TECHNICAL MEMORANDUM

Date:	February 5, 2021	
To:	Jodi Ketelsen TY Lin International Email: <u>jodi.ketelsen@tylin.com</u>	<i>Project No.:</i> 117-121
From:	Phong Vo Project Manager	<i>Jurisdiction</i> : Sonoma C California

Praveena Samaleti **Project Engineer**

ma County,

Subject: Traffic Management Technical Memorandum for Todd Road and Standish Avenue intersection Realignment in Sonoma County, CA

INTRODUCTION

The purpose of this memorandum is to evaluate potential traffic impacts and provide congestion relief during construction of the proposed Todd Road Realignment Project located at the intersection of Todd Road and Standish Avenue in Sonoma County, California. The proposed project consists of converting an existing 3-leg, stop-controlled intersection, at Todd Road and Standish Avenue into a 4-leg, signalized intersection, incorporating the private driveway at Ghilotti Avenue.

PROJECT DESCRIPTION

The Sonoma County Transportation Authority (SCTA) proposes to realign the 3-leg, stopcontrolled intersection of Todd Road and Standish Avenue with the private driveway of Ghilotti Avenue to form a 4-leg signalized intersection to improve traffic operations at Todd Road and Standish Avenue. In 2018, W-Trans prepared a traffic impact study for the Ghilotti Construction Yard for the County of Sonoma. From this study, potential traffic impacts associated with development of a construction yard at 304 Todd Road were identified at the intersection of Todd Road/Standish Avenue-Ghilotti Avenue. Based on the recommendations that were listed in report, the county is planning to install traffic signal at Todd Road/Standish Avenue-Ghilotti Avenue to achieve acceptable operations. The purpose of this memorandum is to present traffic evaluation and transportation management during the construction phase in 2021.TJKM conducted a Level of Service Analysis at the study intersections for the year of 2021 during a.m., and p.m. peak hours. Traffic analysis to identify impacts due to construction and improvements to mitigate the impacts was conducted. Figure 1 shows the vicinity map.

> PLEASANTON SAN JOSE SANTA ROSA SACRAMENTO FRESNO Corporate Office: 4305 Hacienda Drive, Suite 550, Pleasanton, CA 94588 Phone: 925.463.0611 Fax: 925.463.3690 www.TJKM.com DBE #40772 SBE #38780

Figure 1: Vicinity Map

LEGEND

((ТЈКМ

Х

Study Intersection

117-121 12/18/20

STUDY INTERSECTIONS

TJKM evaluated traffic conditions at 5 study intersections during the weekday a.m., and p.m. peak hours. The peak periods evaluated were between 7:00-9:00 a.m., and 4:00-6:00 p.m. The study intersections and associated traffic controls are as follows:

- 1. Todd Road/Standish Avenue-Ghilotti Avenue (Two-Way Stop)
- 2. Todd Road/Moorland Avenue (One-Way Stop)
- 3. Todd Road/US 101 South Ramps (Signal)
- 4. Todd Road/US 101 North Ramps (Signal)
- 5. Todd Road/ Santa Rosa Avenue (Signal)

PEAK HOUR TRAFFIC VOLUMES

The study intersections were evaluated for the highest one-hour volumes during weekday morning and evening peak periods. The intersection turning movement counts from "Final Traffic Impact Study for the Ghilotti Construction Yard, March 7, 2018" document prepared by W-Trans were used to project 2021 volumes by applying one percent growth per year to existing 2017 volumes during a.m., and p.m. peak hours. Annual growth rate at the study intersections was calculated from 2017 volumes and 2040 volumes from W-Trans study. Figure 2 illustrates the projected Year 2021 weekday a.m., and p.m. peak hour vehicle turning movement volumes at the study intersections.

LEVEL OF SERVICE ANALYSIS METHODOLOGY

LOS in this study describes the motor vehicle operating conditions for unsignalized and signalized intersections. LOS is a qualitative index of the performance of an element of the transportation system. It is a rating scale running from A to F, with LOS A indicating no congestion, and LOS F indicating unacceptable congestion and delays. The Highway Capacity Manual (HCM) is the standard reference published by the Transportation Research Board, and contains the specific criteria and methods to be used in assessing LOS. Synchro software was used to calculate the LOS at the study intersections. The study intersections with stop signs on side-street approaches were analyzed using the "Two-Way Stop-Controlled Intersection" methodology from the HCM. Tables 1 and 2 provide LOS definitions for both signalized and stop-controlled study intersections. Average stopped delay per vehicle in seconds is used as the basis for evaluation in this methodology.

