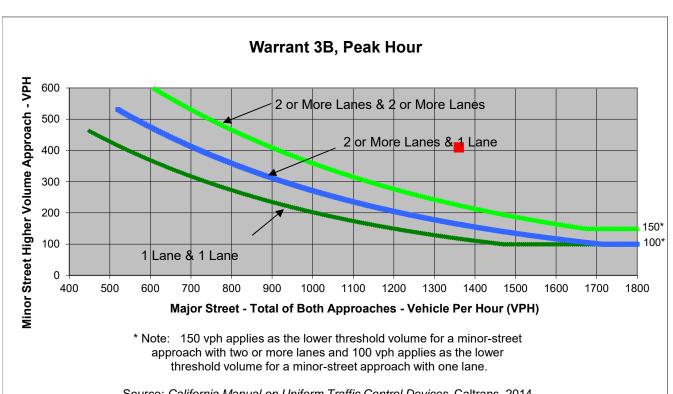


|                          | Major Street | Minor Street    | Warrant Met     |
|--------------------------|--------------|-----------------|-----------------|
|                          | Todd Road    | Moorland Avenue | vvairaiit iviet |
| Number of Approach Lanes | 2            | 2               | VEC             |
| Traffic Volume (VPH) *   | 1,150        | 340             | <u>YES</u>      |

Major Street Minor Street Todd Road

Moorland Avenue


Project Scenario Sonoma County Housing Rezone
Existing Conditions


Peak Hour PM Peak Hour

#### **Turn Movement Volumes**

|         | NB | SB  | EB  | WB  |
|---------|----|-----|-----|-----|
| Left    | 10 | 360 | 50  | 20  |
| Through | 20 | 20  | 520 | 420 |
| Right   | 20 | 30  | 10  | 340 |
| Total   | 50 | 410 | 580 | 780 |

#### **Major Street Direction**

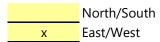


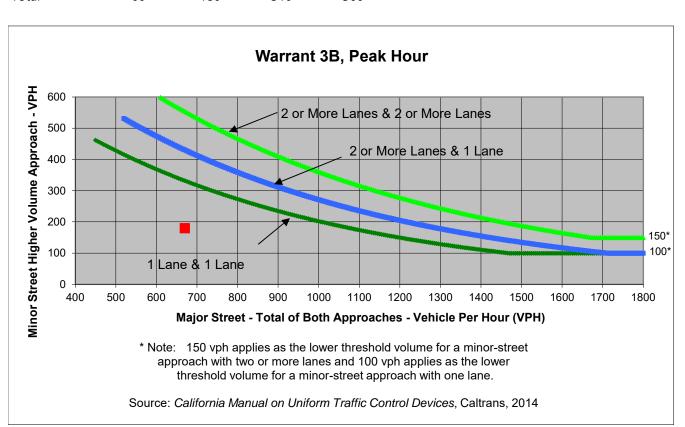


Source: California Manual on Uniform Traffic Control Devices, Caltrans, 2014

|                          | Major Street | Minor Street    | Warrant Met    |
|--------------------------|--------------|-----------------|----------------|
|                          | Todd Road    | Moorland Avenue | vvarrant iviet |
| Number of Approach Lanes | 2            | 2               | VEC            |
| Traffic Volume (VPH) *   | 1,360        | 410             | <u>YES</u>     |

**Major Street** Minor Street Verano Avenue Riverside Drive


Project Scenario


Sonoma County Housing Rezone **Existing Conditions** Peak Hour AM Peak Hour

Turn Movement Volumes

|         | NB | SB  | EB  | WB  |
|---------|----|-----|-----|-----|
| Left    | 20 | 120 | 40  | 90  |
| Through | 20 | 20  | 260 | 220 |
| Right   | 20 | 40  | 10  | 50  |
| Total   | 60 | 180 | 310 | 360 |

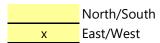
**Major Street Direction** 

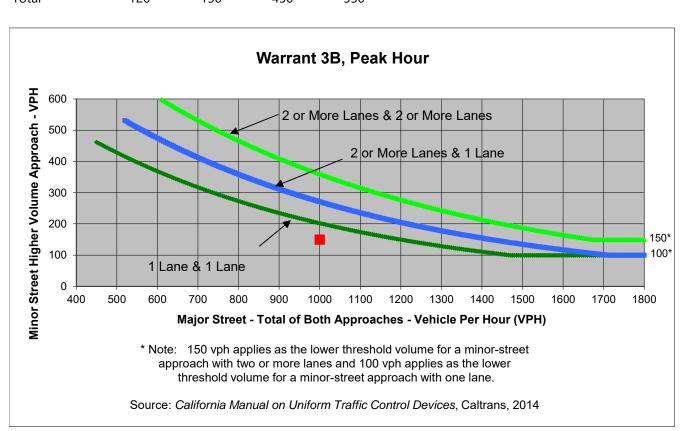




|                          | Major Street  | Minor Street    | Warrant Met |
|--------------------------|---------------|-----------------|-------------|
|                          | Verano Avenue | Riverside Drive | warrant wet |
| Number of Approach Lanes | 1             | 1               | NO          |
| Traffic Volume (VPH) *   | 670           | 180             | <u>NO</u>   |

**Major Street** Minor Street Verano Avenue Riverside Drive


Project Scenario


Sonoma County Housing Rezone **Existing Conditions** Peak Hour PM Peak Hour

Turn Movement Volumes

|         | NB  | SB  | EB  | WB  |
|---------|-----|-----|-----|-----|
| Left    | 20  | 70  | 50  | 70  |
| Through | 80  | 50  | 290 | 350 |
| Right   | 20  | 30  | 110 | 130 |
| Total   | 120 | 150 | 450 | 550 |

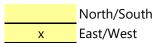
**Major Street Direction** 

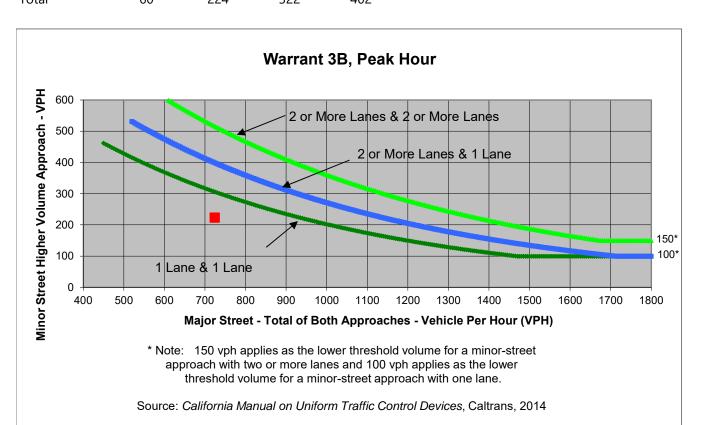




|                          | Major Street  | Minor Street    | Warrant Met    |
|--------------------------|---------------|-----------------|----------------|
|                          | Verano Avenue | Riverside Drive | vvarrant iviet |
| Number of Approach Lanes | 1             | 1               | NO             |
| Traffic Volume (VPH) *   | 1,000         | 150             | <u>NO</u>      |

Major Street Minor Street Verano Avenue
Riverside Drive


Project Scenario Sonoma County Housing Rezone
Existing + Program Conditions


Peak Hour AM Peak Hour

#### **Turn Movement Volumes**

|         | NB | SB  | EB  | WB  |
|---------|----|-----|-----|-----|
| Left    | 20 | 127 | 42  | 90  |
| Through | 20 | 50  | 270 | 260 |
| Right   | 20 | 47  | 10  | 52  |
| Total   | 60 | 224 | 322 | 402 |

#### **Major Street Direction**





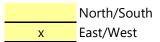
 Major Street
 Minor Street
 Warrant Met

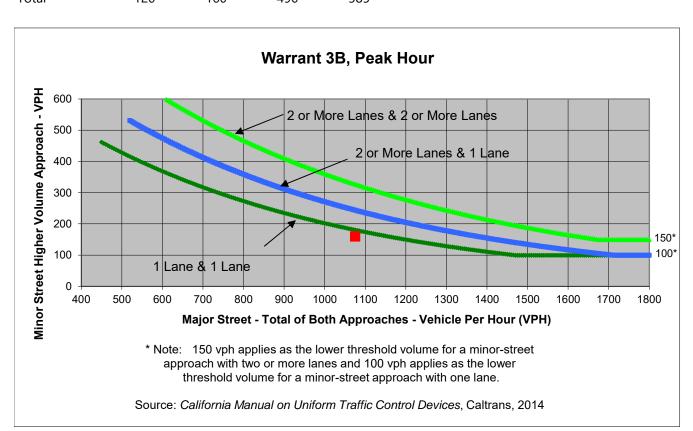
 Verano Avenue
 Riverside Drive

 Number of Approach Lanes
 1
 1

 Traffic Volume (VPH) \*
 724
 224

**Major Street** Minor Street Verano Avenue Riverside Drive


Project Scenario


Sonoma County Housing Rezone Existing + Program Conditions Peak Hour PM Peak Hour

**Turn Movement Volumes** 

|         | NB  | SB  | EB  | WB  |
|---------|-----|-----|-----|-----|
| Left    | 20  | 75  | 55  | 70  |
| Through | 80  | 50  | 325 | 375 |
| Right   | 20  | 35  | 110 | 140 |
| Total   | 120 | 160 | 490 | 585 |

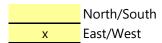
**Major Street Direction** 

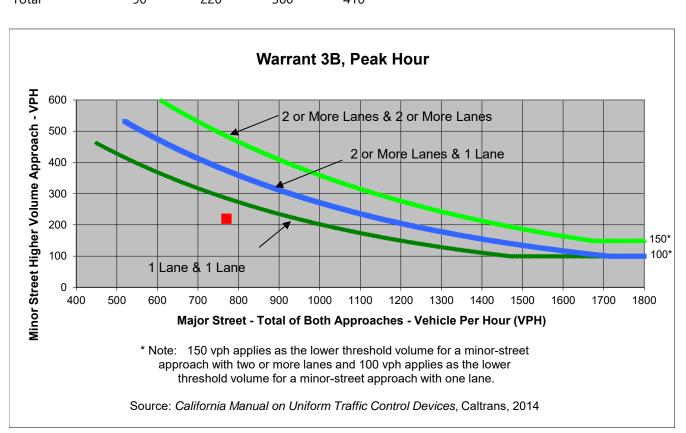




|                          | Major Street  | Minor Street    | Warrant Met    |
|--------------------------|---------------|-----------------|----------------|
|                          | Verano Avenue | Riverside Drive | vvairant iviet |
| Number of Approach Lanes | 1             | 1               | NO             |
| Traffic Volume (VPH) *   | 1,075         | 160             | <u>NO</u>      |

**Major Street** Minor Street Verano Avenue Riverside Drive


Project Scenario


Sonoma County Housing Rezone **Cumulative Conditions** Peak Hour AM Peak Hour

**Turn Movement Volumes** 

|         | NB | SB  | EB  | WB  |
|---------|----|-----|-----|-----|
| Left    | 30 | 140 | 50  | 100 |
| Through | 30 | 30  | 290 | 250 |
| Right   | 30 | 50  | 20  | 60  |
| Total   | 90 | 220 | 360 | 410 |

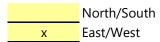
#### **Major Street Direction**

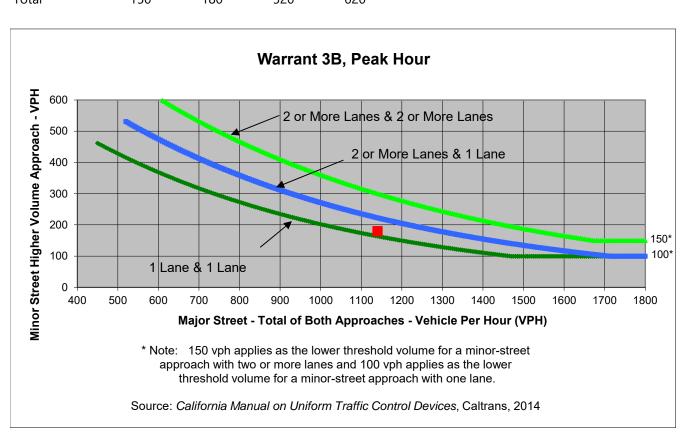




|                          | Major Street  | Minor Street    | Warrant Met    |
|--------------------------|---------------|-----------------|----------------|
|                          | Verano Avenue | Riverside Drive | vvarrant iviet |
| Number of Approach Lanes | 1             | 1               | NO             |
| Traffic Volume (VPH) *   | 770           | 220             | <u>NO</u>      |

**Major Street** Minor Street Verano Avenue Riverside Drive


Project Scenario


Sonoma County Housing Rezone **Cumulative Conditions** Peak Hour PM Peak Hour

**Turn Movement Volumes** 

|         | NB  | SB  | EB  | WB  |
|---------|-----|-----|-----|-----|
| Left    | 30  | 80  | 60  | 80  |
| Through | 90  | 60  | 330 | 390 |
| Right   | 30  | 40  | 130 | 150 |
| Total   | 150 | 180 | 520 | 620 |

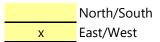
**Major Street Direction** 

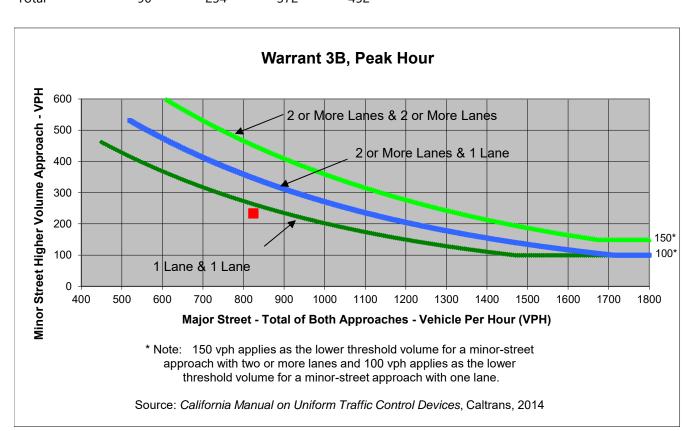




|                          | Major Street  | Minor Street    | Warrant Met    |
|--------------------------|---------------|-----------------|----------------|
|                          | Verano Avenue | Riverside Drive | vvarrant iviet |
| Number of Approach Lanes | 1             | 1               | VEC            |
| Traffic Volume (VPH) *   | 1,140         | 180             | <u>YES</u>     |

Major Street Minor Street Verano Avenue
Riverside Drive


Project Scenario Sonoma County Housing Rezone
Cumulative + Program Conditions


Peak Hour AM Peak Hour

**Turn Movement Volumes** 

|         | NB | SB  | EB  | WB  |
|---------|----|-----|-----|-----|
| Left    | 30 | 147 | 52  | 100 |
| Through | 30 | 30  | 300 | 290 |
| Right   | 30 | 57  | 20  | 62  |
| Total   | 90 | 234 | 372 | 452 |

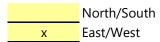
#### **Major Street Direction**

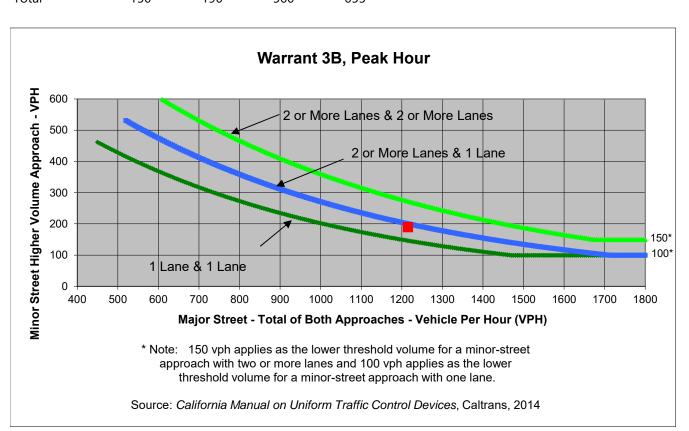




|                          | Major Street  | Minor Street    | Warrant Met    |
|--------------------------|---------------|-----------------|----------------|
|                          | Verano Avenue | Riverside Drive | vvarrant iviet |
| Number of Approach Lanes | 1             | 1               | NO             |
| Traffic Volume (VPH) *   | 824           | 234             | <u>NO</u>      |

Major Street Minor Street Verano Avenue
Riverside Drive


Project Scenario Sonoma County Housing Rezone
Cumulative + Program Conditions


Peak Hour PM Peak Hour

**Turn Movement Volumes** 

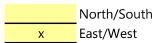
|         | NB  | SB  | EB  | WB  |
|---------|-----|-----|-----|-----|
| Left    | 30  | 85  | 65  | 80  |
| Through | 90  | 60  | 365 | 415 |
| Right   | 30  | 45  | 130 | 160 |
| Total   | 150 | 190 | 560 | 655 |

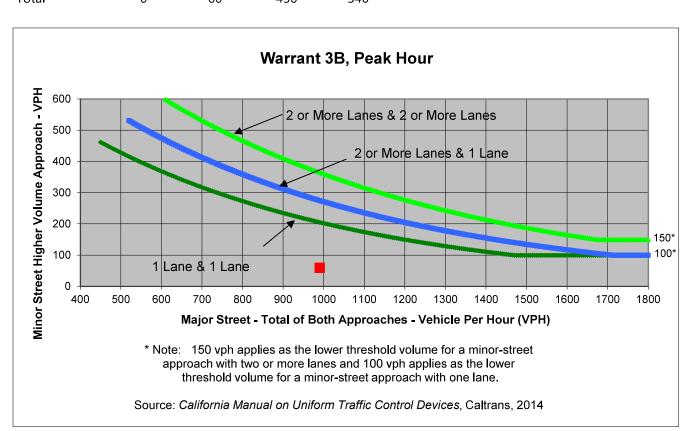
**Major Street Direction** 





|                          | Major Street  | Minor Street    | Warrant Met    |
|--------------------------|---------------|-----------------|----------------|
|                          | Verano Avenue | Riverside Drive | vvairant iviet |
| Number of Approach Lanes | 1             | 1               | VEC            |
| Traffic Volume (VPH) *   | 1,215         | 190             | <u>YES</u>     |


Major Street Minor Street Bodega Avenue Paula Lane Project Scenario Peak Hour


Sonoma County Housing Rezone
Cumulative Conditions
PM Peak Hour

Turn Movement Volumes

|         | NB | SB | EB  | WB  |
|---------|----|----|-----|-----|
| Left    | 0  | 30 | 30  | 0   |
| Through | 0  | 0  | 420 | 510 |
| Right   | 0  | 30 | 0   | 30  |
| Total   | 0  | 60 | 450 | 540 |

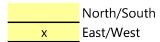
**Major Street Direction** 

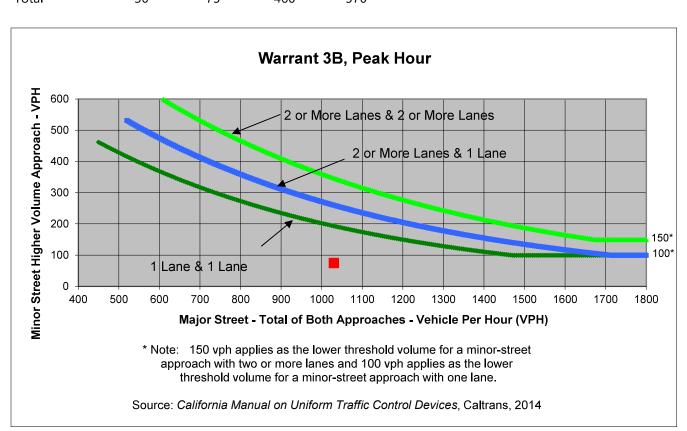




|                          | Major Street  | Minor Street | Warrant Met    |
|--------------------------|---------------|--------------|----------------|
|                          | Bodega Avenue | Paula Lane   | vvarrant iviet |
| Number of Approach Lanes | 1             | 1            | NO             |
| Traffic Volume (VPH) *   | 990           | 60           | <u>NO</u>      |

Major Street Minor Street Bodega Avenue
Paula Lane


Project Scenario Sonoma County Housing Rezone
Cumulative Conditions


Peak Hour PM Peak Hour

#### **Turn Movement Volumes**

|         | NB | SB | EB  | WB  |
|---------|----|----|-----|-----|
| Left    | 5  | 35 | 30  | 25  |
| Through | 5  | 10 | 425 | 515 |
| Right   | 20 | 30 | 5   | 30  |
| Total   | 30 | 75 | 460 | 570 |

#### **Major Street Direction**





|                          | Major Street  | Minor Street | Warrant Met    |
|--------------------------|---------------|--------------|----------------|
|                          | Bodega Avenue | Paula Lane   | vvarrant iviet |
| Number of Approach Lanes | 1             | 1            | NO             |
| Traffic Volume (VPH) *   | 1,030         | 75           | <u>NO</u>      |

# Appendix WSA

Water Supply Assessment



## **Technical Memorandum**

Date: May 11, 2022

Project: Larkfield Water Supply Assessment

To: Candace Coleman

California American Water

From: Stephanie Ard, PE

Marshall Kosaka, PE

Murraysmith

Reviewed By: Linda Scroggs, PE

Murraysmith

Re: Larkfield Water Supply Assessment

## 1.0 Introduction and Background

On November 24, 2021, Sonoma County Permit and Resource Management Department (Permit Sonoma) sent California American Water (CAW) a letter via email requesting a water supply assessment (WSA) for the rezoning of eight parcels known as the Larkfield Sites (Sites). The Sites are being rezoned for increased density to accommodate the Sonoma County's (County) share of the Bay Area's Regional Housing Need Allocation.

This technical memorandum is intended to provide sufficient information to allow CAW to assess its ability to supply water to the Sites, in accordance with the requirements of Senate Bill 610 (SB 610) and Senate Bill 221 (SB 221) (California Water Code sections 10910, et seq, and Government Code Sections 66473, et seq, respectively. Permit Sonoma stated in its November 24th letter that a WSA is required for the proposed rezoning of the Sites to account for an increase of 10 percent or more of CAW's existing service connections in the Larkfield service area, thereby meeting the definition of "project" as provided in Water Code § 10912(b).

# 2.0 Project Description and Rezoning

To meet the housing needs of people at all income levels, the State set a regional growth target naming the total number of new homes each region needs to build. The County's assigned share of the region's growth target for the next cycle is 3,881 housing units, which is a significant increase over the allocation of 515 for the current cycle. To help accommodate this significant increase, Sonoma County is proposing to rezone the Sites.

The Sites consist of eight parcels and approximately 12.87 acres located in the northwest of CAW's Larkfield service area and shown in **Figure 1**. The County proposes to rezone these parcels as shown in **Table 1**. As the table shows, the rezoning will increase the potential number of dwelling units (DU) from 62 units to 305 units.

On April 22, 2022, Marshall Kosaka (Murraysmith); Eric Gage, Chelsea Holup, and Ross Markey (Sonoma County); and Katherine Green and Darcy Kremin (Rincon Consultants) discussed inconsistencies between parcel acreages listed in the WSA request and Sonoma County's GIS parcel data. It was concluded that parcel acreages in **Table 1** represent the latest GIS data available from the County.

Table 1 | Existing & Proposed Zoning of Parcels

|        |             |              | Existing                           |                           |                 | P                     | roposed                   |       |
|--------|-------------|--------------|------------------------------------|---------------------------|-----------------|-----------------------|---------------------------|-------|
| EIR ID | Parcel ID   | Area<br>(ac) | Zoning<br>Description <sup>1</sup> | Max<br>Density<br>(DU/ac) | Units           | Zoning<br>Description | Max<br>Density<br>(DU/ac) | Units |
| LAR-1  | 039-320-051 | 1.78         | Planned<br>Community <sup>2</sup>  | 7 <sup>3</sup>            | 12              | Residential           | 11                        | 97    |
| LAN-I  | 039-320-031 | 2.59         | Limited<br>Commercial              | n/a                       | 0               | Residential           | 11                        | 37    |
| LAR-2  | 039-040-040 | 0.76         | Office<br>Buildings                | n/a                       | 0               | Residential           | 11                        | 16    |
| LAR-3  | 039-025-060 | 0.45         | Office<br>Buildings                | n/a                       | 0               | Residential           | 11                        | 16    |
| LAR-4  | 039-025-026 | 0.29         | Residential                        | 9                         | $2^4$           | Residential           | 11                        | 7     |
| LAR-5  | 039-025-028 | 4.49         | Residential                        | 9                         | 41 <sup>4</sup> | Residential           | 11                        | 99    |
| LAR-6  | 039-040-035 | 0.51         | Office<br>Buildings                | n/a                       | 0               | Residential           | 11                        | 14    |
| LAR-7  | 039-380-018 | 1.51         | Residential                        | 5                         | 7               | Residential           | 11                        | 44    |
| LAR-8  | 039-390-022 | 0.46         | Office<br>Buildings                | n/a                       | 0               | Residential           | 24                        | 12    |
|        | Total       | 12.84        |                                    |                           | 62              |                       |                           | 305   |

#### Notes:

- 1. A detailed summary of the zoning terminology can be found at sonomacounty.ca.gov/PRMD/Services/Zoning-and-Parcel-Report/Zoning-Codes-County/.
- 2. Special purpose zone allowing a diverse mix of uses, buildings, structures, lot sizes, and open spaces.
- 3. Based on minimum lot size of 6,000 square feet per Sec. 26-14-040 of the Sonoma County Code.
- 4. LAR-4 and LAR-5 are adjacent parcels; units calculations are based on the total area of the two parcels together

Legend □:□ Project Site Larkfield Service Area erner Dr Shiloh Ranch E Shiloh Rd Fulton et Rd Dennis Ln ood Rd Hopper Ave Pinercrest O, Russell Ave 0 1 Mile Piner Rd Larkfield Service Area **Larkfield Water** CALIFORNIA and Project Site **Supply Assessment** murraysmith AMERICAN WATER

Figure 1 | Larkfield Service Area & Larkfield Sites

## 3.0 Methodology

This section describes the methodology used to assess the potential increase in water demand caused by the proposed rezoning. It also analyzes CAW's existing and proposed water supply for the Larkfield service area for average, single dry, and multiple dry year scenarios.

For this analysis, CAW's Internal 2019 Comprehensive Planning Study (Internal 2019 CPS) and Internal 2020 Urban Water Management Plan (Internal 2020 UWMP) were used. Both were developed as internal planning documents for the Larkfield service area. CAW was not required to submit the UWMP because the Larkfield service area does not provide over 3,000 acre-feet of water annually nor does it serve more than 3,000 urban connections.

## 3.1 Projected Water Demands for the Larkfield Sites

The Sites' buildout water demand was calculated based on the existing and proposed zoning designations. The buildout water demands were then compared to evaluate the total change in water demand associated with the rezoning of the Sites.

Water demand for residential lots was calculated by multiplying the estimated number of units by an assumed water use per unit value. Assumptions used for the water use per unit value were provided by CAW. Residential indoor use was expected to meet the state goal of 50 gallons per person per day. Residential outdoor use was based on a combination of historical demands, California use goals, census data, and various development guides from other water providers.

Water demand for non-residential lots was assumed to be 1,800 gallons per day per acre. This assumption was provided by CAW and is consistent with other water demand projections calculated by CAW.

The water demands for the buildout of the parcels using the existing and proposed zoning designations are summarized in **Table 2** and **Table 3**, respectively. Peaking factors from CAW's Internal 2019 CPS were applied to average day demand to estimate maximum day demand and peak hour demand.

Using the existing zone designations, the buildout annual demand for the Sites is estimated to be 0.027 million gallons per day (MGD). The buildout annual demand for the proposed zoning designations is estimated to be 0.088 MG. Therefore, the proposed rezoning for the Sites is estimated to increase the buildout water demand for the Larkfield service area by approximately 0.060 MGD.

Note that these demands do not include fire flow requirements. Fire flows are not considered a component of either use or supply and as such, are not addressed in this document.

Table 2 | Existing Buildout Water Demand for Sites Area

| Zoning Description                     | Units | Acres | Water Use per<br>Unit (gpd) | Water Use per<br>Acre (gpd) | Average Day<br>Demand (gpd) | Maximum Day<br>Demand (gpd) | Peak Hour<br>Demand (gpd) | Average<br>Annual<br>Demand<br>(MGD) |
|----------------------------------------|-------|-------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------|--------------------------------------|
| Low-density Residential                | 7     | 1.51  | 375                         | -                           | 2,625                       | 6,038                       | 9,056                     | 0.003                                |
| Medium-density<br>Residential          | 43    | 4.78  | 293                         | -                           | 12,582                      | 28,938                      | 43,407                    | 0.013                                |
| Planned Community                      | 12    | 1.78  | 293 <sup>1</sup>            | -                           | 3,511                       | 8,076                       | 12,114                    | 0.004                                |
| Limited Commercial                     | -     | 2.59  | -                           | 1,800 <sup>2</sup>          | 4,662                       | 10,723                      | 16,084                    | 0.005                                |
| Administrative and Professional Office | -     | 2.18  | -                           | 1,800²                      | 3,924                       | 9,025                       | 13,538                    | 0.004                                |
| Total                                  | 62    | 12.84 |                             |                             | 27,304                      | 62,799                      | 94,199                    | 0.027                                |

#### Notes:

- 1. Medium-density residential demand assumed.
- 2. A potable water use factor of 60% is applied to the assumed water use per acre of 3000 gallons per acre per day.

## Table 3 | Larkfield Proposed Water Demands

| Zoning Description | Units | Acres | Water Use per<br>Unit (gpd) | Average Day<br>Demand (gpd) | Maximum Day<br>Demand (gpd) | Peak Hour<br>Demand (gpd) | Average Annual<br>Demand (MGD) |
|--------------------|-------|-------|-----------------------------|-----------------------------|-----------------------------|---------------------------|--------------------------------|
| Medium Density     | 293   | 12.38 | 293                         | 85,732                      | 197,183                     | 295,775                   | 0.086                          |
| High Density       | 12    | 0.46  | 155                         | 1,865                       | 4,289                       | 6,434                     | 0.002                          |
| Total              | 305   | 12.84 |                             | 87,597                      | 201,472                     | 302,208                   | 0.088                          |

#### Notes:

- 1. Medium-density residential demand assumed.
- 2. High-density residential demand assumed.

## 3.2 Existing and Projected Water Demand for the Larkfield Service Area

The Larkfield water system primarily serves residential and commercial customers. The historical demand for this service area is presented in **Table 4**. The Tubbs fire in 2017 caused significant damage to structures in the area and resulted in a decrease in water demand in 2018 and 2019. By 2020 the data shows that demand increased to pre-fire levels.

Table 4 | Larkfield Historical Water Use

| Year | Residential<br>(MGD) | Commercial<br>(MGD) | Other (MGD) | Non-revenue<br>(MGD) | Total (MGD) |
|------|----------------------|---------------------|-------------|----------------------|-------------|
| 2011 | 0.510                | 0.260               | 0.008       | 0.052                | 0.830       |
| 2012 | 0.529                | 0.260               | 0.008       | 0.090                | 0.888       |
| 2013 | 0.389                | 0.211               | 0.003       | 0.071                | 0.674       |
| 2014 | 0.430                | 0.241               | 0.005       | 0.044                | 0.721       |
| 2015 | 0.381                | 0.219               | 0.011       | 0.049                | 0.660       |
| 2016 | 0.400                | 0.230               | 0.005       | 0.044                | 0.679       |
| 2017 | 0.416                | 0.238               | 0.016       | 0.096                | 0.767       |
| 2018 | 0.321                | 0.230               | 0.011       | 0.079                | 0.641       |
| 2019 | 0.362                | 0.247               | 0.008       | 0.055                | 0.671       |
| 2020 | 0.438                | 0.233               | 0.003       | 0.079                | 0.753       |

Recovery from the fire damage is continuing and CAW anticipates a full recovery by 2025. In its Internal 2020 UWMP, CAW stated that expected growth in this area after 2025 is minimal. However, the rezoning of the Sites may change that assumption. The future demand stated in CAW's Internal 2020 UWMP is listed in **Table 5** alongside the additional demand caused by the rezoning of the Sites. The Sites' additional potential demand is added to Larkfield's planned future demand for each planning year because of the uncertainty of when the Sites could be developed.

Table 5: | Larkfield Projected Water Demand (MGD)

|                                     | 2025  | 2030  | 2035  | 2040  |
|-------------------------------------|-------|-------|-------|-------|
| Planned Future Demand               | 0.773 | 0.775 | 0.784 | 0.792 |
| Additional Demand - Larkfield Sites | 0.060 | 0.060 | 0.060 | 0.060 |
| Total Future Demand                 | 0.833 | 0.836 | 0.844 | 0.852 |

# 3.3 Existing and Projected Water Supply for the Larkfield Service Area

The Larkfield service area is primarily supplied by four active CAW groundwater wells, located in the Santa Rosa Valley Basin. The groundwater supply is augmented with wholesale water from Sonoma County Water Agency (SCWA). CAW has an interconnection and water supply agreement with the SCWA that expires in 2040. This agreement allows CAW to purchase up to an average of 0.8 million gallons per day (MGD) in any month and up to 700 acre-feet (228 million gallons) of

potable water per fiscal year. Additionally, CAW has an agreement with SCWA to purchase additional supply to meet peak demands, but this agreement expires in 2024 and it is unknown at this time if this agreement can be extended.

Historical supply for CAW's Larkfield service area is shown in **Table 6**.

Table 6 | Historical Larkfield Supply

| Source            | Rate of Supply (MGD) |       |       |       |       |  |
|-------------------|----------------------|-------|-------|-------|-------|--|
|                   | 2016                 | 2017  | 2018  | 2019  | 2020  |  |
| SCWA              | 0.241                | 0.290 | 0.192 | 0.233 | 0.238 |  |
| Groundwater Wells | 0.438                | 0.479 | 0.449 | 0.438 | 0.512 |  |
| Total Supply      | 0.679                | 0.770 | 0.641 | 0.671 | 0.751 |  |

Notes:

- 1. Provided from the Santa Rosa aqueduct.
- 2. Pumps from alluvial deposits and fractured rock.

The supply for the Larkfield service area is summarized in **Table 7**. The purchase agreement with SCWA is not guaranteed and is therefore not included in the safe yield.

Table 7 | Larkfield Water Supplies

| Supply Type                  | Source                     | Available Drinking<br>Water (MGD) | Safe Yield |
|------------------------------|----------------------------|-----------------------------------|------------|
| Groundwater                  | Santa Rosa Valley Basin    | 1.389                             | 1.389      |
| Purchased Water <sup>1</sup> | Sonoma County Water Agency | 0.625                             | 0.000      |
|                              | Larkfield Total            | 2.014                             | 1.389      |

Notes:

# 3.4 Water Service Reliability for the Larkfield Service Area

The reliability of water supply to CAW's Larkfield service area was determined by comparing projected water demand with the volume of water expected to be available in a normal year, a dry year, and five consecutive dry years. Groundwater supplies were assumed to be drought resistant; therefore, supplies were assumed to be similar in average years, single dry years, and consecutive dry years. To be conservative, only the firm capacity of CAW's groundwater wells was used for the single-dry and consecutive dry years. Because the purchased supply from SCWA is not guaranteed, it was assumed that this source will not be available in dry and consecutive dry years.

Both annual demand and maximum month demand scenarios were reviewed as part of this analysis. The annual scenario assumed all wells are active. However, the maximum month scenario assumed that the largest well is inactive. A summary of water supply used for the normal, single-dry, and consecutive dry year scenarios is provided in **Table 8**.

<sup>1.</sup> Safe Yield is defined here as reasonable supply in a dry period. Because water from SCWA is not guaranteed during a dry period, it is assumed to be zero.

Table 8 | Available Supply for Various Supply Scenarios

| Year Type                                               | Available S                                             | upplies if Year Type Repeats                            |
|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
|                                                         | Annual Scenario<br>Rate Available<br>(MGD) <sup>1</sup> | Max Month Scenario<br>Rate Available (MGD) <sup>2</sup> |
| Normal Year                                             | 2.014                                                   | 1.54                                                    |
| Single-Dry Year                                         | 1.389                                                   | 0.74                                                    |
| Consecutive Dry Years 1 <sup>st</sup> – 5 <sup>th</sup> | 1.389                                                   | 0.74                                                    |

#### Notes:

- 1. Rate available is total capacity of active wells. Purchased water from SCWA is assumed to be available only during normal year scenario.
- 2. Rate available for maximum month scenario is firm capacity, computed with the largest producing well offline. Purchased water from SCWA is assumed to be available only during normal year scenario.

In **Table 9**, CAW's planned future annual demand for the Larkfield service area with the additional demand associated with rezoning the Larkfield Sites is compared to the supply conditions listed in **Table 8**.

Table 9 | Larkfield Service Area's Projected Water Supply vs Annual Demand

| Annual Demand (MGD)               |               | 2025  | 2030  | 2035  | 2040  |  |
|-----------------------------------|---------------|-------|-------|-------|-------|--|
| Normal Year                       |               |       |       |       |       |  |
|                                   | Supply Totals | 2.014 | 2.014 | 2.014 | 2.014 |  |
|                                   | Demand Totals | 0.833 | 0.836 | 0.844 | 0.852 |  |
|                                   | Difference    | 1.181 | 1.178 | 1.170 | 1.162 |  |
| Single Dry Year                   |               |       |       |       |       |  |
|                                   | Supply Totals | 1.389 | 1.389 | 1.389 | 1.389 |  |
|                                   | Demand Totals | 0.833 | 0.836 | 0.844 | 0.852 |  |
|                                   | Difference    | 0.556 | 0.553 | 0.545 | 0.537 |  |
| Consecutive Dry                   | Years         |       |       |       |       |  |
| 1 <sup>st</sup> – 5 <sup>th</sup> | Supply Totals | 1.389 | 1.389 | 1.389 | 1.389 |  |
|                                   | Demand Totals | 0.833 | 0.836 | 0.844 | 0.852 |  |
|                                   | Difference    | 0.556 | 0.553 | 0.545 | 0.537 |  |

Projected maximum month demand for the Larkfield service area with the additional demand associated with rezoning the Larkfield Sites is compared to available supply for normal and dry years in **Table 10**. As shown in **Table 8**, CAW's groundwater supply is considered as firm supply, computed with largest producing well offline for the maximum month scenario, and purchased water from SCWA is assumed to be unavailable in the dry year scenarios.

Table 10 | Larkfield Service Area's Projected Supply vs Maximum Month Demand

| Maximum Month Demand (MGD)        |                 | 2025  | 2030  | 2035  | 2040  |  |
|-----------------------------------|-----------------|-------|-------|-------|-------|--|
| Normal Year                       |                 |       |       |       |       |  |
|                                   | Supply Totals   | 1.54  | 1.54  | 1.54  | 1.54  |  |
|                                   | Demand Totals   | 1.15  | 1.16  | 1.17  | 1.18  |  |
|                                   | Difference      | 0.39  | 0.38  | 0.37  | 0.36  |  |
| Single Dry Year                   | Single Dry Year |       |       |       |       |  |
|                                   | Supply Totals   | 0.74  | 0.74  | 0.74  | 0.74  |  |
|                                   | Demand Totals   | 1.15  | 1.16  | 1.17  | 1.18  |  |
|                                   | Difference      | -0.41 | -0.42 | -0.43 | -0.44 |  |
| Consecutive Dry                   | y Years         |       |       |       |       |  |
| 1 <sup>st</sup> – 5 <sup>th</sup> | Supply Totals   | 0.74  | 0.74  | 0.74  | 0.74  |  |
|                                   | Demand Totals   | 1.15  | 1.16  | 1.17  | 1.18  |  |
|                                   | Difference      | -0.41 | -0.42 | -0.43 | -0.44 |  |

## 3.5 Future Water Supply Projects for the Larkfield Service Area

As part of its Internal 2019 CPS, CAW identified a supply capital improvement project for the Larkfield service area that would construct an emergency supply connection with the neighboring City of Windsor. As this would be an emergency supply connection, the actual volume of water to be supplied is unknown.

An Integrated Water Supply Master Plan for the Larkfield service area is planned to be completed in 2024. The purpose of this study will be to determine possible supplemental sources and evaluate their implementation feasibility. The study may include exploration of groundwater and surface water sources, aquifer storage and recovery, and reuse. Potential supply sources may be collaborations with nearby water providers or regional water supply solutions. Considerations will be given to water quality, accessibility to the existing distribution system, and availability in dry and critical years. The study may also include field feasibility testing, coordination with local governments and water providers, and exploration of project funding opportunities. The outcome of the study will be a prioritized list of supply options including planning level cost estimates.

# 4.0 Comparison and Determination of Sufficient Supply

In this section the calculations and information provided in previous sections are analyzed in terms of the requirements stated in SB 610 and SB 221.

# 4.1 SB 610 Water Supply Assessment

The SB 610 assessment evaluates whether there is sufficient supply to meet the proposed projected demands in addition to all existing and planned future demands.

The increased water demand associated with the proposed rezoning of the Sites was calculated in **Section 3.1** to be approximately 0.060 MGD. When compared to the expected water supply during

normal, single dry, and consecutive dry years in **Section 3.4**, the analysis showed that the Larkfield service area has sufficient supply to meet these demands during normal, single dry, and consecutive dry year scenarios.

However, the Larkfield service area does not have sufficient supply to meet the maximum month demand with the largest source out of service. It's worth noting that without the additional demand from the Larkfield Sites rezoning, the analysis still shows a supply deficit during the single dry and consecutive dry year scenarios.

In conclusion, CAW has sufficient supply for the increased water demand associated with the Larkfield Sites rezoning. However, CAW cannot guarantee sufficient supply during maximum month demand scenarios during dry year scenarios without acquiring additional water sources.

## 4.2 SB 221 Water Supply Verification

Written verification is required by SB 221 stating the availability of sufficient water supply from the applicable public water system. The SB 610 assessment presented in **Section 4.1** of this memorandum is sufficient to meet most of the requirements of SB 221. The additional requirements to comply with SB 221 are addressed in this section.

The historical record of water supply availability for the last 20 years must be considered when verifying the sufficiency of the water supply (Government Code section 66473.7 subdivision (a) (2)). Historical supply for the Larkfield service area is summarized in **Table 6**, and a full list of supply for the past 20 years is included in **Table 11**.

Table 11 | 20-Year History of Larkfield Service Area Water Supply

| Year | System Delivery (MGD) |
|------|-----------------------|
| 2002 | 1.170                 |
| 2003 | 1.170                 |
| 2004 | 1.241                 |
| 2005 | 1.090                 |
| 2006 | 1.049                 |
| 2007 | 1.060                 |
| 2008 | 1.079                 |
| 2009 | 0.910                 |
| 2010 | 0.819                 |
| 2011 | 0.830                 |
| 2012 | 0.860                 |
| 2013 | 0.849                 |
| 2014 | 0.721                 |
| 2015 | 0.660                 |
| 2016 | 0.679                 |
| 2017 | 0.770                 |

| Year | System Delivery (MGD) |
|------|-----------------------|
| 2018 | 0.641                 |
| 2019 | 0.671                 |
| 2020 | 0.751                 |
| 2021 | 0.721                 |

The ability to meet the Government Code 66473.7 (2) (B) requirement for an "urban water shortage contingency analysis prepared pursuant to Section 10632 of the water code" must be assessed. The CAW Water Shortage Contingency Plan complies with Government Code section 10632 and will apply to the Sites.

Supply reduction for specific water use sector per the resolution adopting water shortage contingency plans must not conflict with Water Code Section 354. Section 354 addresses ensuring that the governing body of CAW allocates and sets aside the amount of water which will be necessary to supply water needed for domestic use, sanitation, and fire protection uses. CAW prioritizes these needs over other uses, and for purposes of this verification, is considered to be in accordance with Water Code Section 354.

The amount of water that can be reasonably relied upon from specified supply projects must be considered in determining sufficiency. These are limited in SB 221 specifically to other water supply projects including conjunctive use, reclaimed water, water conservation, and water transfers. Additional supply projects for the Larkfield service area are described in **Section 3.5**.

Water supply verification must be based on substantial evidence, which Government code section 66473.7(c) clarifies as urban water management plans or assessments. The water supply projections utilized in the SB 610 assessment are based on the supply projections shown in CAW's Internal 2020 UWMP.

Government Code Section 66473.7 subdivision (j) states that the verification must be consistent with the water supplier's obligation to grant priority for water to low-income housing projects. Subdivision (g) of the same section requires a description of the impacts to agricultural and industrial uses from supplying water to the proposed subdivision. There are no proposed low-income housing projects for which provision of water resources or services by CAW would be precluded if water is provided to the Sites. Similarly, no impacts on the availability of water resources for agricultural and industrial uses within the CAW service area boundary are expected to result from CAW providing water to the Sites.