Table 1: intersection Level of Service Definitions for Signalized Intersections

LOS	Description
А	Very low control delay, up to 10 seconds per vehicle. Progression is extremely favorable, and most vehicles arrive during the green phase. Many vehicles do not stop at all. Short cycle lengths may tend to contribute to low delay values.
В	Control delay greater than 10 and up to 20 seconds per vehicle. There is good progression or short cycle lengths or both. More vehicles stop causing higher levels of delay.
С	Control delay greater than 20 and up to 35 seconds per vehicle. Higher delays are caused by fair progression or longer cycle lengths or both. Individual cycle failures may begin to appear. Cycle failure occurs when a given green phase does not serve queued vehicles, and overflow occurs. The number of vehicles stopping is significant, though many still pass through the intersection without stopping.
D	Control delay greater than 35 and up to 55 seconds per vehicle. The influence of congestions becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, or high volumes. Many vehicles stop, the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
E	Control delay greater than 55 and up to 80 seconds per vehicle. The limit of acceptable delay. High delays usually indicate poor progression, long cycle lengths, and high volumes. Individual cycle failures are frequent.
F	Control delay in excess of 80 seconds per vehicle. Unacceptable to most drivers. Oversaturation, arrival flow rates exceed the capacity of the intersection. Many individual cycle failures. Poor progression and long cycle lengths may also be contributing factors to higher delay.

Source: Highway Capacity Manual, 2000.

Table 2: Level of Service Definitions for Stop-controlled Intersections

LOS	Description
А	Very low control delay less than 10 seconds per vehicle for each movement subject to delay.
В	Low control delay greater than 10 and up to 15 seconds per vehicle for each movement subject to delay.
С	Acceptable control delay greater than 15 and up to 25 seconds per vehicle for each movement subject to delay.
D	Tolerable control delay greater than 25 and up to 35 seconds per vehicle for each movement subject to delay.
E	Limit of tolerable control delay greater than 35 and up to 50 seconds per vehicle for each movement subject to delay.
F	Unacceptable control delay in excess of 50 seconds per vehicle for each movement subject to delay.

Source: Highway Capacity Manual, 2000.

INTERSECTION LEVEL OF SERVICE ANALYSIS – YEAR 2021 CONDITIONS

Existing intersection lane configurations, signal timings, and 2021 turning movement volumes were used to calculate the level of service at the study intersections during each peak hour. The peak hour factor is used to account for variations in flow within the peak hour. The HCM 2000 recommends defaults of 0.92 for urban facilities, was used to all study intersections for the analysis. The results of the LOS analysis using the Synchro 10 software program for Year 2021 Conditions are summarized in **Table 3**. HCM Methodology was followed to analyze the study intersections that was discussed earlier.

Under this scenario, all of the study intersections operate at acceptable service levels (LOS D or better for SCTA's intersections) during both peak hours, except the intersection of Todd Road/Standish Avenue-Ghilotti Avenue (intersection#1), which operates at LOS F during a.m. peak hour and LOS E during p.m. peak hour. This results are consistent with the result presented in W-Trans report (Table 4, page 12). It should be noted that the proposed project proposes to install traffic signal at the intersection. With the installation of traffic signal, the intersection is projected to operate at acceptable LOS B during a.m., and p.m. peak hour (Ref: W-Trans report – Table 4, page 12). LOS worksheets are provided in **Appendix A**.

#	Intersection	Control	Peak Hour ¹	Existing Cond	litions
				Average Delay ²	LOS
1	Todd Road/Standish Avenue-Ghilotti	Two Way Stop	AM	78.1	F
T	Avenue	Two-way Stop	PM	35.0	E
2	Todd Bood (Moorland Avenue	One Way Stop	AM	19.2	С
2		One-way stop	PM	24.3	С
r	Todd Dood/US 101 South Domos	Cianal	AM	41.6	D
3	Todd Road/05 101 South Ramps	Signai	PM	38.5	D
4	Tadd Daad /UC 101 Nauth Davage	Cinnal	AM	10.6	В
4	Todd Road/05 101 North Ramps	Signai	PM	9.2	А
-	Todd Dood (Conto Doog Auguro	Cinnal	AM	19.7	В
5	Todd Road/Santa Rosa Avenue	Signal	PM	27.7	С

Table 3: Intersection Levels of Service – Year 2021 Conditions

Notes:

Bold indicates unacceptable LOS E or F.

¹AM – Morning peak period; PM – Evening peak period

² Control delay for the worst movement is presented for side-street stop controlled intersections.

³LOS = Level of Service.

Figure 2: Year 2021 Peak Hour Traffic Volumes

(XX) Weekday PM Peak Hour Traffic Volumes

TRANSPORTATION MANAGEMENT PLAN

In order to prevent unreasonable traffic delays resulting from planned construction work, Transportation Management Plans (TMPs) must be carefully developed and implemented to maintain current levels of service and safety during all work activities.