## 5.0 Recommendations

Based on the results of the SB 610 water supply assessment and SB 221 verification of the availability of sufficient water supply presented herein, both of which are based on substantial evidence, CAW has sufficient water supply to serve the proposed rezoning of the Larkfield Sites. However, CAW cannot guarantee sufficient supply during maximum month demand scenarios during dry year scenarios without acquiring additional water sources. CAW has insufficient supply

to meet existing maximum month demand with the largest well out of service during dry year scenarios. Therefore, it cannot support any increase in demand without an increase in available supply during dry year scenarios.

The following recommendations are offered for consideration.

- 1. Upon receipt of the final version of this Technical Memorandum, CAW should issue its concurrence with the findings stated wherein.
- 2. Upon receipt of evidence that the CAW has approved the water supply assessment, Sonoma County should include the assessment and any additional water supply information in the CEQA document.

# Appendix WSS

Water and Sewer Study

# Sonoma County Rezoning Sites for Housing Project Water and Sewer Study

# Prepared for:



and



# Prepared by:



August 15, 2022



## **Contents**

| 1.0    | Introduction and Background                                                               | 1  |
|--------|-------------------------------------------------------------------------------------------|----|
| 2.0    | Project Site Locations                                                                    | 2  |
| 3.0    | Water and Sewer Agencies                                                                  | 6  |
| 4.0    | Existing Infrastructure                                                                   | 7  |
| 5.0    | Water and Sewer Overview                                                                  |    |
| 5.1    | Water Demand                                                                              | 11 |
| 5.2    | Sewer Generation                                                                          |    |
| 6.0    | Water System Analysis                                                                     |    |
| 6.1    | Water System Results                                                                      |    |
| 7.0    | Sewer System Analysis                                                                     |    |
| 7.1    | Sewer System Results                                                                      |    |
| 8.0    | Results                                                                                   |    |
|        |                                                                                           |    |
|        | Tables                                                                                    |    |
| Table  | 2-1. Existing and Proposed Population                                                     | 2  |
| Table  | 3-1. Water and Sewer Agencies                                                             | 6  |
|        | e 3-2. Agency Water Supply                                                                |    |
|        | 3-3. Agency Wastewater Treatment Facilities                                               |    |
|        | 4-1: Water and Sewer Infrastructure by Parcel                                             |    |
|        | s 5-1. Water Demand for Proposed Build Out                                                |    |
|        | e 5-2. Increase in Water Demand by USA<br>e 5-3. Sewage Generation for Proposed Build Out |    |
|        | 5-5. Sewage Generation for Toposed Build Gutt                                             |    |
|        | 6-1. Water Category Results                                                               |    |
|        | 27-1. Sewer Category Results                                                              |    |
|        | 8-1. Full Categorical Results for Each Site                                               |    |
|        |                                                                                           |    |
|        | Figures                                                                                   |    |
| Figure | e 2-1. Sonoma County Housing Sites for Rezoning (source: Rincon Consultants)              | 5  |
|        | Appendices                                                                                |    |
|        |                                                                                           |    |

Appendix A: Maps of Sites Under Consideration by USA Appendix B: Land Use Summary of Sites Under Consideration

Appendix C: Agency Meeting Schedule

Appendix D: Reference Documents



#### 1.0 Introduction and Background

Like many counties throughout California, Sonoma County (County) is known for its high cost of living and lack of affordable, available housing. New construction in the County has not kept up with housing demand over the last half decade, and the 2017 wildfires destroyed over 5,000 housing units Countywide, exacerbating an already dire housing crisis.

The Sonoma County Permit and Resource Management Department (Permit Sonoma) is preparing a program Environmental Impact Report (EIR) for the rezoning of selected sites throughout the County for housing.

Proper location is an important consideration for new housing in the unincorporated County, as there has been a long-standing Countywide concern to avoid sprawl and protect open space. The County is largely rural, with limited urban areas. There are strong General Plan policies that protect designated Community Separators and facilitate city- and community- centered growth, voter-approved Urban Growth Boundaries, and General Plan-designated Urban Service Areas (USAs) where public sewer and water are available and higher densities of housing could be built.

This project will identify sites to be added to the County's Housing Element site inventory to comply with State law and will implement current General Plan Policies and Programs that require the County to identify urban sites near jobs and transit which may appropriately accommodate additional housing. It will also identify appropriate sites on which to place the Workforce Housing Combining Zone, which would allow the development of jobs and/or housing on the same site or within walking distance from one another.

In 2018, the County asked the public for help identifying sites and received over 100 potential sites which was narrowed down to 59 based on the following four criteria:

- 1. Site must be located in the unincorporated County
- 2. Site must be located within an established USA where public water and sewer service is available
- 3. Site must not be located within a Community Separator
- 4. If a site is near an incorporated city, it must not be located outside of a city's Urban Growth Boundary (UGB)

Eight of the sites to be evaluated are already included in the County's Housing Element site inventory at a lower density but recent changes in State law give increased scrutiny to the continuing identification of sites already in inventory. Increasing the zoning densities for these sites may allow them to remain in inventory. By the end of the project, up to 59 urban sites in designated USAs throughout unincorporated Sonoma for byright, medium density housing (no land use approvals for the development of medium- density housing would be required).

For the purposes of this environmental study, sites analyzed for rezoning to R2 (medium-density residential) with a base of 10 dwelling units (DU) per acre were assumed to increase to 20 DU per acre, the maximum allowable build out potential utilizing the County's 100% density bonus program. Sites analyzed for Workforce Housing Combining Zones are assumed to be allowed a density of 24 DU per acre which is the maximum allowed in these zones.

The purpose of this Water and Sewer Study (Study) is to conduct a high-level investigation to identify the water and sewer agencies that provide service to these potential sites, determine if water and sewer infrastructure exist adjacent to the proposed project sites, calculate the additional water demand and sewage generation from the increased housing density, and investigate if capacity exists within the existing systems to accommodate the proposed projects.



## 2.0 Project Site Locations

In late 2018, the County asked for the public's help in identifying potential sites for rezoning, and over 100 sites were nominated. County staff evaluated all nominated sites to determine if they met the basic eligibility criteria and narrowed it down to 59 sites. Some sites that will be evaluated were included in a prior housing element, but the County proposes to include them in this analysis so that the potential for cumulative impacts can be analyzed. The 59 sites proposed for re-zoning are shown in **Figure 2-1** below (provided by Rincon Consultants). The environmental review process will further refine the sites with the potential for rezoning. The 59 sites are located in the following USAs of:

Geyserville (GEY) 4 Guerneville (GUE) 4 Larkfield (LAR) 8

Forestville (FOR) 6 Graton (GRA) 5 South Santa Rosa (SAN) 10

Glen Ellen (GLE) 2 Agua Caliente (AGU) 3 Penngrove (PEN) 9

Petaluma (PET) 4 Sonoma (SON) 4

The 59 sites total approximately 164-acres of land. The existing zoning for each parcel was evaluated and proposed to be re-zoned in order to increase the density of each parcel. Each of the 59 sites was assigned a site ID based on their USA and site number within the USA. Based upon the parcel area, current land use zoning designation, and the average Sonoma County household of 2.6 persons per dwelling unit (per the latest census), a population density based on the existing zoning was determined to be approximately 960 persons. With the proposed rezoning for each parcel, the maximum build-out population increase to approximately 8,656 persons, or an increase of 7,696 persons. The proposed re- zoning of the 59 parcels will result in approximately 3,329 dwelling units.

**Table 2-1** below summarizes the existing population based on the current zone, the proposed population based on the re-zoning, and the increase in population for each of the potential sites.

Table 2-1. Existing and Proposed Population

| Site ID | Site Area (ac) | Existing Max<br>Population | Proposed Max<br>Population | Population<br>Change |
|---------|----------------|----------------------------|----------------------------|----------------------|
| AGU-1   | 1.3            | 3                          | 70                         | 68                   |
| AGU-2   | 6.6            | 18                         | 343                        | 325                  |
| AGU-3   | 3.2            | 42                         | 166                        | 125                  |
| FOR-1   | 2.9            | 120                        | 182                        | 62                   |
| FOR-2   | 14.1           | 18                         | 736                        | 718                  |
| FOR-3   | 1.7            | 8                          | 86                         | 78                   |
| FOR-4   | 3.5            | 5                          | 185                        | 179                  |
| FOR-5   | 2.9            | 16                         | 151                        | 135                  |
| FOR-6   | 5.0            | 0                          | 312                        | 312                  |
| GEY-1   | 5.1            | 213                        | 320                        | 107                  |
| GEY-2   | 1.6            | 21                         | 86                         | 65                   |
| GEY-3   | 1.1            | 13                         | 57                         | 44                   |
| GEY-4   | 1.3            | 16                         | 68                         | 52                   |



| Site ID | Site Area (ac) | Existing Max<br>Population | Proposed Max<br>Population | Population<br>Change |
|---------|----------------|----------------------------|----------------------------|----------------------|
| GLE-1   | 0.8            | 3                          | 49                         | 47                   |
| GLE-2   | 0.1            | 3                          | 8                          | 5                    |
| GRA-1   | 1.1            | 16                         | 60                         | 44                   |
| GRA-2   | 3.0            | 0                          | 185                        | 185                  |
| GRA-3   | 1.1            | 3                          | 57                         | 55                   |
| GRA-4   | 1.8            | 3                          | 94                         | 91                   |
| GRA-5   | 1.3            | 3                          | 70                         | 68                   |
| GUE-1   | 1.5            | 16                         | 78                         | 62                   |
| GUE-2   | 4.0            | 5                          | 208                        | 203                  |
| GUE-3   | 2.1            | 21                         | 107                        | 86                   |
| GUE-4   | 5.3            | 8                          | 273                        | 265                  |
| LAR-1   | 4.4            | 3                          | 252                        | 250                  |
| LAR-2   | 0.7            | 0                          | 42                         | 42                   |
| LAR-3   | 0.7            | 26                         | 36                         | 10                   |
| LAR-4   | 0.3            | 10                         | 16                         | 5                    |
| LAR-5   | 4.5            | 187                        | 257                        | 70                   |
| LAR-6   | 0.6            | 0                          | 31                         | 31                   |
| LAR-7   | 2.0            | 26                         | 117                        | 91                   |
| LAR-8   | 0.5            | 0                          | 29                         | 29                   |
| PEN-1   | 0.1            | 0                          | 3                          | 3                    |
| PEN-2   | 1.0            | 3                          | 55                         | 52                   |
| PEN-3   | 0.2            | 0                          | 10                         | 10                   |
| PEN-4   | 1.7            | 5                          | 91                         | 86                   |
| PEN-5   | 0.3            | 3                          | 21                         | 18                   |
| PEN-6   | 2.0            | 5                          | 104                        | 99                   |
| PEN-7   | 5.4            | 47                         | 278                        | 231                  |
| PEN-8   | 0.6            | 0                          | 42                         | 42                   |
| PEN-9   | 0.3            | 0                          | 21                         | 21                   |
| PET-1   | 2.0            | 3                          | 101                        | 99                   |
| PET-2   | 1.4            | 3                          | 70                         | 68                   |
| PET-3   | 4.9            | 3                          | 169                        | 166                  |
| PET-4   | 1.9            | 3                          | 101                        | 99                   |
| SAN-1   | 3.7            | 3                          | 192                        | 190                  |



| Site ID            | Site Area (ac) | Existing Max Population | Proposed Max Population | Population<br>Change |
|--------------------|----------------|-------------------------|-------------------------|----------------------|
| SAN-2              | 8.3            | 0                       | 520                     | 520                  |
| SAN-3              | 4.0            | 3                       | 208                     | 205                  |
| SAN-4              | 6.2            | 3                       | 387                     | 385                  |
| SAN-5              | 3.4            | 3                       | 174                     | 172                  |
| SAN-6              | 3.0            | 0                       | 190                     | 190                  |
| SAN-7              | 3.0            | 0                       | 187                     | 187                  |
| SAN-8              | 1.0            | 3                       | 52                      | 49                   |
| SAN-9              | 6.6            | 0                       | 413                     | 413                  |
| SAN-10             | 13.2           | 8                       | 333                     | 325                  |
| SON-1              | 1.0            | 0                       | 49                      | 49                   |
| SON-2              | 1.0            | 0                       | 52                      | 52                   |
| SON-3              | 1.0            | 3                       | 52                      | 49                   |
| SON-4              | 1.0            | 3                       | 49                      | 47                   |
| TOTAL <sup>1</sup> | 164.3          | 930                     | 8,655                   | 7,725                |

<sup>&</sup>lt;sup>1</sup> Note: Totals may not sum exactly due to rounding.



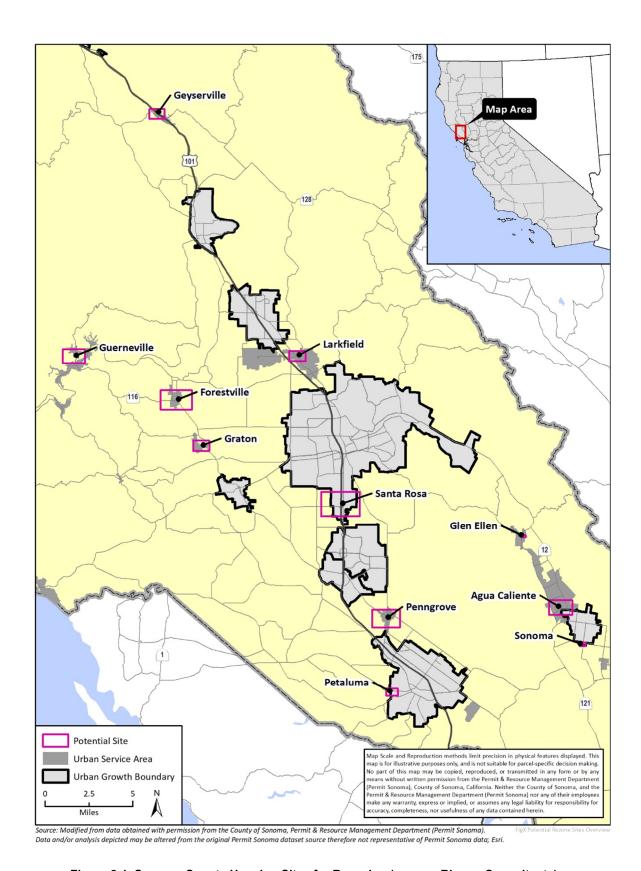



Figure 2-1. Sonoma County Housing Sites for Rezoning (source: Rincon Consultants)



**Appendix A** provides larger scaled maps of the individual USAs identifying the 59 parcels that were considered for this Study. **Appendix B** provides individual parcel information in a tabular form.

## 3.0 Water and Sewer Agencies

The Sonoma County Water Agency (Sonoma Water) provides an array of services throughout Sonoma County, including, but not limited to, drinking water, distribution of recycled water and wastewater treatment.

Sonoma Water manages and maintains a water transmission system that provides naturally filtered Russian River water to nine cities and special districts that in turn delivers drinking water to more than 600,000 residents in portions of Sonoma and Marin counties. Sonoma Water provides wholesale drinking water to the following cities and special districts: City of Cotati, Marin Municipal Water District, North Marin Water District, City of Petaluma, City of Rohnert Park, City of Santa Rosa, City of Sonoma, Valley of the Moon Water District, and the Town of Windsor.

In 1995 Sonoma Water assumed responsibility from the County of Sonoma for managing the county sanitation zones and districts, which provide wastewater collection/treatment, and recycled water distribution/disposal services for approximately 7,000 residences and businesses. The zones include Airport/Larkfield/Wikiup, Geyserville, Penngrove and Sea Ranch. The sanitation districts include the Occidental, Russian River, Sonoma Valley, and South Park County Sanitation Districts.

There are multiple water and sewer agencies responsible for providing service to the proposed project sites. The agencies are listed in **Table 3-1.** In order to obtain information about each system, documents were obtained from the agency's website (if available), and each agency was contacted via phone call and email. In a few cases, site visits were made to obtain system information. **Appendix C** summarizes the reference documents obtained for this Study and the source used to retrieve them.

Table 3-1. Water and Sewer Agencies

| Urban Service Area | Water Service Provider                                                              | Sewer Service Provider                                                         |  |
|--------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| Agua Caliente      | Valley of the Moon Water District                                                   |                                                                                |  |
| Glen Ellen         | valley of the Moon water District                                                   | Sonoma Valley County Sanitation District (Sonoma Water)                        |  |
| Sonoma             | City of Sonoma                                                                      | ,                                                                              |  |
| Forestville        | Forestville Water District                                                          | Forestville Water District                                                     |  |
| Geyserville        | California American Water -<br>Geyserville                                          | Geyserville Sanitation Zone (Sonoma<br>Water)                                  |  |
| Graton             | Individually Owned Wells                                                            | Graton Community Services District                                             |  |
| Guerneville        | Sweetwater Springs Water<br>District/California Water Service –<br>Armstrong Valley | Russian River County Sanitation District<br>(Sonoma Water)                     |  |
| Larkfield          | California American Water –<br>Larkfield                                            | Airport/Larkfield/Wikiup Sanitation Zone<br>(Sonoma Water)                     |  |
| Penngrove          | Penngrove/Kenwood Water Company                                                     | Penngrove Sanitation Zone (Sonoma Water)                                       |  |
| Petaluma           | City of Petaluma                                                                    | City of Petaluma                                                               |  |
| Santa Rosa         | City of Santa Rosa                                                                  | City of Santa Rosa and South Park County<br>Sanitation District (Sonoma Water) |  |



**Table 3-2** summarizes the water supply source(s) for each agency.

**Table 3-2. Agency Water Supply** 

| Agency                                      | Water Source              |
|---------------------------------------------|---------------------------|
| Valley of the Moon Water District           | Sonoma Water, Local Wells |
| City of Sonoma                              | Sonoma Water, Local Wells |
| Forestville Water District                  | Sonoma Water              |
| California American Water – Geyserville     | Unknown [1]               |
| California American Water – Larkfield       | Unknown [1]               |
| California Water Service – Armstrong Valley | Local Wells               |
| Penngrove/Kenwood Water Company             | Sonoma Water              |
| City of Petaluma                            | Sonoma Water              |
| City of Santa Rosa                          | Sonoma Water              |

<sup>[1]</sup> Information was not provided by the agency

**Table 3-3** identifies where each agency sends its sewage to be treated.

**Table 3-3. Agency Wastewater Treatment Facilities** 

| Agency                                   | Treatment Facility                                             |
|------------------------------------------|----------------------------------------------------------------|
| Sonoma Valley County Sanitation District | 3.0 MGD Laguna Treatment Plant (Tertiary)                      |
| Forestville Water District               | District's Wastewater Treatment Reclamation and Disposal Plant |
| Geyserville Sanitation Zone              | 92,000 GPD WWTP (Secondary)                                    |
| Graton Community Services District       | GCSD (Ross Lane) WWTP                                          |
| Russian River County Sanitation District | 710,000 GPD WWTP (Tertiary)                                    |
| Airport/Larkfield/Wikiup Sanitation Zone | 900,000 GPD WWTP (Tertiary)                                    |
| Penngrove Sanitation Zone                | "Routed to City of Petaluma"                                   |
| City of Petaluma                         | 6.7 MGD Ellis Creek Water Recycling Facility (Tertiary)        |
| South Park County Sanitation District    | MCD Leaving Cub Degional Treatment Dlant (Testiens)            |
| City of Santa Rosa                       | MGD Laguna Sub-Regional Treatment Plant (Tertiary)             |

## 4.0 Existing Infrastructure

An initial task of this analysis is to determine if water and sewer infrastructure exists directly adjacent to the parcels proposed for rezoning using publicly available agency documents, GIS files, atlas maps and discussions with agency staff (if available). For the purposes of the analysis, directly adjacent is taken to mean that infrastructure exists either across the frontage of the property (such as in a road) or extending into the property. The results of the infrastructure analysis are summarized in **Table 4-1**.



Table 4-1: Water and Sewer Infrastructure by Parcel

| Site ID  | Adjacent Water<br>Service | Adjacent Water<br>Pipes  | Adjacent Sewer<br>Service | Adjacent Sewer Pipe   |
|----------|---------------------------|--------------------------|---------------------------|-----------------------|
| AGU-1    | Yes                       | 6" AC                    | Yes                       | 21" RCP               |
| AGU-2    | Yes                       | 6" PVC                   | Yes                       | 21" RCP               |
|          |                           | 6" AC                    |                           | 6"/8" VCP             |
| AGU-3    | Yes                       | 6" C-900                 | Yes                       |                       |
|          |                           | 8" AC                    |                           | 6" AC                 |
|          |                           | 6" AC                    |                           | 6" AC                 |
| GLE-1    | Yes                       | 8" AC                    | Yes                       | 6"/16" AC             |
| GLE-2    | Yes                       | 6"/8" AC                 | Yes                       | 6" AC                 |
| FOR-1    | Yes                       | 8" AC                    | No                        |                       |
| FOR-2    | Yes                       | 6" AC on four sides      | No                        |                       |
| FOR-3    | Yes                       | 8" AC                    | Yes                       | 8" AC                 |
| FOR-4    | No                        |                          | Yes                       | 8" AC on two<br>sides |
| FOD 5    | Yes                       | 8" AC                    | Yes                       | 8" AC                 |
| FOR-5    |                           | 6" AC                    |                           | o AC                  |
| FOR-6    | Yes                       | 8" AC                    | No                        |                       |
| GRA-1    | No                        |                          | Yes                       | 6" on two sides       |
| GRA-2    | No                        |                          | Yes                       | 6"/12"                |
| GRA-3    | No                        |                          | Yes                       | 6"                    |
| GRA-4    | No                        |                          | No                        |                       |
| GRA-5    | No                        |                          | Yes                       | 6"                    |
| PET-1    | Yes                       | 8" AC                    | No                        |                       |
| PET-2    | Yes                       | 8" AC                    | Yes                       | 6" PVC                |
| PET 3 C1 | Yes                       | 8" AC                    | Yes                       | 6" PVC and            |
| PET-3 AR |                           | o AC                     | res                       | manhole               |
| PET-4    | Yes                       | 8" AC                    | Yes                       | 6" PVC                |
| SAN-1    | No                        |                          | Yes                       | 8" PVC                |
| SAN-2    | Yes                       | 12" PVC on smallest side | Yes                       | 27" RCP               |
| SAN-3    | No                        |                          | Yes                       | 8" PVC                |
| SAN-4    | Yes                       | 12" DI                   | Yes                       | 16" CP                |



| Site ID            | Adjacent Water<br>Service | Adjacent Water<br>Pipes | Adjacent Sewer<br>Service | Adjacent Sewer Pipes   |
|--------------------|---------------------------|-------------------------|---------------------------|------------------------|
| SAN-5              | No                        |                         | Yes                       | 8" PVC                 |
| SAN-6              | Yes                       | 12" AC                  | Yes                       | 10" AC                 |
| SAN-7              | Yes                       | 12" AC                  | Yes                       | 10" AC                 |
| SAN-8              | No                        |                         | Yes                       | 8" PVC                 |
| SANIO              | Yes                       | 8" PVC                  | Vac                       |                        |
| SAN-9              | res                       | 16" DI                  | Yes                       | 15" PVC                |
| SAN-10 M1          | Yes                       |                         | No                        |                        |
| SAN-10 RR          | Yes                       | 12" PVC                 | No                        |                        |
| SON-1              | No                        |                         | No                        |                        |
| SON-2              | No                        |                         | No                        |                        |
| SON-3              | No                        |                         | No                        |                        |
| SON-4              | No                        |                         | No                        |                        |
| GUE-1              | No                        |                         | Yes                       | 6" AB                  |
| GUE-2              | No                        |                         | Yes                       | 6" AB                  |
| GUE-3              | Yes                       | 2" PVC                  | Yes                       | 6" PVC on two<br>sides |
|                    |                           | 4" PVC                  |                           | 6" AB                  |
| GUE-4              | Yes                       | 4" PVC                  | Yes                       | 6" AB                  |
| PEN-1              | Yes                       | 6"                      | Yes                       | 8" AC                  |
| PEN-2              | Yes                       | 6"                      | No                        |                        |
| PEN-3              | Yes                       | 6"                      | Yes                       | 8" AC                  |
| PEN-4              | Yes                       | 6"                      | No                        |                        |
| PEN-5              | Yes                       | 6"/8"                   | Yes                       | 8" AC                  |
| PEN-6              | Yes                       | 6"/8"                   | Yes                       | 6" AC                  |
| PEN-7 AH           | Vaa                       | 6"/8"                   | Voo                       | 6" AC                  |
| PEN-7 RR B6        | Yes                       | 070                     | Yes                       | 0 70                   |
| PEN-8              | Yes                       | 6"                      | Yes                       | 6" AC                  |
| PEN-9              | Yes                       | 6"                      | No                        |                        |
|                    |                           |                         |                           | 21" RCP                |
| LAR-1 <sup>1</sup> | Yes                       | NE and NW Boundary      | Yes                       | 8" PVC                 |
|                    |                           |                         |                           | 6" AC                  |
| LAR-2 <sup>1</sup> | Yes                       | SE Boundary             | Yes                       | 8" PVC                 |
| LAR-3 <sup>1</sup> | Yes                       | S and NE Boundary       | Yes                       | 8" DI                  |
| LAR-4 <sup>1</sup> | Yes                       | S Boundary              | Yes                       | 21" RC                 |
| AD 51              | Vaa                       | S Boundary              | Vaa                       | 8" PVC                 |
| LAR-5 <sup>1</sup> | Yes                       | 3 Doulldary             | Yes                       | 21" RC                 |
| LAR-6 <sup>1</sup> | Yes                       | SE Boundary             | Yes                       | 8" PVC                 |



| Site ID            | Adjacent Water<br>Service | Adjacent Water<br>Pipes | Adjacent Sewer<br>Service | Adjacent Sewer Pipes |
|--------------------|---------------------------|-------------------------|---------------------------|----------------------|
| LAR-7 <sup>1</sup> | Yes                       | NE Boundary             | No                        |                      |
| LAR-8 <sup>1</sup> | Yes                       | SW Boundary             | Yes                       | 21" RCP              |
| GEY-1 <sup>1</sup> | Yes                       | NE Boundary             | No                        |                      |
| GEY-2 <sup>1</sup> | Yes                       | NE Boundary             | Yes                       | 6" AC                |
| GEY-3 <sup>1</sup> | Yes                       | NE Boundary             | Yes                       | 6" AC                |
| GEY-4 <sup>1</sup> | Yes                       | NE Boundary             | Yes                       | 6" AC                |

There were several water agencies, denoted as "unavailable" in Table 4-1 above, where existing infrastructure information was not available or provided. For these sites, Google Earth Pro was used to identify fire hydrants, valve covers, and manhole covers in the area which would indicate existing water and sewer service nearby. A site visit was also performed to investigate the availability of services through a surface investigation.

After reviewing the available information to determine the existing infrastructure adjacent to the proposed parcel, discussions were held with most agencies to understand their existing systems in greater detail. The information gathered includes, but is not limited to infrastructure condition, excess capacity, supply and storage availability, and system specific issues. This information was used to place each site into one of three categories as defined below:

- 1. Category 1 Adequate as is to support rezoning
- 2. Category 2 Adequate, however some improvements are likely
- 3. Category 3 Inadequate as is, requires significant improvements

A Category 1 site has both water and sewer infrastructure directly adjacent to the parcel, both the water and sewer systems have available capacity, and there are no supply or treatment deficiencies. These sites can be re-developed with minimal to no infrastructure improvements required.

For a Category 2 site, there is both water and sewer infrastructure within the general vicinity of the site, however the infrastructure may need to be extended or upsized. Category 2 sites may have system deficiencies identified, however plans to mitigate the deficiency are planned by the agency.

Category 3 sites will have more extensive concerns, such as no water and/or sewer service in the vicinity of the parcel or have supply or treatment deficiencies that cannot be easily mitigated. These parcels will require significant improvements or actions to provide water and/or sewer service.

For each parcel that is either Category 2 or 3, an initial list of action items has been identified that would enable the site to become Category 1.

It is noted that for each parcel identified in this study, the individual agencies will still require the projects to go through the typical development application process, which likely will require a more detailed water and sewer study once the development plans have been determined. However, the specifics of what will be required is up to the agency who has jurisdiction and will be subject to their approval.

#### 5.0 Water and Sewer Overview

The following section will provide an overview of the water and sewer systems that are applicable to parcels in question. Each agency was contacted to set up a (virtual) meeting to verify the existing conditions present for each site and understand if there are other concerns about serving each parcel. All but two agencies, California American Water (Larkfield and Geyserville) and Penngrove/Kenwood Water Company, made

<sup>&</sup>lt;sup>1</sup> CalAm did not provide material or diameter information.



themselves available for these discussions. Included in **Appendix C** is the list of meetings held, including the attendees and dates they occurred.

#### **Regional Water Supply**

Sonoma County Water Agency (Sonoma Water) obtains the majority of its water from the Russian River which is stored in two reservoirs, Lake Mendocino and Lake Sonoma. Lake Mendocino is formed by Coyote Dam, which provides a total storage capacity of 118,000 acre-feet/year and a water supply pool of 70,000 acre-feet/year, although Sonoma Water has the rights to store up to 122,500 acre-feet/year of water in Lake Mendocino. Warm Springs Dam forms Lake Sonoma, which has a total storage capacity of 381,000 acre-feet/year with a water supply pool of 245,000 acre-feet/year.

Sonoma Water has the rights to divert or redivert up to 180 cubic feet per second (cfs) of water from the Russian River, with a limit of 75,000 acre-feet/year. There are six collector wells adjacent to the Russian River. Collectors 1 and 2 were constructed in the late 1950's and are located near the Wohler Bridge. Collectors 3, 4 and 5 were constructed between 1975 and 1985 and are located near Mirabel Park. Construction of Sonoma Water's newest collector well, Collector 6, was completed in the spring of 2006. Groundwater is extracted by each collector well from the alluvial aquifer adjacent to and beneath the Russian River.

Sonoma Water operates an inflatable dam on the Russian River in the Mirabel area to increase production capacity during peak demand months. Operation of the inflatable dam increases production capacity in two ways. First, surface water immediately behind the dam can be diverted to a series of infiltration ponds that are constructed adjacent to the three Mirabel collector wells. Second, infiltration to the underlying aquifer behind the dam is significantly improved by increasing the recharge area from the river.

As a stand-by water source, seven vertical wells were constructed in the late 1990's near the Mirabel collectors, providing 7 to 10 million gallons per day (mgd) of back-up capacity. Sonoma Water operates three groundwater wells in the Santa Rosa Plain. These wells pump groundwater from several hundred feet below the ground surface and are capable of providing up to 7 million gallons per day.

Per the 2015 Sonoma Water Urban Water Management Plan (UWMP), Sonoma Water has adequate water supply to meet the normal year projected water demands through Year 2040. The Year 2040 normal water demand is projected to be 75,987 acre-feet/year, with the regional water supplies projected to exceed 110,000 acre-feet/year.

#### **Sewer Treatment**

Most of the Sonoma County area receives sewer service through subsidiaries of Sonoma Water. There are eight different districts/zones that Sonoma Water manages, six of which have parcels included in this study. Those zones/districts are: Geyserville Sanitation Zone, Russian River County Sanitation District, Sonoma Valley County Sanitation District, South Park County Sanitation District (which routes its wastewater to Santa Rosa Sub-Regional Treatment Plant), Airport/Larkfield/Wikiup Sanitation Zone, and Penngrove Sanitation Zone. Each of the districts have their own wastewater treatment plant, except for the Penngrove Sanitation Zone which routes its wastewater to the City of Petaluma.

In addition to the sanitation districts, there are four other sewer agencies that serve parcels included in this analysis: Graton Community Services District, Forestville Water District, the City of Petaluma, and the City of Santa Rosa. Each of these own and operate their own wastewater treatment facility.

## 5.1 Water Demand

The projected increase in water demand was calculated for each site using a population-based approach. The proposed population increase for each site was multiplied by the water demand factors set by the County's regional compliance target (Senate Bill X7-7). **Table 5-1** below summarizes the current water demand requirement and the anticipated increase in demand for each parcel being analyzed.



Table 5-1. Water Demand for Proposed Build Out

| Site ID | Exist. Max<br>Population<br>(per) | Exist.<br>Average<br>Day<br>Demand<br>(gpd) | Prop. Max<br>Population<br>(per) | Prop.<br>Average Day<br>Demand<br>(gpd) | Prop.<br>Average<br>Day<br>Demand<br>(AFY) | Demand<br>Increase<br>(AFY) |
|---------|-----------------------------------|---------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------------|-----------------------------|
| AGU-1   | 3                                 | 372                                         | 70                               | 8,680                                   | 9.86                                       | 9.45                        |
| AGU-2   | 18                                | 2,232                                       | 343                              | 42,532                                  | 47.65                                      | 45.1                        |
| AGU-3   | 42                                | 5,208                                       | 166                              | 20,584                                  | 23.2                                       | 17.4                        |
| GLE-1   | 3                                 | 372                                         | 49                               | 6,076                                   | 6.95                                       | 6.5                         |
| GLE-2   | 3                                 | 372                                         | 8                                | 992                                     | 1.11                                       | 0.7                         |
| GRA-1   | 16                                | 0                                           | 60                               | 8,088                                   | 6.64                                       | 6.6                         |
| GRA-2   | 0                                 | 0                                           | 185                              | 24,938                                  | 27.9                                       | 27.9                        |
| GRA-3   | 3                                 | 0                                           | 57                               | 7,684                                   | 8.3                                        | 8.3                         |
| GRA-4   | 3                                 | 0                                           | 94                               | 12,671                                  | 13.7                                       | 13.7                        |
| GRA-5   | 3                                 | 0                                           | 70                               | 9,436                                   | 10.3                                       | 10.3                        |
| PET-1   | 3                                 | 423                                         | 101                              | 14,382                                  | 16.1                                       | 15.6                        |
| PET-2   | 3                                 | 423                                         | 70                               | 10,011                                  | 11.2                                       | 10.7                        |
| PET-3   | 3                                 | 423                                         | 169                              | 23,829                                  | 26.7                                       | 26.2                        |
| PET-4   | 3                                 | 423                                         | 101                              | 14,382                                  | 16.1                                       | 15.6                        |
| SAN-1   | 3                                 | 378                                         | 192                              | 24,318                                  | 27.2                                       | 26.8                        |
| SAN-2   | 0                                 | 0                                           | 520                              | 65,520                                  | 73.4                                       | 73.4                        |
| SAN-3   | 3                                 | 378                                         | 208                              | 26,208                                  | 29.4                                       | 28.9                        |
| SAN-4   | 3                                 | 378                                         | 387                              | 48,762                                  | 54.77                                      | 54.77                       |
| SAN-5   | 3                                 | 378                                         | 174                              | 22,050                                  | 24.7                                       | 24.3                        |
| SAN-6   | 0                                 | 0                                           | 190                              | 23,940                                  | 26.8                                       | 26.8                        |
| SAN-7   | 0                                 | 0                                           | 187                              | 23,562                                  | 26.4                                       | 26.4                        |
| SAN-8   | 3                                 | 378                                         | 52                               | 6,552                                   | 7.3                                        | 6.9                         |
| SAN-9   | 0                                 | 0                                           | 413                              | 52,038                                  | 58.3                                       | 58.3                        |
| SAN-10  | 8                                 | 1,008                                       | 333                              | 41,958                                  | 47                                         | 45.9                        |
| FOR-1   | 120                               | 16,200                                      | 182                              | 24,570                                  | 27.5                                       | 9.4                         |
| FOR-2   | 18                                | 2,430                                       | 736                              | 99,260                                  | 111.3                                      | 108.6                       |
| FOR-3   | 8                                 | 1,080                                       | 86                               | 11,094                                  | 13.01                                      | 11.8                        |
| FOR-4   | 5                                 | 675                                         | 185                              | 23,865                                  | 27.8                                       | 27.07                       |
| FOR-5   | 16                                | 2,160                                       | 151                              | 19,479                                  | 22.8                                       | 20.4                        |
| FOR-6   | 0                                 | 0                                           | 312                              | 42,120                                  | 47.2                                       | 47.2                        |
| SON-1   | 0                                 | 0                                           | 49                               | 8,832                                   | 10                                         | 10                          |
| SON-2   | 0                                 | 0                                           | 52                               | 9,360                                   | 10                                         | 10                          |
| SON-3   | 3                                 | 540                                         | 52                               | 9,360                                   | 10                                         | 9.88                        |
| SON-4   | 3                                 | 540                                         | 49                               | 9,000                                   | 10                                         | 9.48                        |
| LAR-1   | 3                                 | 405                                         | 252                              | 33,964                                  | 38                                         | 37.8                        |
| LAR-2   | 0                                 | 0                                           | 42                               | 5,661                                   | 6.3                                        | 6.3                         |
| LAR-3   | 26                                | 3,510                                       | 36                               | 4,852                                   | 5.4                                        | 1.5                         |



| Site ID | Exist. Max<br>Population<br>(per) | Exist.<br>Average<br>Day<br>Demand<br>(gpd) | Prop. Max<br>Population<br>(per) | Prop.<br>Average Day<br>Demand<br>(gpd) | Prop.<br>Average<br>Day<br>Demand<br>(AFY) | Demand<br>Increase<br>(AFY) |
|---------|-----------------------------------|---------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------------|-----------------------------|
| LAR-4   | 10                                | 1,350                                       | 16                               | 2,156                                   | 2.3                                        | 8.0                         |
| LAR-5   | 187                               | 25,245                                      | 257                              | 34,638                                  | 38.9                                       | 10.6                        |
| LAR-6   | 0                                 | 0                                           | 31                               | 4,178                                   | 4.7                                        | 4.7                         |
| LAR-7   | 26                                | 3,510                                       | 117                              | 15,795                                  | 17.7                                       | 13.8                        |
| LAR-8   | 0                                 | 0                                           | 29                               | 3,909                                   | 4.4                                        | 4.4                         |
| GEY-1   | 213                               | 28,755                                      | 320                              | 43,200                                  | 48.4                                       | 16.2                        |
| GEY-2   | 21                                | 2,835                                       | 86                               | 11,591                                  | 13                                         | 9.8                         |
| GEY-3   | 13                                | 1,755                                       | 57                               | 7,682                                   | 8.6                                        | 6.65                        |
| GEY-4   | 16                                | 2,160                                       | 68                               | 9,165                                   | 10.3                                       | 7.9                         |
| GUE-1   | 16                                | 2,156                                       | 78                               | 10,513                                  | 11.8                                       | 9.4                         |
| GUE-2   | 5                                 | 673                                         | 208                              | 28,034                                  | 31.5                                       | 30.7                        |
| GUE-3   | 21                                | 2,830                                       | 107                              | 14,421                                  | 16.2                                       | 13                          |
| GUE-4   | 8                                 | 1,080                                       | 273                              | 36,855                                  | 41.3                                       | 40.1                        |
| PEN-1   | 0                                 | 0                                           | 3                                | 404                                     | 0.5                                        | 0.5                         |
| PEN-2   | 3                                 | 405                                         | 55                               | 7,425                                   | 8                                          | 7.9                         |
| PEN-3   | 0                                 | 0                                           | 10                               | 1,350                                   | 2,0                                        | 2                           |
| PEN-4   | 5                                 | 675                                         | 91                               | 12,285                                  | 14                                         | 13                          |
| PEN-5   | 3                                 | 405                                         | 21                               | 2,835                                   | 3                                          | 2.7                         |
| PEN-6   | 5                                 | 675                                         | 104                              | 14,017                                  | 15.7                                       | 14.97                       |
| PEN-7   | 47                                | 3,384                                       | 278                              | 37,468                                  | 22.4                                       | 18.63                       |
| PEN-8   | 0                                 | 0                                           | 42                               | 5,661                                   | 3.39                                       | 3.39                        |
| PEN-9   | 0                                 | 0                                           | 21                               | 1,512                                   | 1.7                                        | 1.7                         |
| TOTAL   | 930                               | 118,579                                     | 8,655                            | 1,145,704                               | 1,260                                      | 1,130                       |

**Table 5-2** below summarizes the increase in water demand for each USA assuming that all parcels under consideration are developed.



Table 5-2. Increase in Water Demand by USA

| Urban Service Area | Water Demand Increase<br>(AFY) | Water Service Provider                                    |
|--------------------|--------------------------------|-----------------------------------------------------------|
| Agua Caliente      | 72.0                           | Valley of the Moon Water                                  |
| Glen Ellen         | 7.2                            | District                                                  |
| Sonoma             | 39.4                           | City of Sonoma                                            |
| Santa Rosa         | 373.57                         | City of Santa Rosa                                        |
| Forestville        | 224.49                         | Forestville Water District                                |
| Larkfield          | 79.9                           | California American Water -<br>Larkfield                  |
| Graton             | 66.8                           | Property Wells                                            |
| Geyserville        | 40.55                          | California American Water -<br>Geyserville                |
| Guerneville        | 93.2                           | California Water Service<br>Company – Armstrong<br>Valley |
| Penngrove          | 64.8                           | Penngrove/Kenwood Water<br>Company                        |
| Petaluma           | 68.1                           | City of Petaluma                                          |
| TOTAL              | 1,130                          |                                                           |

# **5.2 Sewer Generation**

Sewer generation was calculated using a population-based approach as well, but the sewage generation and peaking factors came from the County's development guidelines. **Table 5-3** below summarizes the resulting sewage generation for the proposed project sites.

Table 5-3. Sewage Generation for Proposed Build Out

| Site ID | Exist. Max<br>Population<br>(per) | Existing Avg. Sewer Generation (gpd) | Prop. Max<br>Population<br>(per) | Proposed<br>Avg.<br>Sewer<br>Generation<br>(gpd) | Increase in<br>Avg.<br>Sewer<br>Generation<br>(gpd) | Peaking<br>Factor | Increase<br>in Peak<br>Hour<br>Generation<br>(gpd) |
|---------|-----------------------------------|--------------------------------------|----------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------|----------------------------------------------------|
| AGU-1   | 3                                 | 231                                  | 70                               | 5,462                                            | 5,231                                               |                   | 10,148                                             |
| AGU-2   | 18                                | 1,385                                | 343                              | 26,385                                           | 25,000                                              |                   | 48,500                                             |
| AGU-3   | 42                                | 3,231                                | 166                              | 12,846                                           | 9,615                                               | 1.94              | 18,654                                             |
| GLE-1   | 3                                 | 231                                  | 49                               | 3,846                                            | 3,615                                               |                   | 7,014                                              |
| GLE-2   | 3                                 | 231                                  | 8                                | 615                                              | 385                                                 |                   | 746                                                |
| GRA-1   | 16                                | 1,214                                | 60                               | 4,551                                            | 3,338                                               |                   | 7,476                                              |
| GRA-2   | 0                                 | 0.0                                  | 185                              | 14,033                                           | 14,033                                              |                   | 31,434                                             |
| GRA-3   | 3                                 | 228                                  | 57                               | 4,400                                            | 4,172                                               | 2.24              | 9,345                                              |
| GRA-4   | 3                                 | 228                                  | 94                               | 7,130                                            | 6,903                                               |                   | 15,462                                             |
| GRA-5   | 3                                 | 228                                  | 70                               | 5,386                                            | 5,158                                               |                   | 11,554                                             |
| PET-1   | 3                                 | 228                                  | 101                              | 7,737                                            | 7,510                                               |                   | 16,821                                             |
| PET-2   | 3                                 | 228                                  | 70                               | 5,386                                            | 5,158                                               | 2.24              | 11,554                                             |
| PET-3   | 3                                 | 228                                  | 169                              | 12,819                                           | 12,592                                              | 2.24              | 28,205                                             |
| PET-4   | 3                                 | 228                                  | 101                              | 7,737                                            | 7,510                                               |                   | 16,821                                             |
| SAN-1   | 3                                 | 269                                  | 192                              | 17,296                                           | 17,027                                              | 2.24              | 38,140                                             |