A Transportation Management Plan (TMP) is a specialized program tailored to prevent and mitigate the impacts of a construction project by applying a variety of techniques including Public Information and Construction Strategies. The major objectives of the TMP are to maintain efficient and safe movement of vehicles through the construction zone maintaining safety of the construction workers; and to provide intensive public awareness of potential impacts on Todd Road, local roadways, and US 101. The TMP proposes a program of public information. The public information program consist of media notification, telephone hotline, press release, and traveler information system (Internet).

Existing bus stop (Stop ID: 7766700) located east side of Todd Road/ Standish Avenue-Ghilotti Avenue intersection and bus stop would need to be temporarily relocated during construction. This would require an advanced coordination with SC Transit prior to construction regarding the temporary relocation, notification in advance of construction for transit riders, and the establishment of a temporary bus stop near the closed stop to reduce/minimize distance that passengers need to walk. The bus stop would be relocated during the entire construction duration given the work required in the immediate area to upgrade the sidewalk and the utility work as well as the shifting of travel lanes during construction.

CONSTRUCTION STAGING AND OPERATIONAL HOURS

The project is proposed to be constructed in five stages. The staging sequence has been developed in a way that impacts are minimized to the traffic. There are four legs to the Todd Road and Standish Road intersection, including the Ghilotti Avenue private road. As illustrated in the Conceptual Construction plan, traffic operations through the intersection would be maintained at all times with the assistance of flaggers as necessary to facilitate movements through narrowed lanes. Construction phasing for the project is identified in quadrants or one-half of each travel way and shift traffic onto the opposite side. The project is expected to require approximately 40 - 50 working days to complete the construction, dependent on variables such as weather and availability of materials needed. Due to heavy day-time traffic, contractor may be permitted to conduct night-time construction activities to reduce construction duration. Also, it should be noted that narrow lanes and lack of shoulders would reduce travel speeds and thus

TJKM VISION THAT MOVES YOUR COMMUNITY

short-term minor delays are inevitable. Therefore some night work may provide an expediting of the construction work to reduce the duration of construction and thus reduce the inconvenience of construction. Advanced notification of construction would be provided to property owners via signage postings a minimum of 2 weeks in advance of starting construction. Construction would occur within a dry season (from late spring through early fall). The proposed construction staging is summarized in **Figure 3**.

Figure 3: Construction Phasing Plan

Phase 1: NW Quadrant (Standish Avenue SB Direction & Todd Rd WB Direction)

- towards NB Lane. Re-stripe the lanes to provide atleast 2-12 ft lanes.

- towards SB Lane. Re-stripe the lanes to provide atleast 2-12 ft lanes.

- Place K-rail.

	÷
5	Ħ
e.	õ
ŝ	8
5	2
S S S	2
- Å	ş
÷.	ë
×	B
5	ъ
ۍ تو	≖
-8	
8	ð
Ť	ġ
ĩ	. <u>8</u>
115	£
್ಷ	Б
Ę.	Ę
ē.	뛽
ē	ŝ
릉	2
-	
	S
ent	nq∕Sf
ement [orking\SF
avement [_Working\SF
5-Pavement [30_Working\SF
115-Pavement [D\30_Working\SF
wg;115-Pavement [ADD\30_Working\SF
0.dwg;115-Pavement [<pre>CADD\30_Working\SF</pre>
-RD.dwg;115-Pavement [500_CADD\30_Working\SF
-C-RD.dwg;115-Pavement [5\600_CADD\30_Working\SF
15-C-RD.dwg;115-Pavement [5.15\600_CADD\30_Working\SF
g;115-C-RD.dwg;115-Pavement [0115.15\600_CADD\30_Working\SF
.dwg;115-C-RD.dwg;115-Pavement [[710115.15\600_CADD\30_Working\SF
-TP.dwg;115-C-RD.dwg;115-Pavement [ts\710115.15\600_CADD\30_Working\SF
-X-TP.dwg;115-C-RD.dwg;115-Pavement [jects\710115.15\600_CADD\30_Working\SF
15-X-TP.dwg;115-C-RD.dwg;115-Pavement [Projects\710115.15\600_CADD\30_Working\SF
g;115-X-TP.dwg;115-C-RD.dwg;115-Pavement [o\Projects\710115.15\600_CADD\30_Working\SF
dwg;115-X-TP.dwg;115-C-RD.dwg;115-Pavement [ento\Projects\710115.15\600_CADD\30_Working\SF
DR.dwg;115-X-TP.dwg;115-C-RD.dwg;115-Pavement [amento\Projects\710115.15\600_CADD\30_Working\Sf
BRDR.dwg;115-X-TP.dwg;115-C-RD.dwg;115-Pavement [acramento\Projects\710115.15\600_CADD\30_Working\Sf
5-BRDR.dwg;115-X-TP.dwg;115-C-RD.dwg;115-Pavement [\Sacramento\Projects\710115.15\600_CADD\30_Working\Sf
115-BRDR.dwg;115-X-TP.dwg;115-C-RD.dwg;115-Pavement [T: \Sacramento\Projects\710115.15\600_CADD\30_Working\Sf