| Site ID | Exist. Max<br>Population<br>(per) | Existing Avg. Sewer Generation (gpd) | Prop. Max<br>Population<br>(per) | Proposed<br>Avg.<br>Sewer<br>Generation<br>(gpd) | Increase in<br>Avg.<br>Sewer<br>Generation<br>(gpd) | Peaking<br>Factor | Increase<br>in Peak<br>Hour<br>Generation<br>(gpd) |
|---------|-----------------------------------|--------------------------------------|----------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------|----------------------------------------------------|
| SAN-2   | 0                                 | 0.0                                  | 520                              | 46,600                                           | 46,600                                              |                   | 104,384                                            |
| SAN-3   | 3                                 | 269                                  | 208                              | 18,640                                           | 18,371                                              |                   | 41,151                                             |
| SAN-4   | 3                                 | 269                                  | 387                              | 34,771                                           | 34,502                                              |                   | 77,284                                             |
| SAN-5   | 3                                 | 269                                  | 174                              | 15,683                                           | 15,414                                              |                   | 34,527                                             |
| SAN-6   | 0                                 | 0.0                                  | 190                              | 17,027                                           | 17,027                                              | 2.24              | 38,140                                             |
| SAN-7   | 0                                 | 0.0                                  | 187                              | 16,758                                           | 16,758                                              |                   | 37,538                                             |
| SAN-8   | 3                                 | 269                                  | 52                               | 4,660                                            | 4,391                                               |                   | 9,836                                              |
| SAN-9   | 0                                 | 0.0                                  | 413                              | 37,011                                           | 37,011                                              |                   | 82,905                                             |
| SAN-10  | 8                                 | 717                                  | 333                              | 29,842                                           | 29,125                                              |                   | 65,240                                             |
| FOR-1   | 120                               | 9,102                                | 182                              | 13,805                                           | 4,703                                               |                   | 11,381                                             |
| FOR-2   | 18                                | 1,365                                | 736                              | 55,828                                           | 54,463                                              |                   | 131,801                                            |
| FOR-3   | 8                                 | 607                                  | 86                               | 6,523                                            | 5,917                                               | 0.40              | 14,318                                             |
| FOR-4   | 5                                 | 379                                  | 185                              | 13,957                                           | 13,578                                              | 2.42              | 32,858                                             |
| FOR-5   | 16                                | 1,214                                | 151                              | 11,454                                           | 10,240                                              |                   | 24,781                                             |
| FOR-6   | 0                                 | 0.0                                  | 312                              | 23,666                                           | 23,666                                              |                   | 57,273                                             |
| SON-1   | 0                                 | 0.0                                  | 49                               | 3,769                                            | 3,769                                               |                   | 7,312                                              |
| SON-2   | 0                                 | 0.0                                  | 52                               | 4,000                                            | 4,000                                               | 4.04              | 7,760                                              |
| SON-3   | 3                                 | 231                                  | 52                               | 4,000                                            | 3,769                                               | 1.94              | 7,312                                              |
| SON-4   | 3                                 | 231                                  | 49                               | 3,846                                            | 3,615                                               |                   | 7,014                                              |
| LAR-1   | 3                                 | 336                                  | 252                              | 28,336                                           | 28,000                                              |                   | 78,960                                             |
| LAR-2   | 0                                 | 0.0                                  | 42                               | 4,704                                            | 4,704                                               |                   | 13,265                                             |
| LAR-3   | 26                                | 2,912                                | 36                               | 4,032                                            | 1,120                                               |                   | 3,158                                              |
| LAR-4   | 10                                | 1,120                                | 16                               | 1,680                                            | 560                                                 | 2 02              | 1,579                                              |
| LAR-5   | 187                               | 20,944                               | 257                              | 28,784                                           | 7,840                                               | 2.82              | 22,109                                             |
| LAR-6   | 0                                 | 0.0                                  | 31                               | 3,472                                            | 3,472                                               |                   | 9,791                                              |
| LAR-7   | 26                                | 2,912                                | 117                              | 13,104                                           | 10,192                                              |                   | 28,741                                             |
| LAR-8   | 0                                 | 0.0                                  | 29                               | 3,248                                            | 3,248                                               |                   | 9,159                                              |
| GEY-1   | 213                               | 18,522                               | 320                              | 27,826                                           | 9,304                                               |                   | 26,703                                             |
| GEY-2   | 21                                | 1,826                                | 86                               | 7,478                                            | 5,652                                               | 2.87              | 16,222                                             |
| GEY-3   | 13                                | 1,130                                | 57                               | 4,957                                            | 3,826                                               |                   | 10,981                                             |
| GEY-4   | 16                                | 1,391                                | 68                               | 5,913                                            | 4,522                                               |                   | 12,977                                             |
| GUE-1   | 16                                | 835                                  | 78                               | 4,070                                            | 3,235                                               |                   | 7,472                                              |
| GUE-2   | 5                                 | 261                                  | 208                              | 10,852                                           | 10,591                                              | 2.31              | 24,466                                             |
| GUE-3   | 21                                | 1,096                                | 107                              | 5,583                                            | 4,487                                               |                   | 10,365                                             |
| GUE-4   | 8                                 | 417                                  | 273                              | 14,244                                           | 13,826                                              |                   | 31,938                                             |
| PEN-1   | 0                                 | 0.0                                  | 3                                | 216                                              | 216                                                 |                   | 592                                                |
| PEN-2   | 3                                 | 216                                  | 55                               | 3,960                                            | 3,744                                               |                   | 10,259                                             |
| PEN-3   | 0                                 | 0                                    | 10                               | 720                                              | 720                                                 |                   | 1,973                                              |
| PEN-4   | 5                                 | 360                                  | 91                               | 6,552                                            | 6,192                                               |                   | 16,966                                             |
| PEN-5   | 3                                 | 216                                  | 21                               | 1,512                                            | 1,296                                               | 2.74              | 3,551                                              |
| PEN-6   | 5                                 | 360                                  | 104                              | 7,488                                            | 7,128                                               |                   | 19,531                                             |
| PEN-7   | 47                                | 3,384                                | 278                              | 20,016                                           | 16,632                                              |                   | 45,572                                             |
| PEN-8   | 0                                 | 0.0                                  | 42                               | 3,024                                            | 3,024                                               |                   | 8,286                                              |
| PEN-9   | 0                                 | 0.0                                  | 21                               | 1,512                                            | 1,512                                               |                   | 4,143                                              |
| TOTAL   | 930                               | 81,543                               | 8,655                            | 710,752                                          | 629,208                                             |                   | 1,483,451                                          |

**Table 5-4** below summarizes the increase in sewage generation by USA.



Table 5-4. Increase in Sewage Generation by USA

| Urban Service Area | Average Dry-Weather Sewage Generation Increase (gpd) | Sewer Service Provider                                         |
|--------------------|------------------------------------------------------|----------------------------------------------------------------|
| Agua Caliente      | 39,846                                               |                                                                |
| Glen Ellen         | 4,000                                                | Sonoma Valley County                                           |
| Sonoma             | 15,154                                               | Sanitation District                                            |
| Santa Rosa         | 236,226                                              | South Park County Sanitation<br>District/City of<br>Santa Rosa |
| Forestville        | 112,567                                              | Forestville Water District                                     |
| Larkfield          | 59,136                                               | Larkfield-Wikiup Sanitation<br>Zone                            |
| Graton             | 33,603                                               | Graton Community<br>Services District                          |
| Geyserville        | 23,304                                               | Geyserville Sanitation Zone                                    |
| Guerneville        | 32,139                                               | Russian River County<br>Sanitation District                    |
| Penngrove          | 40,464                                               | Penngrove Sanitation Zone                                      |
| Petaluma           | 32,769                                               | City of Petaluma                                               |
| TOTAL              | 629,208                                              |                                                                |

# 6.0 Water System Analysis

The discussion below summarizes the overall existing conditions within each USA. The individual notes for each parcel with respect to water service is provided in **Table 6-1**.

#### Agua Caliente and Glen Ellen

Agua Caliente and Glen Ellen are served by Valley of the Moon Water District (VOMWD). VOMWD receives water from 10 Sonoma Water turnouts and 6 local groundwater wells, five of which are currently active. They operate 10 pumping stations and 13 active storage tanks with total of 5.3 MG storage. They also own two hydro-pneumatic tanks. VOMWD is divided into 12 different pressure zones with the proposed project sites being located in Pressure Zones 1 and 1F. Pressure Zone 1 is the largest zone, while pressure Zone 1F is a very small zone.

Per VOMWD's April 2019 Water Master Plan, six (6) Sonoma Water Turnouts feed directly into Pressure Zone 1 and five (5) groundwater wells are located in Pressure Zone 1. Pressure Zone 1 has access to approximately 5.0 MG of storage in eight (8) tanks.

VOMWD estimates that future demand will plateau and remain relatively stable despite additional population and economic growth due to conservation measures. The projected annual water use from 2020 through 2040 is approximately 3,120 AFY. VOMWD's water supply contract with Sonoma Water entitles the District to 3,200 AFY. In recent years, VOMWD's wells have produced between 450-650 AFY.

VOMWD's 2019 Water Master Plan identified areas of Pressure Zone 1 where fire flow requirements aren't met. Furthermore, portions of the pressure zone are unable to meet minimum pressure requirements under peak hour. However, Pressure Zone 1 has adequate supply and storage to accommodate development.



The system as a whole has a storage deficit of about 260,000 gallons with approximately 200,000 gallons being in Glen Ellen. Future storage deficits in Zone 1F are predicted to be 0.344 MG. The District has initiated the design of a 0.15 MG, but an additional 0.2 MG tank is required to mitigate the entire deficiency in Glen Ellen.

VOMWD appears to have adequate supply to meet the demands of the proposed re-zoning sites. Although VOMWD has identified several fire flow and peak hour pressure deficiencies, the District has outlined 26 capital improvement projects to mitigate these issues.

#### City of Santa Rosa

The City of Santa Rosa owns and operates a distribution system within City limits and purchases water from Sonoma Water. Of the sites under consideration in Santa Rosa, sites SAN-6, SAN-7, and SAN-10 are located outside of the City's boundary, but within the City's sphere of influence, UGB, and USA. The parcels must apply for a Utility Certificate with the City's Planning Division to receive approval to connect to the water system. Sonoma LAFCO will assess and determine if annexation will be a requirement in order to obtain approval for service. SAN-10 is currently located in an area that is only approved for fire protection service. This parcel may not need to be annexed. In addition, City policy states that site SAN-10 can only receive fire protection from the City, and no domestic water. SAN-10 will require a City Council action to waive the policy.

Per the City of Santa Rosa Water Master Plan Update (August 2014), the City owns and operates 24 storage tanks (total of 23.1 MG), 20 water pump stations, and 6 municipal groundwater wells. The service area is divided into 32 pressure zones with the proposed sites located in the Aqueduct Pressure Zone.

The City receives approximately 95% of their water supply from Sonoma Water. Per the Restructured Agreement with Sonoma Water, the City is entitled to 29,100 AFY. The City's groundwater wells can supply an additional 2,300 AFY. The 2015 Urban Water Management Plan projects the City's normal water demands to be 28,140 AFY in year 2040, with a total supply of 31,400 AFY available (not including recycled water or other future water supply projects).

The City appears to have adequate supply to meet the demands of the proposed re-zoning sites. Although the City has identified a storage deficiency at ultimate buildout, the City has a planned capital improvement project to mitigate the deficiency, as well as outlined a robust capital improvement program to mitigate other identified deficiencies throughout the system.

#### City of Sonoma

All four of the parcels are located outside of the City's boundary and therefore would need to be annexed to be eligible to receive water service. None of the parcels have water service directly adjacent; however, the water line at the corner or Leveroni and Broadway has a cross and blind flange towards the south which makes extending water service a possibility. Broadway (Highway 12) is within Caltrans right of way, therefore any pipeline improvements will require coordination and permitting with Caltrans. Furthermore, there is a large storm drain in Broadway that would need to be worked around when designing and constructing a new water line. To develop these parcels, a water demand analysis will need to be performed.

#### Forestville

Forestville is served by the Forestville Water District (FWD). FWD does not have a current Water Master Plan. However, per discussions with the General Manager of FWD, there are no existing capacity deficiencies in the system that would prevent an increase in residential development.



It was noted that two of the sites (FOR-4 and FOR-6) may experience constructability issues. While neither site is in the floodplain, they get localized, seasonal flooding. Site (FOR-1) is the site of the old electro-vector building. Additionally, one of the parcels directly connected to FOR-1 had a church on it that burnt down, and water service is disconnected. The District noted there is adequate supply and storage available to accommodate the additional growth being proposed.

#### Larkfield and Geyserville

Larkfield and Geyserville are both served by California American Water (CalAm). CalAm Larkfield receives water from a combination of four (4) groundwater wells and purchased water from SCWA. The agreement that CalAm has with SCWA allowing them to purchase up to 700 acre-feet of potable water per fiscal year expires in 2040. CalAm also has an agreement to purchase additional supply from SCWA to meet peak demands, which expires in 2024.

CalAm completed a Water Supply Assessment (WSA) for the Larkfield area in May of 2022. The WSA results indicated that there would not be enough water supply if the SCWA source was no longer available. The SCWA source will be available until at least 2040 when a new Agreement/negotiations will be required to extend the purchase limits. CalAm staff determined there are no issues with pressure, headloss, or velocity in the pipes adjacent to the proposed project sites. However, all locations have concerns that there is not enough capacity for fire flow in the event that multi-family residences are developed.

Larkfield has four projects planned to address the aforementioned concerns:

- 1. Construct a 0.5 MG tank to satisfy storage recommendations (may also improve fire flow).
- 2. Replacement of a number of pipelines within the next 20 years (as identified by a pipe condition assessment).
- 3. Replace one of the wells within the next 10 years to address aging infrastructure and lost well capacity.
- 4. Complete an Alternative Source of Supply Study to address projected system-wide shortage (as described in the water supply assessment).

Geyserville receives all of its water supply from groundwater wells. In Geyserville, all proposed sites have capacity concerns within the adjacent water system. GEY-1 is adjacent to a small diameter pipe that cannot support current fire flow requirements. This pipe will require upsizing as dictated per CalAm standards. For the other three sites in this area, further system analysis is required to determine if pipeline upsizing is required in order to meet fire flows. The following projects are planned for completion in Geyserville to address the mentioned deficiencies:

- 1. Construct a 0.25 MG tank to address current peak hour demand deficiency.
- 2. Replacement of a number of pipelines within the next 20 years (as identified by a pipe condition assessment).
- 3. Replace two wells within the next 10 years to address aging infrastructure and lost well capacity.

## Graton

Graton has a small area served by a municipal water system, the Graton Mutual Water District, but the majority of Graton uses private on-site wells for water supply. The five sites in question are located far enough away from the water district boundary that if they are developed it would make more sense to do so by constructing on-site private wells. Annexation would not be required.



#### Guerneville

Guerneville is supplied water from both Sweetwater Springs Water District and California Water Service – Armstrong Valley system. GUE-1 is the site for Sweetwater Springs Water District's main storage and treatment facilities. While it is theoretically possible to move these facilities, the District has said that they would not be willing to relocate this critical infrastructure. Additionally, the environmental impacts of moving or rebuilding the existing water treatment and storage facilities would be significant. The other three sites are within the California Water Service boundary.

The pipe network within the vicinity of the proposed parcels is mostly 2- and 4-inches in diameter and likely cannot provide minimum fire flow requirements for multi-family residential land use. Piping would have to be extended and upsized to reach the GUE-2 site. GUE-3 and GUE-4 have water service directly adjacent to the parcel that is 2-inches and 4-inches in diameter, respectively. All these pipes would need to be upsized to support fire flow requirements.

#### **Penngrove**

Penngrove/Kenwood Water Company is responsible for providing water service to Penngrove residents. All the potential sites are served with water purchased from the Sonoma Water Petaluma Aqueduct that passes through Penngrove. According to the water company manager, the entire Penngrove Town District (PTD) system has sufficient pressure to meet the minimum requirement of 40 psi. The water is purchased fully treated so the PTD does not have any treatment or storage facilities. The main concern is that water purchased from the County is limited based on the established permits. These permits will need to be reviewed to ensure there is sufficient water rights to meet additional demand. Furthermore, if Sonoma Water experiences water shortages, the issue will trickle down to Penngrove.

#### <u>Petaluma</u>

The City of Petaluma owns and operates a water distribution system with water purchased from Sonoma Water. None of the proposed parcels are currently within the City boundary and would therefore need to be annexed to receive water service. All other parcels that are located in between the current City boundary and the proposed parcels would need to agree to the annexation as well to have a continuous service boundary. Currently, the City's Outside Service Area Agreements (OSAA) policy does not support the extension of water service to these parcels. To be eligible for water service, council action would be needed to overturn the policy. If service to these parcels is approved, the 6-inch pipe in Bodega Avenue needs to be upsized to an 8-inch to address capacity issues mainly related to fire flow requirements.

# 6.1 Water System Results

The following **Table 6-1** summarizes the category designation assigned to each site solely based on the water system research and evaluation. For those sites in Category 2 or 3, the table identifies the steps required to redevelop the site. The agencies that were not responsive have greyed out boxes. It should be noted that these categories are not inclusive of the sewer analysis.

Furthermore, administrative challenges (such as needing to annex a parcel and receive a utility certificate before water service can be connected) are not factored into the category justification. The sites possessing administrative issues *in addition* to those listed in Table 6-1 are as listed below:



- 1. SAN-1 to 5: Apply for utility certificate
- 2. SAN-6 and 7: Annex parcels then apply for a new utility certificate
- 3. SAN-10: Council would need to amend current LAFCO OSAA policy to annex the parcels into the city
- 4. SON-1 to 4: Annex parcels
- 5. PET-1 to 4: Council would need to amend current LAFCO OSAA policy to annex the parcels into the city

**Table 6-1. Water Category Results** 

| Site ID | Category | Reason                                                                                          | Mitigations <sup>2</sup>                                                                              |
|---------|----------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| AGU-1   | 3        | No water service adjacent to parcel and fire flow requirements are not met under peak hour.     | Install service lateral going south into AGU-1 and extending to AGU-2. Address FF deficiencies,       |
| AGU-2   | 3        | No water service adjacent to parcel.                                                            | potentially with a larger pipe.                                                                       |
| AGU-3   | 1        | Site is a straight shot from a turnout so the pressure should be good. Waterlines on two sides. | N/A                                                                                                   |
| GLE-1   | 3        | There are large supply and storage                                                              | Upsize 6" ACP in Carquinez                                                                            |
| GLE-2   | 3        | deficits in the pressure zone where these parcels reside.                                       | Avenue and Gibson Street to 8",<br>build extra storage tanks, a new<br>BPS, and upgrade old BPS.      |
| GRA-1   | N/A      |                                                                                                 |                                                                                                       |
| GRA-2   | N/A      | Water service is not a requirement                                                              |                                                                                                       |
| GRA-3   | N/A      | for development in Graton.  Multifamily development is allowed                                  | N/A                                                                                                   |
| GRA-4   | N/A      | with a well.                                                                                    |                                                                                                       |
| GRA-5   | N/A      | ]                                                                                               |                                                                                                       |
| PET-1   | 2        |                                                                                                 | Perform hydraulic analysis per City                                                                   |
| PET-2   | 2        | The 6" pipe in Bodega Avenue has                                                                | of Petaluma standards to                                                                              |
| PET-3   | 2        | capacity issues                                                                                 | determine the diameter the pipe needs to be upsized to.                                               |
| PET-4   | 2        |                                                                                                 | ficeus to be upsized to.                                                                              |
| SAN-1   | 3        | No water service adjacent to parcel.                                                            | Extend water line.                                                                                    |
| SAN-2   | 1        | Water service adjacent to parcel                                                                | N/A                                                                                                   |
| SAN-3   | 3        | No water service adjacent to parcel.                                                            | Extend water line.                                                                                    |
| SAN-4   | 1        | Parcel is already connected to water service.                                                   | N/A                                                                                                   |
| SAN-5   | 3        | No water service adjacent to parcel.                                                            | Extend water line.                                                                                    |
| SAN-6   | 1        |                                                                                                 | <b>N</b> 1/A                                                                                          |
| SAN-7   | 1        | Water service adjacent to parcels.                                                              | N/A                                                                                                   |
| SAN-8   | 3        | Water service a few parcels North on Robles Avenue                                              | Extend water service down Morland Avenue from corner of Morland and Robles (extend 3.5 parcels south) |
| SAN-9   | 2        | Water service adjacent to parcel but not halfway across frontage                                | Extend water service to halfway across the frontage of the property                                   |
| SAN-10  | 1        | Water service adjacent to parcel                                                                | N/A                                                                                                   |

.

<sup>&</sup>lt;sup>2</sup> To get site to Category 1



| Site ID | Category | Reason                                                                                                                                                                                                                                                                     | Mitigations <sup>1</sup>                                                                                  |
|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|         |          | No water service adjacent to parcel                                                                                                                                                                                                                                        |                                                                                                           |
| FOR-1   | 2        | and water is blocked from one side<br>due to a church burning down on an<br>adjacent parcel.                                                                                                                                                                               | Extension of waterline on side not blocked by fire.                                                       |
| FOR-2   | 1        | Water service on all four sides of parcel.                                                                                                                                                                                                                                 | N/A                                                                                                       |
| FOR-3   | 1        | Water available and no known<br>supply or capacity issues. County<br>owns entire corner.                                                                                                                                                                                   | N/A                                                                                                       |
| FOR-4   | 2        | Lot has water service but is inundated with water all year.                                                                                                                                                                                                                | Install drainage measures or grade parcel to be above the flood line.                                     |
| FOR-5   | 1        | Water available and no known supply or capacity issues.                                                                                                                                                                                                                    | N/A                                                                                                       |
| FOR-6   | 3        | No water service available and lot is inundated with water all year.                                                                                                                                                                                                       | Install drainage measures or grade parcel to be above the flood line. Extend water service to the parcel. |
| SON-1   | 1        |                                                                                                                                                                                                                                                                            |                                                                                                           |
| SON-2   | 1        | Water service adjacent to parcels                                                                                                                                                                                                                                          | Water service laterals will need to                                                                       |
| SON-3   | 1        | , ,                                                                                                                                                                                                                                                                        | be constructed.                                                                                           |
| SON-4   | 1        |                                                                                                                                                                                                                                                                            |                                                                                                           |
| LAR-1   | 2        |                                                                                                                                                                                                                                                                            |                                                                                                           |
| LAR-2   | 2        |                                                                                                                                                                                                                                                                            |                                                                                                           |
| LAR-3   | 2        |                                                                                                                                                                                                                                                                            | Construction of a new 0.5 MG                                                                              |
| LAR-4   | 2        | There are concerns that there is not sufficient fire flow capacity for                                                                                                                                                                                                     | storage tank and replacement of<br>an aging well. Possible upsizing of                                    |
| LAR-5   | 2        | commercial or multi-family                                                                                                                                                                                                                                                 | pipes pending the results of a                                                                            |
| LAR-6   | 2        | development.                                                                                                                                                                                                                                                               | hydraulic analysis performed<br>according to CalAm standards                                              |
| LAR-7   | 2        |                                                                                                                                                                                                                                                                            | according to Gair un clandarde                                                                            |
| LAR-8   | 2        |                                                                                                                                                                                                                                                                            |                                                                                                           |
| GEY-1   | 2        | Small diameter pipe that cannot support fire flow. Peak hour supply deficiency.                                                                                                                                                                                            | Upsize the pipe (diameter to be determined by hydraulic analysis as instructed by CalAm)                  |
| GEY-2   | 2        | There are concerns that the                                                                                                                                                                                                                                                | Construct 0.25 MG tank and                                                                                |
| GEY-3   | 2        | adjacent pipes do not have sufficient fire flow for multi-family                                                                                                                                                                                                           | perform hydraulic analysis per                                                                            |
| GEY-4   | 2        | development. Peak hour supply deficiency.                                                                                                                                                                                                                                  | CalAm's direction to verify required pipe diameters for adjacent piping                                   |
| GUE-1   | 3        | Site is the location of the Sweetwater Springs Water District main storage and treatment facilities, so water pipes exist. However, discussion with District staff revealed they will not give up the site and the environmental impacts of doing so would be significant. | N/A                                                                                                       |
| GUE-2   | 2        | Water service stops at tip of parcel and is only 2-inches in diameter.                                                                                                                                                                                                     | Upsize pipe and extend into the                                                                           |
| GUE-3   | 2        | Water service touch parcels but is only 2-inches in diameter.                                                                                                                                                                                                              | parcel.                                                                                                   |
| GUE-4   | 2        | Water service is only 4-inches in diameter.                                                                                                                                                                                                                                | Upsize pipe.                                                                                              |



| Site ID | Category | Reason                                                                       | Mitigations <sup>1</sup> |
|---------|----------|------------------------------------------------------------------------------|--------------------------|
| PEN-1   | 1        | Pipes adjacent to parcel and no capacity concerns in pipes                   | N/A                      |
| PEN-2   | 1        | Pipes adjacent to parcel and no capacity concerns in pipes                   | N/A                      |
| PEN-3   | 1        | Pipes adjacent to parcel and no capacity concerns in pipes                   | N/A                      |
| PEN-4   | 1        | Pipes adjacent to parcel and no capacity concerns in pipes                   | N/A                      |
| PEN-5   | 1        | Pipes adjacent to parcel and no capacity concerns in pipes                   | N/A                      |
| PEN-6   | 1        | Pipes adjacent to parcel and no capacity concerns in pipes                   | N/A                      |
| PEN-7   | 1        | Pipes adjacent to parcel and no capacity concerns in pipes                   | N/A                      |
| PEN-8   | 1        | Pipes adjacent to parcel and no capacity concerns in pipes                   | N/A                      |
| PEN-9   | 2        | Pipes in adjacent street but would have to cross through a parcel to connect | Extend water service     |

# 7.0 Sewer System Analysis

Like the water systems, meetings were held with staff from the sanitation agencies to further discuss and investigate the constraints within each system. Most of the sewer agencies fall under the jurisdiction of Sonoma County Water Agency, who own and operate eight sanitation districts, six of which contains project sites. The four remaining agencies that provide sewer service to a parcel are special districts that are independent of the County.

#### Agua Caliente and Glen Ellen

Agua Caliente and Glen Ellen are provided sewer service by Sonoma Valley County Sanitation District (SVCSD). Per the most recent Sewer System Management Plan (SSMP), in January 2021 the trunk of the system has segments inadequate to convey existing peak wet weather flows. Two short segments of 6-inch pipe were also predicted to be surcharged under peak dry weather flow in future conditions. SVCSD has a hydraulic model that is currently being updated. All additional development will require that hydraulic analysis be performed to verify adequate capacity in the system.

SVCSD has identified two projects to address the issues mentioned above. The first is the replacement of the trunk main that is located at the intersection of West Napa Street and Sonoma Highway to the intersection of Happy Lane and Anthony Court. This project involves the replacement of 7,108 linear feet of 21-inch diameter reinforced concrete main with a 27-inch diameter trunk main and the replacement of 31 manholes and will address structural deficiencies and mitigate capacity restricted sections. The project was split into three phases (A, B, and C). Phases A and B have been completed and phase C is nearing completion of the design phase and should be going out to bid in 2022.

The other project is replacing trunk main from the intersection of Happy Lane and Anthony Court to approximately the intersection of Las Flores Drive and Estrella Drive. It will consist of replacing 8,245 linear feet of 21-inch and 18-inch diameter reinforced concrete trunk main with appropriately larger mains and replace 35 manholes. This project will also address structural deficiency and capacity restricted sections. This project is currently in the design phase but the area the project is located has made the design challenging. SVCSD has a request for extension in with the San Francisco RWQCB and are waiting for response.



With these proposed projects implemented, the two currently inadequate pipe segments that are being improved should have adequate capacity to support the proposed re-zoning sites in Agua Caliente. However, there are concerns about the piping adjacent to AGU-2 not having enough capacity to support the site. This will need to be hydraulically investigated to determine whether upsizing will be required.

Both sites in Glen Ellen have had historical issues with sanitary sewer overflows downstream, which is an indication of capacity issues. These sites will need pipeline capacity evaluations to determine if the system will be able to accommodate the future growth.

#### City of Santa Rosa

The City of Santa Rosa receives sewer service through both the City of Santa Rosa and the South Park County Sanitation District (SPCSD). SAN-2, SAN-4, SAN-8, and SAN-9 are in the SPCSD service area, and the rest of the parcels are serviced by the City of Santa Rosa. The City of Santa Rosa owns and operates the Laguna Treatment Plant which has a 19.0 MG capacity for tertiary treatment and has peak treatment capacity at 30-40 MGD. In addition to treating wastewater for the City of Santa Rosa and the SPCSD, the plant also takes wastewater flows from Rohnert Park, Cotati, and Sebastopol.

Per the 2016 SSMP, the system has only experienced four sanitary sewer overflows (SSOs) since 2008 with none of them being attributed to blockage. Based upon these results, SPCSD has determined that there are no capacity deficiencies. Furthermore, SPCSD has plans to repair, rehabilitate, and construct portions of collection system by 2024. With these proposed projects implemented, the system should have adequate capacity to support the proposed re-zoning sites.

Of the sites under consideration in Santa Rosa, sites SAN-6, SAN-7, and SAN-10 will require utility certificates and approval of the Sonoma Local Agency Formation Commission (LAFCO). These parcels are located outside of the City's boundary but within the City's sphere of influence, UGB, and USA. LAFCO may determine that these parcels need to be annexed but it is likely that only SAN-7 will require the annexation since it borders the City limits. Parcels SAN-1, SAN-3 and SAN-5 are subject to the conditions of the Brooks Assessment District (AD), which limit the property to the existing connected load of one single-family dwelling unit.

#### City of Sonoma

The City of Sonoma receives sewer service from Sonoma Valley County Sanitation District. There are four parcels being investigated in Sonoma. All four parcel are located directly adjacent to Broadway (Highway 12) which has large diameter trunk mains along the road. Broadway tends to surcharge during the winter months but there are no SSOs experienced during the surcharge. All the parcels have large diameter pipes adjacent so it is expected that there will be excess capacity within the system to accommodate the additional generation. This will need to be verified with a hydraulic model analysis. Furthermore, wastewater treatment discharge permits will need to be reviewed to verify that the treatment plant has adequate capacity.

Please note that these parcels do not require annexation into the City to receive sewer service. This is because they are in the sphere of influence of SVCSD which operates independently of the City.

## **Forestville**

Forestville receives sewer service from the Forestville Water District (FWD). As discussed in the water analysis section, two of the six parcels collect standing water seasonally. This can cause inflow/infiltration and constructability issues. Four parcels do not have sewer service directly



adjacent to the parcel. FOR-5 has sewer service on the corner of the parcel and on Packing House Road which can be extended for the use of the parcel. There are no known capacity issues.

#### Larkfield

Larkfield receives sewer service from the Airport-Larkfield-Wikiup Sanitation Zone (ALWSZ). Per the SCWA website, the ALWSZ wastewater treatment plant has a permitted treatment capacity of 900,000 gallons per day (gpd). The hydraulic model analysis evaluation, conducted as a part of the 2021 SSMP, indicated the trunk sewer system has adequate capacity to convey all existing and future flows. However, the 2020 Sonoma County General Plan Public Facilities and Services Element indicates the Airport/Larkfield/Wikiup Sanitation Zone as having limited capacity for accommodating future growth at the treatment plant. This issue is worsened by flooding concerns at all Larkfield sites which may contribute to inflow and infiltration into the system.

Before any development, sewer capacity will still need to be verified with a hydraulic model analysis. The sanitation zone is currently updating their collection system model and are looking to start a Master Plan for the Treatment Plant this year (2022). Both studies will help to verify the improvements that are needed to handle additional development.

#### Geyserville

Geyserville receives sewer service from the Geyserville Sanitation Zone (GSZ). Per the June 2016 SSMP, GSZ's wastewater treatment plant has a treatment capacity of 92,000 gpd but currently treats approximately 45,000 gpd. Since 2008, GSZ has only experienced one SSO that was attributed to blockage. The capacity assessment completed for the 2021 SSMP found no hydraulic capacity deficiencies in the system. While the system is in good condition, the piping adjacent to the parcels in question are two (2) 6-inch diameter sewer pipes and it will need to be hydraulically analyzed to determine if upsizing is required.

#### **Graton**

Graton receives wastewater services from Graton Community Services District. The main concern with the parcels in Graton is the condition of the conveyance piping which has many structural and O&M defects. Furthermore, the main lift station used by the District is in bad condition and has capacity concerns. However, much of the existing trunk already has stubbed out laterals which would be very easy to connect additional services to.

One of the sites, GRA-4, is not within the service area for GCSD. To add it to the sphere of influence, the County would need to make a General Plan consistency determination, a municipal service review would need to be carried out, and an application would need to be submitted to LAFCO.

It should be noted that an individual party is in the process of trying to rezone and develop GRA-5. They have the intent of constructing 16-20 small units.

#### Guerneville

Guerneville's sewer system is managed by the Russian River County Sanitation District. Per the 2021 SSMP, the trunk has adequate capacity to convey existing and future peak dry weather flows. However, all four sites, GUE-1, 2, 3, and 4 reside in flood plains. When the river floods, the system experiences high inflow and infiltration, often resulting in SSOs. In 2017 and 2019, there were several large SSOs. The excessive inflow will need to be mitigated or the pipes will need to be upsized to accommodate additional development. Besides the issues with flooding, the Russian



River system is in good condition.

Site GUE-1 houses the main storage and water treatment facilities for Sweetwater Springs Water District. As such, this site would require the treatment plant to be relocated in order to redevelop. Discussions with the District indicated that they will not give up the site. Furthermore, the environmental impacts of relocation would be significant.

#### **Penngrove**

Penngrove receives sewer service from the Penngrove Sanitation Zone (PSZ). Flows generated within the PSZ flow through the City of Petaluma's system and to the City's wastewater treatment plant. For the January 2021 SSMP, Agency staff conducted a capacity assessment of the PSZ system and concluded that the sanitation zone has not experienced any SSOs due to hydraulic deficiencies within the system so no formal capacity mitigation measures are planned. However, the lift station adjacent to the creek has been subject to flooding and the force main will eventually need structural upgrades and possible relocation.

The system experienced three SSOs between December 2014 and March 2016 occurring just upstream of a lift station where the capacity was exceeded. During the SSOs, the lift station had to be turned off due to flooding. If flood waters were to reach the lift station, it would cause major damage that could take the lift station out of service. However, the sanitation zone is implementing a project that will allow for the lift station to continue to operate during a flood.

The District is looking to have a capacity analysis underway later this year that will determine if the pipes need to be upsized. There are also concerns with septic failures in the area so it is possible that a parcel experiencing septic failure will need to be connected to the system. The Penngrove sites may be viable for additional development upon completion of the capital improvement projects and a revised agreement with the City of Petaluma for treatment.

Sites PEN-2 and 4 are currently on septic and will require the extension of a sewer pipeline up Goodwin Avenue for service. Sites PEN-1, 3, 5 and 8 have flooding concerns.

#### Petaluma

The City of Petaluma operates a wastewater treatment facility that provides tertiary treatment. The treatment plant also takes wastewater flows from Penngrove Sanitation Zone. All of the parcels would need to be annexed into the City to receive sewer service. The current OSAA policy does not support the extension of sewer service to these parcels and will require City Council action to allow.

PET-1 does not have sewer service adjacent to the parcel, but the other three sites do. The sewer line is 6-inches in diameter and resides in Bodega Avenue. Before development can be considered for these sites, the pipe will need to be upsized to address capacity concerns.

## 7.1 Sewer System Results

The following **Table 7-1** summarizes the categorical results of each site based on the above analysis. Like the water analysis, a summary of actions required to redevelop the site has been identified.



**Table 7-1. Sewer Category Results** 

| Site ID     | Category | Reason                                                                                                                                                                                              | Mitigations <sup>1</sup>                                                                                                                                                                                                                                                        |
|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AGU-1       | 1        | Water service exists and the main trunk line are proposed to be upsized from 21" to 27" in the summer of 2021 to handle current flows so pipe capacity is good. May handle additional flow as well. | N/A                                                                                                                                                                                                                                                                             |
| AGU-2       | 2        | Same as AGU-1 but this site is much larger so there are potential pipe capacity issues.                                                                                                             | Run a hydraulic model to determine the effect on capacity.                                                                                                                                                                                                                      |
| AGU-3       | 1        | Sewer service exists adjacent to parcel and no known capacity issues.                                                                                                                               | N/A                                                                                                                                                                                                                                                                             |
| GLE-1       | 2        | Issues with sanitary sewer overflows                                                                                                                                                                | Perform a hydraulic analysis to                                                                                                                                                                                                                                                 |
| GLE-2       | 2        | (SSOs) further upstream indicating capacity issues.                                                                                                                                                 | determine what size the pipe needs to be to handle flow. Upsize pipe.                                                                                                                                                                                                           |
| GRA-1       | 1        | Sewer on two sides of parcel and infrastructure in good shape according to CCTV data.                                                                                                               | N/A                                                                                                                                                                                                                                                                             |
| GRA-2       | 2        | Sewer service exists but is close to a lift station that has condition and capacity concerns. The lift station would need to be used to develop this parcel.                                        | Perform upgrades to lift station and run hydraulic model to determine if the pipe needs to be upsized.                                                                                                                                                                          |
| GRA-3       | 1        | Infrastructure exists and there is a stubbed out lateral extending into the parcel.                                                                                                                 | N/A                                                                                                                                                                                                                                                                             |
| GRA-4       | 3        | No sewer infrastructure exists<br>adjacent to parcel. Parcel is outside<br>of District boundary.                                                                                                    | Submit application to LAFCO to amend the sphere of influence of the District. County needs to amend general plan to incorporate parcel. A municipal service review will be required and then the parcel can be annexed to the District. Then extend sewer service up to parcel. |
| GRA-5       | 1        | Infrastructure exists and an independent party is in the process of trying to purchase the land to build 20-60 small units.                                                                         | N/A                                                                                                                                                                                                                                                                             |
| PET-1       | 3        | No sewer service adjacent to parcel and parcel is not in the City's boundary. LAFCO's current OSAA policy does not support the extension of sewer services to this parcel.                          | Council action will be needed to amend the current LAFCO OSAA policy. The parcels would then need to be annexed into the City. Council action will be needed to                                                                                                                 |
| PET-2       | 3        | The 6" sewer pipe in Bodega Avenue                                                                                                                                                                  | amend the current LAFCO OSAA                                                                                                                                                                                                                                                    |
| PET-3 PET-4 | 3        | that fronts these parcels has capacity issues. All of these parcels are not in the City's boundary. LAFCO's current OSAA policy does not support the extension of sewer services to this parcel.    | policy. The parcels would then need to be annexed into the City. Council action will be needed to amend the current LAFCO OSAA policy. The parcels would then need to be annexed into the City.                                                                                 |



| Site ID        | Category | Reason                                                                                                                                         | Mitigations <sup>1</sup>                                                                                                                                                                                                          |  |  |
|----------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| SAN-1          | 2        | Currently connected to sewer                                                                                                                   | Need to get a utility certificate to get additional service. The additional generation needs to be calculated and must not cause sewer generation to exceed that which is allowed in the General Plan and Wastewater Master Plan. |  |  |
| SAN-2          | 2        | Sewer service does not extend halfway across the frontage of the property.                                                                     | Sewer line would need to be extended so that it is halfway across the frontage of the property.  See SAN-1 as well.                                                                                                               |  |  |
| SAN-3          | 2        | Sewer service adjacent to parcel but lot is currently vacant and would be limited to one residential connection                                | Site is very large to only develop one parcel. Further investigation needed to determine how to amend restriction. Utility certificate most likely needed.                                                                        |  |  |
| SAN-4          | 1        | Sewer service on three sides of the parcel                                                                                                     | N/A                                                                                                                                                                                                                               |  |  |
| SAN-5          | 2        | Sewer service adjacent to parcel but lot is currently vacant and would be limited to one residential connection                                | Site is very large to only develop one parcel. Further investigation needed to determine how to amend restriction. Utility certificate most likely needed.                                                                        |  |  |
| SAN-6          | 2        | Already has sewer on one side but is                                                                                                           | Parcels need to be annexed and                                                                                                                                                                                                    |  |  |
| SAN-7          | 2        | no within City's boundary                                                                                                                      | utility certificates acquired.                                                                                                                                                                                                    |  |  |
| SAN-8<br>SAN-9 | 2 2      | Sewer already connected to South Park County Sanitation District                                                                               | See note for SAN-1                                                                                                                                                                                                                |  |  |
| SAN-10         | 3        | System  No sewer service adjacent to parcel and LAFCO's current OSAA policy does not allow for the extension of sewer services to this parcel. | Council action would be needed to amend the OSAA policy. Parcel would need to be annexed. All steps from SAN-1 are also valid.                                                                                                    |  |  |
| FOR-1          | 3        | No sewer service adjacent to parcel.                                                                                                           | Extend sewer service.                                                                                                                                                                                                             |  |  |
| FOR-2          | 3        | No sewer service adjacent to parcel.                                                                                                           | Extend sewer service in Mirabel<br>Road to the corner of Mirabel Road<br>and Nolan Road.                                                                                                                                          |  |  |
| FOR-3          | 3        | No sewer service adjacent to parcel.                                                                                                           | Sewer service would be easy to extend up to the parcel but land is flat so grading would likely be needed to get adequate slope.                                                                                                  |  |  |
| FOR-4          | 2        | Sewer service exists but the lot is inundated with water all year.                                                                             | Drainage measures would need to be installed.                                                                                                                                                                                     |  |  |
| FOR-5          | 1        | Sewer service is available.                                                                                                                    | N/A                                                                                                                                                                                                                               |  |  |
| FOR-6          | 3        | No sewer service adjacent to parcel.<br>Majority of lot is inundated all year.                                                                 | Sewer services would need to be extended and drainage measures installed.                                                                                                                                                         |  |  |
| SON-1          | 2        | The pipe in Broadway tends to surcharge without SSOs during winter months but parcels are low in the system and pipes are large.               | Run hydraulic model with proposed flows to verify how much additional flow can be handled. Determine if upsizing is needed to handle flows.                                                                                       |  |  |
| SON-2          | 2        |                                                                                                                                                |                                                                                                                                                                                                                                   |  |  |
| SON-3          | 1        | Sewer on two sides of parcel and excess capacity likely available because one adjacent pipe is 30-inches in diameter.                          | N/A                                                                                                                                                                                                                               |  |  |



| Site ID        | Category | Reason                                                                                                                                                                                                                             | Mitigations <sup>1</sup>                                                                                                                                                            |
|----------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SON-4          | 2        | The pipe in Broadway tends to surcharge without SSOs during winter months.                                                                                                                                                         | See SON-1/2                                                                                                                                                                         |
| LAR-1          | 2        | Parcels are close to Wikiup Creek                                                                                                                                                                                                  |                                                                                                                                                                                     |
| LAR-2          | 2        | and so there are flooding issues.<br>Concerns with treatment plant<br>capacity.                                                                                                                                                    |                                                                                                                                                                                     |
| LAR-3          | 2        | Concerns with treatment plant                                                                                                                                                                                                      |                                                                                                                                                                                     |
| LAR-4          | 2        | capacity.                                                                                                                                                                                                                          |                                                                                                                                                                                     |
| LAR-5          | 2        | • •                                                                                                                                                                                                                                | Increase the capacity at the WWTP                                                                                                                                                   |
| LAR-6          | 2        | Parcels are close to Wikiup Creek and so there are flooding issues. Concerns with treatment plant capacity.                                                                                                                        | or upgrade lines so there is less<br>inflow and infiltration from Wikiup<br>Creek flooding.                                                                                         |
| LAR-7          | 2        | Concerns with treatment plant capacity.                                                                                                                                                                                            |                                                                                                                                                                                     |
| LAR-8          | 2        | Trunk collection line has excess capacity but there are concerns about the capacity of the treatment plant.                                                                                                                        |                                                                                                                                                                                     |
| GEY-1          | 3        | No sewer line adjacent to parcel.                                                                                                                                                                                                  | Extend (and possibly upsize) the 8" PVC in Geyserville Avenue. Construct new manhole.                                                                                               |
| GEY-2          | 2        | All parcels are adjacent to Geyserville Avenue which has two (2) 6-inch                                                                                                                                                            | Evaluate excess disposal capacity determine a way to increase                                                                                                                       |
| GEY-3          | 2        | diameter pipes in good condition. There are concerns about disposal                                                                                                                                                                | capacity at the treatment plant if                                                                                                                                                  |
| GEY-4          | 2        | capacity at the treatment plant.                                                                                                                                                                                                   | necessary.                                                                                                                                                                          |
| GUE-1          | 3        | This site has Sweetwater Springs Water District's main treatment and storage facilities. Likely has sewer pipes already. However, the District is not willing to relocate and doing so would require a large environmental impact. | N/A                                                                                                                                                                                 |
| GUE-2          | 2        | Entire system gets flooded often and                                                                                                                                                                                               | Upsize pipes and/or take measures                                                                                                                                                   |
| GUE-3          | 2        | experiences SSOs because of it. The                                                                                                                                                                                                | to mitigate the inflow being                                                                                                                                                        |
| GUE-4          | 2        | property here is low lying which leads to large amounts of inflow.                                                                                                                                                                 | experienced in the area.                                                                                                                                                            |
| PEN-1          | 2        | Site is subject to flooding.                                                                                                                                                                                                       | Hydraulic analysis to determine how flooding impacts the capacity. Potentially upsize pipe. The District is hoping to start the capacity analysis later this year.                  |
| PEN-2          | 3        | No sewer line adjacent to parcel.  Many people in the area are on septic and excess capacity is needed for septic failures. Not in service area.                                                                                   | Extend (and possibly upsize) the sewer main in Goodwin Avenue.  Determine if there is excess capacity in the event of the worst septic failure. Permit may be required for service. |
| PEN-3          | 2        | Site is subject to flooding.                                                                                                                                                                                                       | See PEN-1                                                                                                                                                                           |
| PEN-4          | 1        | Infrastructure exists and there are no                                                                                                                                                                                             | N/A                                                                                                                                                                                 |
| PEN-5<br>PEN-6 | <u> </u> | concerns with SSOs in this area.                                                                                                                                                                                                   | N/A                                                                                                                                                                                 |
| PEN-7          | 2        | Sewer service stops just before parcel but there are no concerns with inflow due to flooding.                                                                                                                                      | Extend sewer service to parcel.                                                                                                                                                     |
| PEN-8          | 2        | Site is subject to flooding.                                                                                                                                                                                                       | See PEN-1                                                                                                                                                                           |
| PEN-9          | 3        | No sewer line adjacent to parcel.                                                                                                                                                                                                  | Extend (and possibly upsize) the 6" main that stops at PEN-8.                                                                                                                       |



#### 8.0 Results

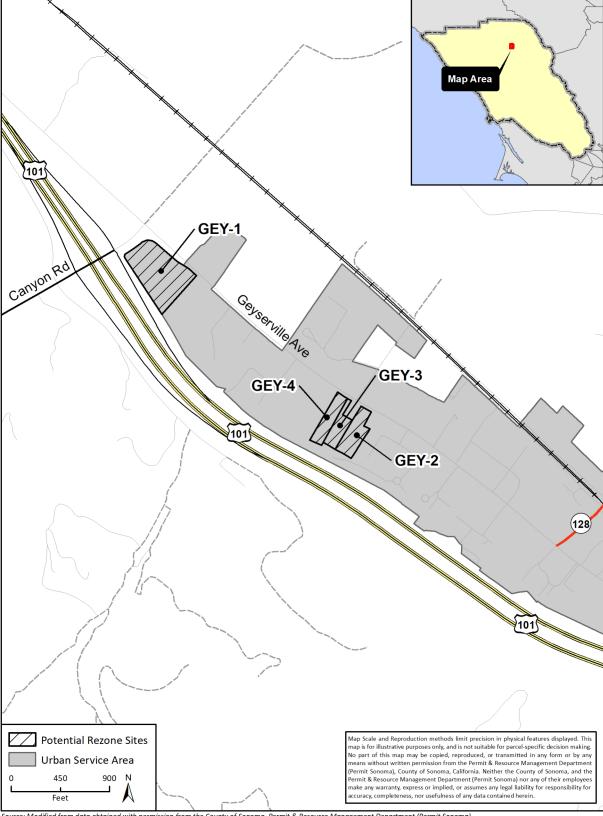
Of the 59 potential sites, 8 were classified as Category 1, 28 as Category 2, and 23 as Category 3. The full categorical results are listed below in **Table 8-1**. It should be noted that water agencies that did not provide system information or meet with us, the sewer category was applied to be the overall category. This may not be accurate and should be reassessed as new information arises.

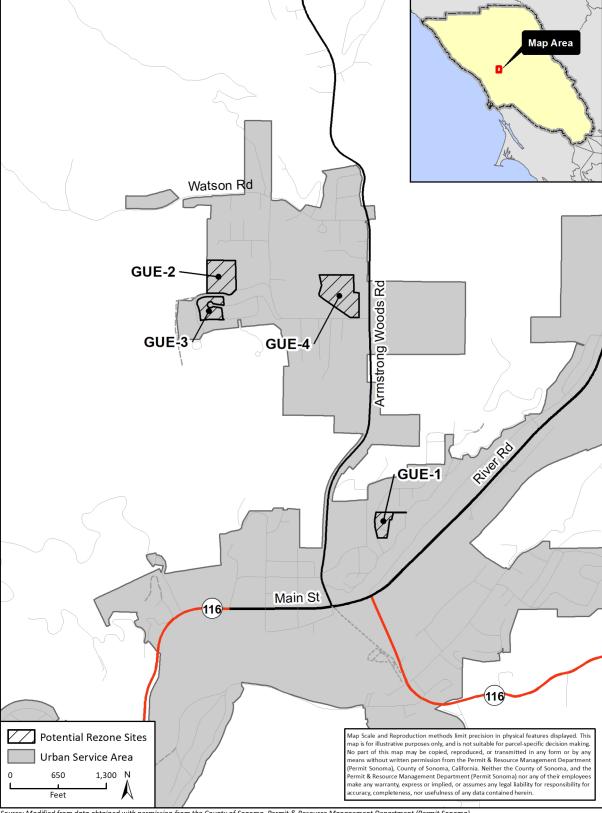
It is noted that this Study was a paper study only and did not include hydraulic model analyses of either the water or sewer systems. It is recommended that more detailed studies be completed for future development projects on the proposed sites to verify fire flow availability and system capacity (both in the systems and at the treatment plants). The specific studies will be agency specific and completed by the developer.

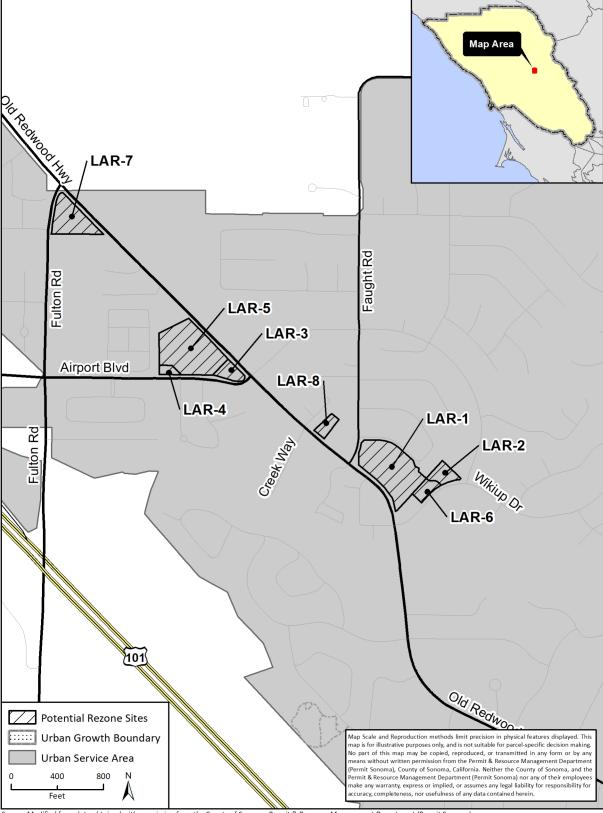
Table 8-1. Full Categorical Results for Each Site

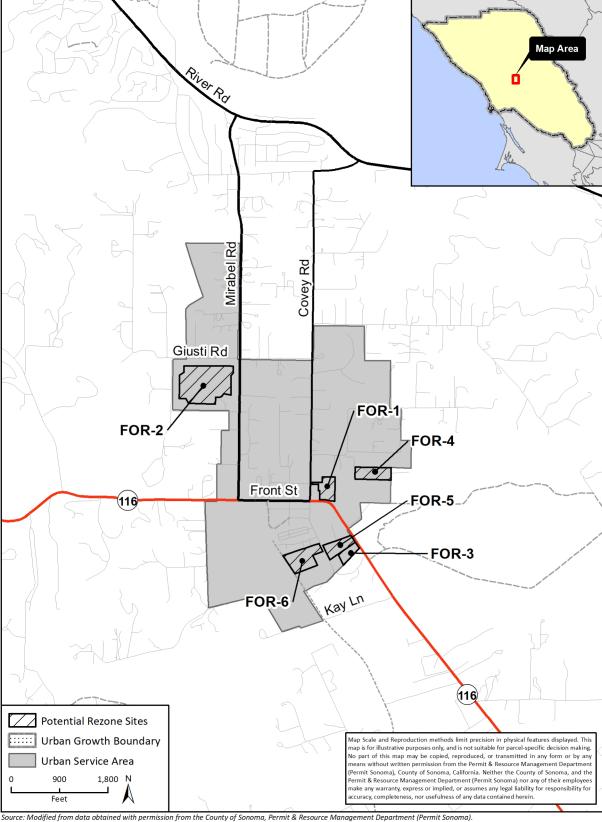
| Site ID | Water<br>Category | Sewer<br>Category | Overall<br>Category |
|---------|-------------------|-------------------|---------------------|
| AGU-1   | 3                 | 1                 | 3                   |
| AGU-2   | 3                 | 2                 | 3                   |
| AGU-3   | 1                 | 1                 | 1                   |
| GLE-1   | 3                 | 2                 | 3                   |
| GLE-2   | 3                 | 2                 | 3                   |
| GRA-1   | N/A               | 1                 | 1                   |
| GRA-2   | N/A               | 2                 | 2                   |
| GRA-3   | N/A               | 1                 | 1                   |
| GRA-4   | N/A               | 3                 | 3                   |
| GRA-5   | N/A               | 1                 | 1                   |
| PET-1   | 2                 | 3                 | 3                   |
| PET-2   | 2                 | 3                 | 3                   |
| PET-3   | 2                 | 3                 | 3                   |
| PET-4   | 2                 | 3                 | 3                   |
| SAN-1   | 3                 | 2                 | 3                   |
| SAN-2   | 1                 | 2                 | 2                   |
| SAN-3   | 3                 | 2                 | 3                   |
| SAN-4   | 1                 | 1                 | 1                   |

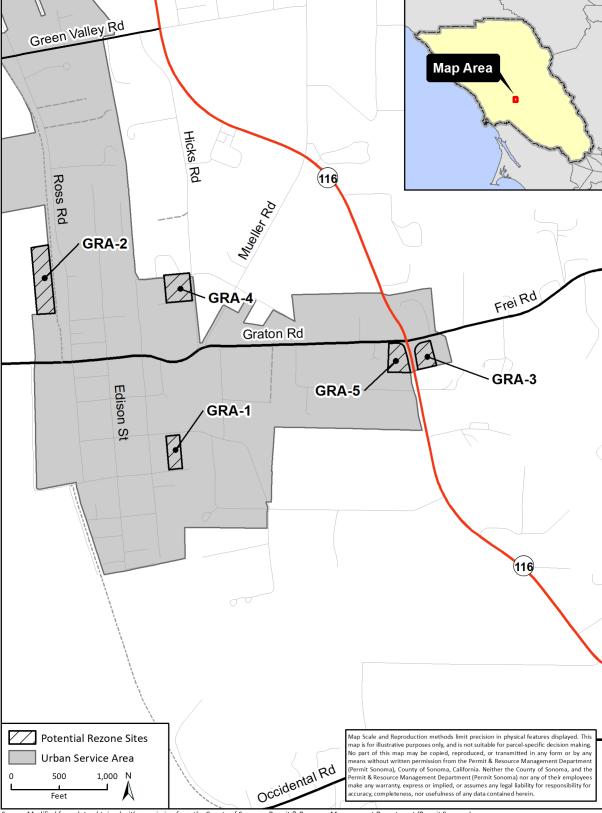


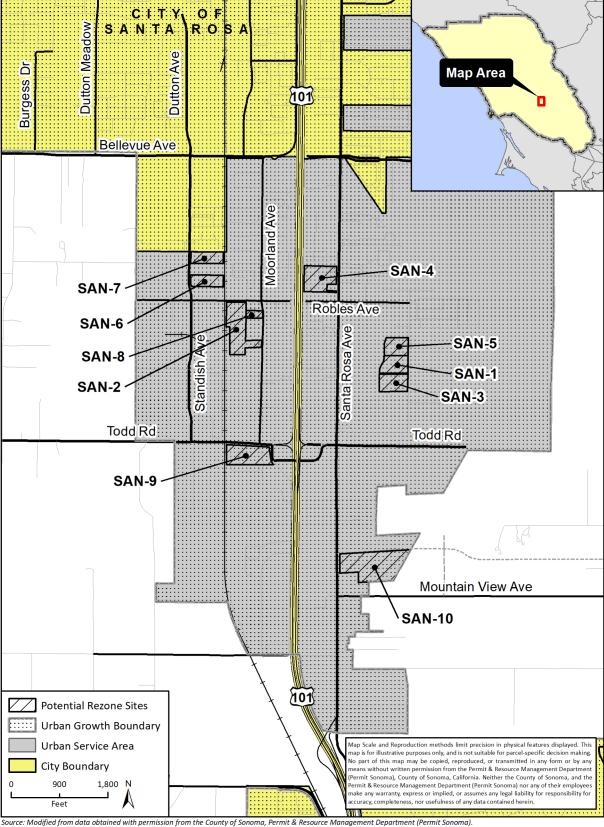

| Site ID | Water<br>Category | Sewer<br>Category | Overall<br>Category |
|---------|-------------------|-------------------|---------------------|
| SAN-5   | 3                 | 2                 | 3                   |
| SAN-6   | 1                 | 2                 | 2                   |
| SAN-7   | 1                 | 2                 | 2                   |
| SAN-8   | 3                 | 2                 | 3                   |
| SAN-9   | 2                 | 2                 | 2                   |
| SAN-10  | 1                 | 3                 | 3                   |
| FOR-1   | 2                 | 3                 | 3                   |
| FOR-2   | 1                 | 3                 | 3                   |
| FOR-3   | 1                 | 3                 | 3                   |
| FOR-4   | 2                 | 2                 | 2                   |
| FOR-5   | 1                 | 1                 | 1                   |
| FOR-6   | 3                 | 3                 | 3                   |
| SON-1   | 1                 | 2                 | 2                   |
| SON-2   | 1                 | 2                 | 2                   |
| SON-3   | 1                 | 1                 | 1                   |
| SON-4   | 1                 | 2                 | 2                   |
| LAR-1   | 2                 | 2                 | 2                   |
| LAR-2   | 2                 | 2                 | 2                   |
| LAR-3   | 2                 | 2                 | 2                   |
| LAR-4   | 2                 | 2                 | 2                   |
| LAR-5   | 2                 | 2                 | 2                   |
| LAR-6   | 2                 | 2                 | 2                   |
| LAR-7   | 2                 | 2                 | 2                   |
| LAR-8   | 2                 | 2                 | 2                   |
| GEY-1   | 2                 | 3                 | 3                   |
| GEY-2   | 2                 | 2                 | 2                   |



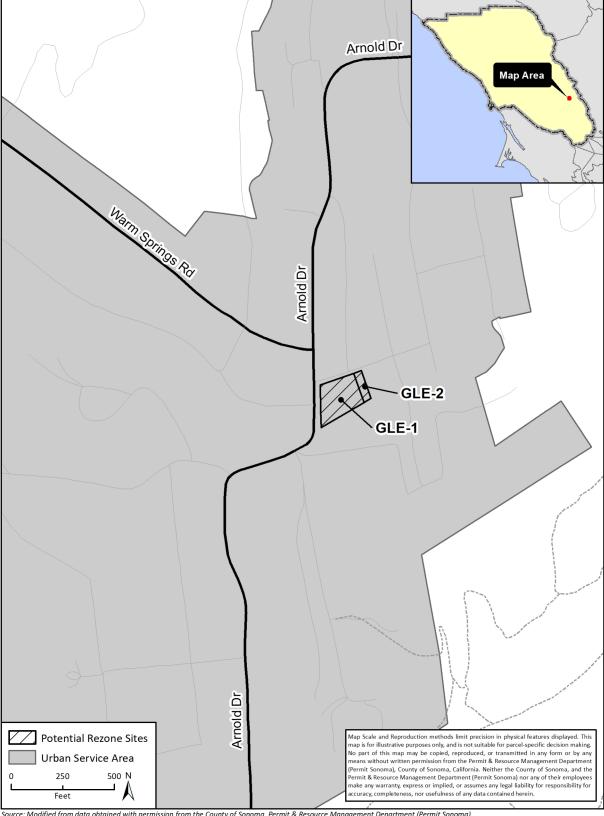


| Site ID | Water<br>Category | Sewer<br>Category | Overall<br>Category |
|---------|-------------------|-------------------|---------------------|
| GEY-3   | 2                 | 2                 | 2                   |
| GEY-4   | 2                 | 2                 | 2                   |
| GUE-1   | 3                 | 3                 | 3                   |
| GUE-2   | 2                 | 2                 | 2                   |
| GUE-3   | 2                 | 2                 | 2                   |
| GUE-4   | 2                 | 2                 | 2                   |
| PEN-1   | 1                 | 2                 | 2                   |
| PEN-2   | 1                 | 3                 | 3                   |
| PEN-3   | 1                 | 2                 | 2                   |
| PEN-4   | 1                 | 1                 | 1                   |
| PEN-5   | 1                 | 1                 | 1                   |
| PEN-6   | 1                 | 1                 | 1                   |
| PEN-7   | 1                 | 2                 | 2                   |
| PEN-8   | 1                 | 2                 | 2                   |
| PEN-9   | 2                 | 3                 | 3                   |

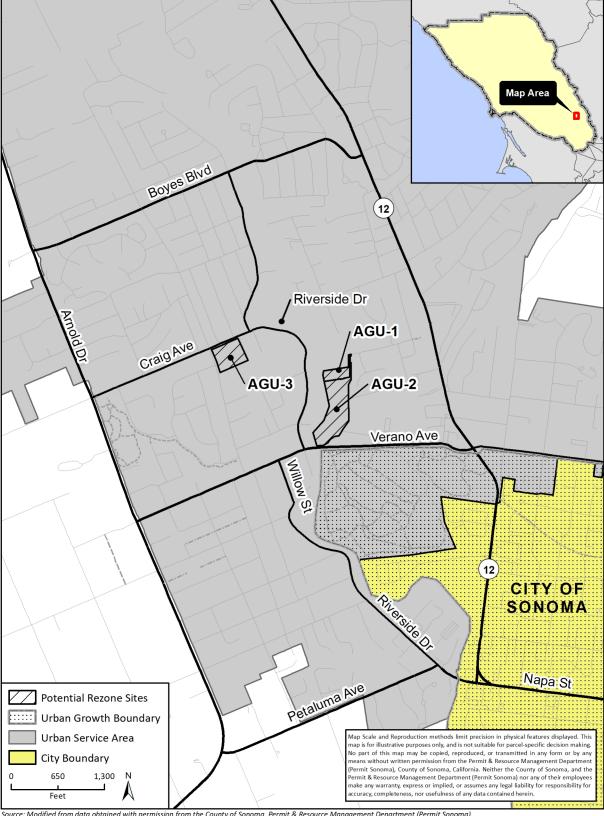


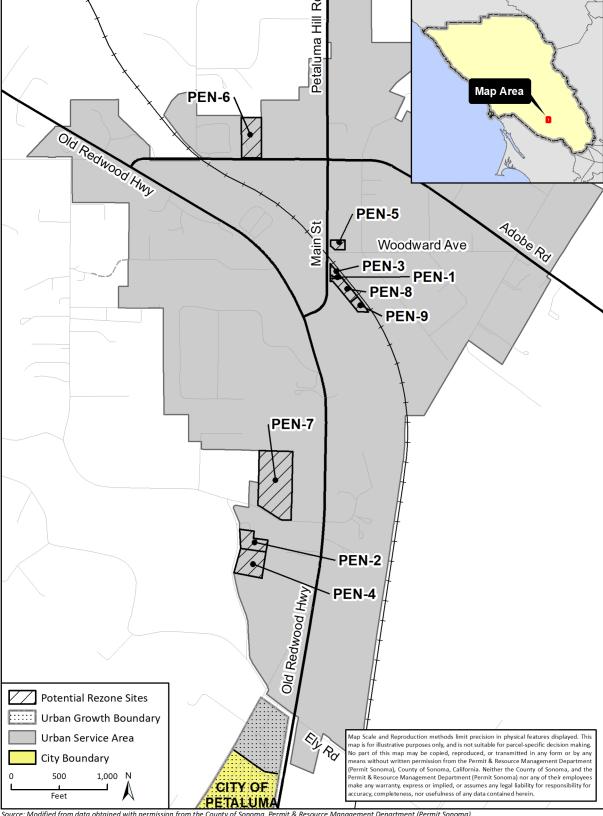


# Appendix A – Maps of Sites Under Consideration by USA

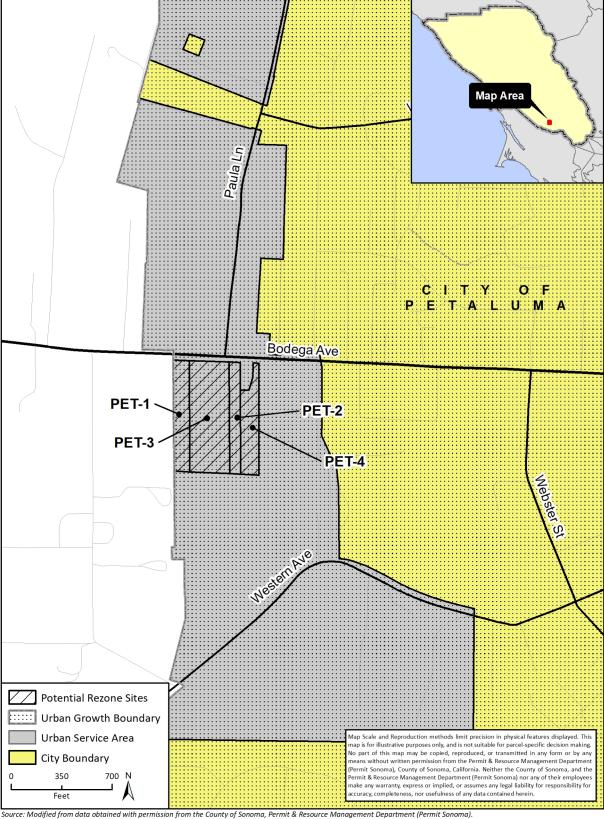


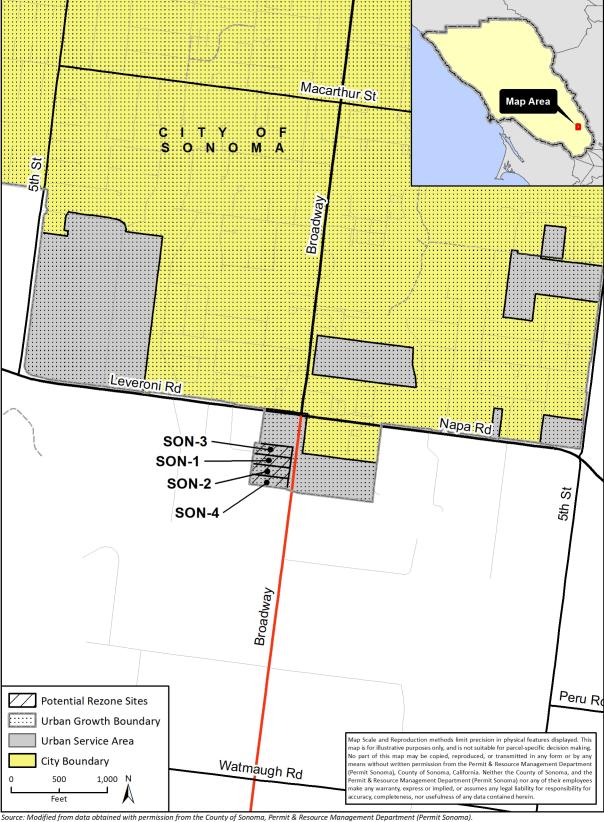




Data and/or analysis depicted may be altered from the original Permit Sonoma dataset source therefore not representative of Permit Sonoma data; Esri.













# **Appendix B – Land Use Summary of Sites Under Consideration**

|                            |                                     |                |              |                                                                     |                                         |                 |            |              |                                                  |                     | Max Buildout                          | Max Buildout    |                 |
|----------------------------|-------------------------------------|----------------|--------------|---------------------------------------------------------------------|-----------------------------------------|-----------------|------------|--------------|--------------------------------------------------|---------------------|---------------------------------------|-----------------|-----------------|
| 4.004                      |                                     | EIR_Area       | CIC Assess   | ACNET LISE CODE                                                     | 7015                                    |                 | ZONE LECEN | III IECEND   | ACDAT Code on the                                | December of the ter | Under Existing                        | Under Rezoning  | Dalta (managa)  |
| APN                        | Urban Service Area                  | Number         | GIS_Acres    | ASMT_USE CODE                                                       | ZONE                                    | LU              | ZONE_LEGEN |              | ASMT_Category                                    | Dwelling Units      | (persons)                             | (6/9) (persons) | Delta (persons) |
| 140-180-035<br>140-150-008 | Geyserville (GEY)                   | GEY-1<br>GEY-2 | 5.11<br>1.63 | 0050 [Rural Res/Vacant Homesite] 0010 [Single Family Dwelling]      | LC, AH RC50 SR<br>R1 B6 4.8 DU, NONE    | LC<br>UR 4.8    | LC<br>R1   | LC<br>UR     | Residential Properties Residential Properties    | 82.00<br>8.00       | 213<br>21                             | 320<br>86       | 107<br>65       |
| 140-150-008                | Geyserville (GEY)                   | GEY-3          | 1.03         | 0052 [Rural Res/2 or More Residences]                               | R1 B6 4.8 DU, NONE                      | UR 4.8          | R1         | UR           | Residential Properties                           | 5.00                | 13                                    | 57              | 44              |
| 140-150-004                | Geyserville (GEY) Geyserville (GEY) | GEY-4          | 1.08         | 0052 [Rural Res/2 or More Residences]                               | R1 B6 4.8 DU, SR                        | UR 4.8          | R1         | UR           | Residential Properties  Residential Properties   | 6.00                | 16                                    | 68              | 52              |
| 070-070-040                |                                     | GUE-1          | 1.52         | 0811 [Utility Water Company]                                        | R1 B6 4 DU, LG/116                      | UR 4            | R1         | UR           |                                                  | 6.00                | 16                                    | 78              | 62              |
| 069-270-002                | Guerneville (GUE)                   | GUE-2          | 4.00         | 0052 [Rural Res/2 or More Residences]                               | RR B6 2 DU, LG/116 VOH                  | UR 2            | RR*        | UR           | Miscellaneous Properties  Posidential Properties | 2.00                | 5                                     | 208             | 203             |
|                            | Guerneville (GUE)                   | GUE-3          | 2.06         |                                                                     |                                         | UR 4            | R1         | UR           | Residential Properties                           | 8.00                | 21                                    | 107             | 86              |
| 069-280-043<br>069-230-007 | Guerneville (GUE)                   | GUE-4          | 5.26         | 0051 [Rural Res/Single Residence] 0051 [Rural Res/Single Residence] | R1 B6 4 DU, F2 LG/116 VOH               | UR 2            | RR*        | UR           | Residential Properties                           | 3.00                | 8                                     | 273             | 265             |
| 039-320-051                | Guerneville (GUE)                   |                | 4.41         |                                                                     | RR B6 2 DU, F1 F2 LG/116 RC50/25 SR VOH |                 | LC, PC     |              | Residential Properties                           | 1.00                | 3                                     | 252             |                 |
| 039-040-040                | Larkfield (LAR) Larkfield (LAR)     | LAR-1<br>LAR-2 | 0.72         | 0710 [Religious Building]                                           | LC, PC, VOH<br>CO, VOH                  | LC, UR 11<br>LC | CO         | LC, UR<br>LC | Institutional Properties                         | 0.00                | 0                                     | 42              | 250<br>42       |
| 039-040-040                | Larkfield (LAR)                     | LAR-3          | 0.72         | 0100 [Vacant Commercial Land/Undevel]                               | CO, AH VOH                              |                 |            | LC           | Commercial Properties                            | 10.00               | 26                                    | 36              | 10              |
| 039-025-026                |                                     | LAR-4          | 0.03         | 0100 [Vacant Commercial Land/Undevel]                               |                                         | LC<br>UR 9      | CO<br>R2   | UR           | Commercial Properties                            | 4.00                | 10                                    |                 | 5               |
| 039-025-028                | Larkfield (LAR)                     |                | 4.49         | 0050 [Rural Res/Vacant Homesite] 0320 [Warehousing/Active]          | R2 B6 9 DU, AH VOH                      | UR 9            | R2         | UR           | Residential Properties                           | 72.00               | 187                                   | 16<br>257       | 70              |
|                            | Larkfield (LAR)                     | LAR-5          |              |                                                                     | R2 B6 9 DU, AH VOH                      |                 |            |              | Industrial Properties                            |                     | 0                                     |                 |                 |
| 039-040-035                | Larkfield (LAR)                     | LAR-6          | 0.55         | 0171 [Two Story Office Building]                                    | CO, VOH                                 | LC              | CO         | LC           | Commercial Properties                            | 0.00                | · · · · · · · · · · · · · · · · · · · | 31              | 31              |
| 039-380-018                | Larkfield (LAR)                     | LAR-7          | 2.05         | 0051 [Rural Res/Single Residence]                                   | R1 B6 5 DU, VOH                         | UR 5            | R1         | UR           | Residential Properties                           | 10.00               | 26                                    | 117             | 91              |
| 039-390-022                | Larkfield (LAR)                     | LAR-8          | 0.47         | 0001 [Vacant Residential Lot Undevel w/Util]                        | CO, VOH                                 | LC              | CO         | LC<br>LI     | Residential Properties                           | 0.00                | 0                                     | 29              | 29<br>62        |
| 083-073-017                | Forestville (FOR)                   | FOR-1          | 2.90         | 0310 [Light Manuftg & Industrial]                                   | MP, AH LG/116 SR                        | LI              | MP         | _            | Industrial Properties                            | 46.00               | 120                                   | 182             |                 |
| 083-120-062                | Forestville (FOR)                   | FOR-2          | 14.13        | 0511 [Non-Irrigated Orchard w/Residence]                            | RR B6 2, LG/116                         | UR 2            | RR*        | UR           | Dry Farm Properties                              | 7.00                | 18                                    | 736             | 718             |
| 084-020-004                | Forestville (FOR)                   | FOR-3          | 1.67         | 0850 [Right-of-Way]                                                 | R1 B6 2 DU, LG/116 SR                   | UR 2            | R1         | UR           | Miscellaneous Properties                         | 3.00                | 8                                     | 86              | 78              |
| 083-073-010                | Forestville (FOR)                   | FOR-4          | 3.53         | 0052 [Rural Res/2 or More Residences]                               | RR B6 2, LG/116                         | UR 2            | RR*        | UR           | Residential Properties                           | 2.00                | 5                                     | 185             | 179             |
| 084-020-003                | Forestville (FOR)                   | FOR-5          | 2.89         | 0050 [Rural Res/Vacant Homesite]                                    | R1 B6 2 DU, LG/116 SR                   | UR 2            | R1         | UR           | Residential Properties                           | 6.00                | 16                                    | 151             | 135             |
| 084-020-011                | Forestville (FOR)                   | FOR-6          | 5.00         | 0050 [Rural Res/Vacant Homesite]                                    | M1, LG/116                              | LI              | M1         | LI           | Residential Properties                           | 0.00                | 0                                     | 312             | 312             |
| 130-165-001                | Graton (GRA)                        | GRA-1          | 1.13         | 0721 [Parochial School]                                             | R1 B6 5 DU, NONE                        | UR 5            | R1         | UR           | Institutional Properties                         | 6.00                | 16                                    | 60              | 44              |
| 130-090-009                | Graton (GRA)                        | GRA-2          | 2.98         | 0302 [Vacant Industrial Land w/Util]                                | M1, F2                                  | GI              | M1         | GI           | Industrial Properties                            | 0.00                | 0                                     | 185             | 185             |
| 130-180-079                | Graton (GRA)                        | GRA-3          | 1.12         | 0051 [Rural Res/Single Residence]                                   | RR B6 2, LG/116 SR                      | RR 2            | RR*        | RR*          | Residential Properties                           | 1.00                | 3                                     | 57              | 55              |
| 130-146-003                | Graton (GRA)                        | GRA-4          | 1.78         | 0051 [Rural Res/Single Residence]                                   | RR B6 2 DU, NONE                        | UR 2            | RR*        | UR           | Residential Properties                           | 1.00                | 3                                     | 94              | 91              |
| 130-176-013                | Graton (GRA)                        | GRA-5          | 1.35         | 0050 [Rural Res/Vacant Homesite]                                    | RR B6 2 DU, LG/116 SR                   | UR 2            | RR*        | UR           | Residential Properties                           | 1.00                | 3                                     | 70              | 68              |
| 134-132-057                | Santa Rosa (SAN)                    | SAN-1          | 3.71         | 0050 [Rural Res/Vacant Homesite]                                    | RR B8, RC100/25 VOH                     | LI              | RR*        | LI           | Residential Properties                           | 1.00                | 3                                     | 192             | 190             |
| 134-111-068                | Santa Rosa (SAN)                    | SAN-2          | 8.33         | 0311 [Light Manufctrg & Warehousing]                                | M2, RC100/25 VOH                        | GI<br>          | M2         | GI           | Industrial Properties                            | 0.00                | 0                                     | 520             | 520             |
| 134-132-056                | Santa Rosa (SAN)                    | SAN-3          | 3.98         | 0050 [Rural Res/Vacant Homesite]                                    | RR B8, RC100/25 VOH                     | LI              | RR*        | LI           | Residential Properties                           | 1.00                | 3                                     | 208             | 205             |
| 043-153-021                | Santa Rosa (SAN)                    | SAN-4          | 6.19         | 0065 [Motel/50 Units or More w/Shops]                               | PC, SR VOH                              | GC              | PC         | GC           | Residential Properties                           | 1.00                | 3                                     | 387             | 385             |
| 134-132-034                | Santa Rosa (SAN)                    | SAN-5          | 3.37         | 0050 [Rural Res/Vacant Homesite]                                    | RR B8, RC100/25 VOH                     | LI              | RR*        | LI           | Residential Properties                           | 1.00                | 3                                     | 174             | 172             |
| 134-072-040                | Santa Rosa (SAN)                    | SAN-6          | 3.02         | 0302 [Vacant Industrial Land w/Util]                                | M1, RC100/25 VOH                        | GI              | M1         | GI           | Industrial Properties                            | 0.00                | 0                                     | 190             | 190             |
| 134-072-038                | Santa Rosa (SAN)                    | SAN-7          | 3.00         | 0302 [Vacant Industrial Land w/Util]                                | M1, RC100/25 VOH                        | GI              | M1         | GI           | Industrial Properties                            | 0.00                | 0                                     | 187             | 187             |
| 134-111-020                | Santa Rosa (SAN)                    | SAN-8          | 1.00         | 0052 [Rural Res/2 or More Residences]                               | RR B8, VOH                              | UR 5            | RR*        | UR           | Residential Properties                           | 1.00                | 3                                     | 52              | 49              |
| 134-171-059                | Santa Rosa (SAN)                    | SAN-9          | 6.64         | 0310 [Light Manuftg & Industrial]                                   | M3, RC100/25 VOH                        | LI              | M3         | LI           | Industrial Properties                            | 0.00                | 0                                     | 413             | 413             |
| 134-192-016                | Santa Rosa (SAN)                    | SAN-10         | 13.19        | 0000 [Vacant Residential Lot/Undevel]                               | M1, RR B6 3, RC100/25 VOH               | LI, RR 3        | M1, RR*    | LI, RR*      | Residential Properties                           | 3.00                | 8                                     | 333             | 325             |
| 054-290-057                | Glen Ellen (GLE)                    | GLE-1          | 0.80         | 0113 [Store w/Res Unit or Units]                                    | LC, LG/GE1 SR                           | LC              | LC         | LC           | Commercial Properties                            | 1.00                | 3                                     | 49              | 47              |
| 054-290-084                | Glen Ellen (GLE)                    | GLE-2          | 0.13         | 0010 [Single Family Dwelling]                                       | LC, LG/GE1 SR                           | LC              | LC         | LC           | Residential Properties                           | 1.00                | 3                                     | 8               | 5               |
| 056-531-005                | Agua Caliente (AGU)                 | AGU-1          | 1.35         | 0051 [Rural Res/Single Residence]                                   | R1 B6 1 DU, F2 RC50/25 VOH X            | UR 1            | R1         | UR           | Residential Properties                           | 1.00                | 3                                     | 70              | 68              |
| 056-531-006                | Agua Caliente (AGU)                 | AGU-2          | 6.59         | 0023 [SFD w/Granny Unit]                                            | R1 B6 1 DU, F2 RC50/25 VOH X            | UR 1            | R1         | UR           | Residential Properties                           | 7.00                | 18                                    | 343             | 325             |
| 052-272-011                | Agua Caliente (AGU)                 | AGU-3          | 3.19         | 0710 [Religious Building]                                           | R1 B6 5 DU, RC50/25 X                   | UR 5            | R1         | UR           | Institutional Properties                         | 16.00               | 42                                    | 166             | 125             |
| 047-174-009                | Penngrove (PEN)                     | PEN-1          | 0.06         | 0891 [Parking Lot/No Fee]                                           | C2, HD LG/PNG SR VOH                    | GC              | C2         | GC           | Miscellaneous Properties                         | 0.00                | 0                                     | 3               | 3               |
| 047-152-020                | Penngrove (PEN)                     | PEN-2          | 1.05         | 0050 [Rural Res/Vacant Homesite]                                    | RR B6 1, NONE                           | UR 2            | RR*        | UR           | Residential Properties                           | 1.00                | 3                                     | 55              | 52              |
| 047-174-008                | Penngrove (PEN)                     | PEN-3          | 0.16         | 0110 [Single Story Store]                                           | C2, HD LG/PNG SR VOH                    | GC              | C2         | GC           | Commercial Properties                            | 0.00                | 0                                     | 10              | 10              |
| 047-152-019                | Penngrove (PEN)                     | PEN-4          | 1.73         | 0050 [Rural Res/Vacant Homesite]                                    | RR B6 1, NONE                           | UR 2            | RR*        | UR           | Residential Properties                           | 2.00                | 5                                     | 91              | 86              |
| 047-173-011                | Penngrove (PEN)                     | PEN-5          | 0.32         | 0010 [Single Family Dwelling]                                       | LC, HD LG/PNG SR                        | LC              | LC         | LC           | Residential Properties                           | 1.00                | 3                                     | 21              | 18              |
| 047-091-013                | Penngrove (PEN)                     | PEN-6          | 2.00         | 0052 [Rural Res/2 or More Residences]                               | RR B6 1, NONE                           | UR 1            | RR*        | UR           | Residential Properties                           | 2.00                | 5                                     | 104             | 99              |
| 047-153-004                | Penngrove (PEN)                     | PEN-7          | 5.35         | 0051 [Rural Res/Single Residence]                                   | 00 70 10 (010 - 1-1 - 1-1               | UR 2            | RR*        | UR           | Residential Properties                           | 18.00               | 47                                    | 278             | 231             |
| 047-166-023                | Penngrove (PEN)                     | PEN-8          | 0.65         | 0320 [Warehousing/Active]                                           | C3, F2 LG/PNG RC50 SR VOH               | GC              | C3         | GC           | Industrial Properties                            | SRCC                | 0                                     | 42              | 42              |
|                            | Penngrove (PEN)                     | PEN-9          | 0.34         | 0320 [Warehousing/Active]                                           | c3                                      | GC              | c3         | GC           | Industrial Properties                            | 0.00                | 0                                     | 21              | 21              |
| 019-090-003                | Petaluma (PET)                      | PET-1          | 1.96         | 0052 [Rural Res/2 or More Residences]                               | AR B6 1.5, SR                           | RR 1.5          | AR         | RR*          | Residential Properties                           | 1.00                | 3                                     | 101             | 99              |
| 019-090-053                | Petaluma (PET)                      | PET-2          | 1.36         | 0101 [Vacant Commercial Land w/Util]                                | AR B6 1.5, SR                           | RR 1.5          | AR         | RR*          | Commercial Properties                            | 1.00                | 3                                     | 70              | 68              |
| 019-090-004                | Petaluma (PET)                      | PET-3          | 4.91         | 0113 [Store w/Res Unit or Units]                                    | AR B6 1.5, C1 B8, SR                    | LC, RR 1.5      | AR, C1     | LC, RR*      | Commercial Properties                            | 1.00                | 3                                     | 169             | 166             |
| 019-090-058                | Petaluma (PET)                      | PET-4          | 1.93         | 0000 [Vacant Residential Lot/Undevel]                               | AR B6 1.5, SR                           | RR 1.5          | AR         | RR*          | Residential Properties                           | 1.00                | 3                                     | 101             | 99              |
| 128-311-015                | Sonoma (SON)                        | SON-1          | 0.97         | 0052 [Rural Res/2 or More Residences]                               | RR B6 3, SR VOH                         | RR 3            | RR*        | RR*          | Residential Properties                           | 0.00                | 0                                     | 49              | 49              |
| 128-311-016                | Sonoma (SON)                        | SON-2          | 1.00         | 0052 [Rural Res/2 or More Residences]                               | RR B6 3, SR VOH                         | RR 3            | RR*        | RR*          | Residential Properties                           | 0.00                | 0                                     | 52              | 52              |
| 128-311-014                | Sonoma (SON)                        | SON-3          | 1.02         | 0052 [Rural Res/2 or More Residences]                               | RR B6 3, SR VOH                         | RR 3            | RR*        | RR*          | Residential Properties                           | 1.00                | 3                                     | 52              | 49              |
| 128-311-017                | Sonoma (SON)                        | SON-4          | 0.97         | 0010 [Single Family Dwelling]                                       | RR B6 3, SR VOH                         | RR 3            | RR*        | RR*          | Residential Properties                           | 1.00                | 3                                     | 49              | 47              |
|                            |                                     |                | 164.35       |                                                                     |                                         |                 |            |              |                                                  | 354.00              | 920                                   | 8,655           | 7,735           |



# **Appendix C – Agency Meeting Schedule**



| AGENCY                                                                                                                                                               | REPRESENTATIVE(S) | MEETING DATE   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| Valley of the Moon Water District                                                                                                                                    | Matthew Fullner   | April 20, 2021 |
| valley of the Moon water district                                                                                                                                    | Brian Larson      | April 20, 2021 |
| City of Sonoma                                                                                                                                                       | Chris Pegg        | April 19, 2021 |
| California Water Service                                                                                                                                             | Evan Markey       | May 5, 2021    |
| California American Water                                                                                                                                            | Margaret DiGenova | -              |
| Penngrove/Kenwood Water Company                                                                                                                                      | Receptionist      | -              |
| City of Conta Book                                                                                                                                                   | Casey Claborn     | April 10, 2021 |
| City of Santa Rosa                                                                                                                                                   | Caryn Lozada      | April 19, 2021 |
| City of Petaluma                                                                                                                                                     | Kent Carothers    | April 20, 2021 |
| Forestville Water District                                                                                                                                           | Tony Lopes        | April 20, 2021 |
| Graton Community Services District                                                                                                                                   | Jose Ortiz        | May 28, 2021   |
| Sanitation Districts: Geyserville Sanitation Zone Penngrove Sanitation Zone                                                                                          | Kevin Booker      |                |
| Sonoma Valley County Sanitation District Russian River County Sanitation District Airport/Larkfield/Wikiup Sanitation District South Park County Sanitation District | David Royall      | May 10, 2021   |



# **Appendix D – Reference Documents**



| USA           | Documents for Water                                                                                                                                                                    | Source                                           | Documents for<br>Sewer                                                    | Source                                        |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|
| Agua Caliente | Atlas Maps, Urban Water Management Plan,                                                                                                                                               | Valley of the<br>Moon Water                      | Sewer System                                                              | _                                             |
| Glen Ellen    | Water Master Plan                                                                                                                                                                      | District                                         | Management Plan                                                           | Sonoma Water Website                          |
| Sonoma        | General Plan, Housing Element to the General<br>Plan, Upcoming Infrastructure Projects,<br>Completed Projects, Water Master Plan, CIP                                                  | City of Sonoma<br>Website                        | Sewer System<br>Management Plan                                           | Sonoma Water Website                          |
| Forestville   | Atlas Maps (in person - no copies allowed)                                                                                                                                             | Forestville Water<br>District General<br>Manager | Atlas Maps (in person - no copies allowed)                                | Forestville Water District<br>General Manager |
| Geyserville   | Notes from Site Visit and Cal Am                                                                                                                                                       | Wood Rodgers                                     | Sewer System<br>Management Plan                                           | Sonoma Water Website                          |
| Graton        | NA                                                                                                                                                                                     | NA                                               | Atlas Maps                                                                | Graton Community<br>Services District         |
| Guerneville   | Notes from Site Visit                                                                                                                                                                  | Wood Rodgers                                     | Sewer System<br>Management Plan                                           | Sonoma Water Website                          |
| Larkfield     | WSA, Notes from Site Visit and Cal Am                                                                                                                                                  | Wood Rodgers                                     | Sewer System<br>Management Plan                                           | Sonoma Water Website                          |
| Penngrove     | Notes from Site Visit                                                                                                                                                                  | Wood Rodgers                                     | Sewer System<br>Management Plan                                           | Sonoma Water Website                          |
| Petaluma      | General Plan, Urban Water Management Plan, CIP<br>Budget                                                                                                                               | City of Petaluma<br>Website                      | Sewer System<br>Management Plan,<br>System Map                            | City of Petaluma<br>Website                   |
| Santa Rosa    | General Plan, Groundwater Master Plan,<br>Incremental Recycled Water Master Plan, Land Use<br>Diagram, GIS files, Water Master Plan, South Santa<br>Rosa Area Plan, 2015 and 2021 UWMP | City of Santa<br>Rosa Website                    | GIS files, Sewer<br>System Management<br>Plan, Water System<br>Facilities | City of Santa Rosa<br>Website                 |
| Sonoma Water  | 2015 and 2021 Urban Water Management Plan                                                                                                                                              | Sonoma Water<br>Website                          | See Individual Zones                                                      | See Individual Zones                          |