		-
DESIGN BY	XXX	
		REGISTERED CIVIL ENGINEE
DRAWING BY	XXX	
		PLANS APPROVAL DATE
CHECKED BY	XXX	

COMPLETED AFTER CONST	"RECORD	DRAW	ING"	IN	FORMA	
	COMPL	ETED	AFTE	ĒR	CONS	

TION TO BE RUCTION	DATE	REVISION	BY	APPROVED	SOR ATION & PUBLIC Getting you there!	COUNTY OF SONON
					SONOMA COUNT	DEPARTMENT OF TRANSPORTATION & PUBLIC W JOHANNES J. HOEVERTSZ, P.E., DIREC

Construction of the proposed project is to be undertaken in five stages summarized as follows: Phase 1: Construction – Northwest Quadrant (Standish Avenue SB Direction & Todd Road WB Direction)

- Realign north leg (Standish Avenue) at Todd Road/Standish Avenue intersection.
- Construct new pavement sections and curb and gutter on west side of Standish Avenue.
- Construct new curb at northwest corner of Todd Road/Standish Avenue intersection.
- Construct new curb and gutter sections on north side of Todd Road on west leg of the Todd Road/Standish Avenue intersection.
- Install lighting and signal equipment needed at northwest corner of Todd Road/Standish Avenue intersection.

Phase 1: Traffic Management

- Close Standish Avenue southbound lane between the intersection and the first driveway. Shift the southbound traffic towards the northbound lane. Re-stripe the lanes to provide at least two 12ft lanes (one in each direction).
- Close a portion of westbound lane along Todd Road between the intersection and end of project limits.
- Place K-rail.
- Shift traffic to east side of Standish Avenue to allow realignment of the roadway for construction on west side of roadway. Provide one northbound lane and one southbound lane 12 feet wide. Close shoulder on the north side of Todd Road on the west leg of the Todd Road/Standish Avenue intersection to allow construction of curb and gutter.

Phase 2: Construction – Northeast Quadrant (Standish Avenue NB Direction & Todd Road EB Direction)

- Close Standish Avenue northbound lane between the intersection and the first driveway. Shift northbound traffic towards southbound lane. Re-stripe the lanes to provide at least two 12ft lanes.
- Existing bus stop (Stop ID: 7766700) located east side of Todd Road/ Standish Avenue-Ghilotti Avenue intersection and bus stop would need to be temporarily relocated during construction.
- Construct new curb and gutter and pavement sections on east side of Standish Avenue, as needed.
- Construct new curb at northeast corner of Todd Road/Standish Avenue intersection.

TJKM VISION THAT MOVES YOUR COMMUNITY

- Construct new curb and gutter sections on north side of Todd Road on east leg of the Todd Road/Standish Avenue intersection.
- Install lighting and signal equipment needed at northeast corner of Todd Road/Standish Avenue.

Phase 2: Traffic Management

- Shift traffic to west side on Standish Avenue to make room for any soil cement treatment work to be done on the east side. Provide one northbound lane and one southbound lane at 12 feet wide.
- Close a portion of the westbound lane along Todd Road between intersection and end of project limits.
- Place K-rail.
- Close shoulder on north side of Todd Road on the east leg of the Todd Road/Standish Avenue intersection.
- Pavement markings and striping to be done on Standish Avenue and Todd Road during off-peak hours with minimal traffic (i.e. night-time).
- Re-open Todd Road & Standish Avenue bus stop (Stop ID: 7766700). Close temporary bus stop on east side of Todd Road/ Standish Avenue-Ghilotti Avenue intersection.

Phase 3: Construction – Southwest Quadrant (Todd Road EB direction)

- Construct new pavement sections on the south leg, Ghilotti Avenue.
- Construct new curbs at southwest corner of Todd Road/Standish Avenue/Ghilotti Avenue intersection.
- Construct new curb and gutter sections on the south side of Todd Road as needed.
- Install lighting and signal equipment needed at southwest corners of Todd Road/Standish Avenue/Ghilotti Avenue intersection.

Phase 3: Traffic Management

- Close Ghilotti Avenue. Reroute traffic through Ghilotti Construction Lots on Todd Road and Ghilotti Avenue. Prohibit westbound left-turn and eastbound right-turn movements from Todd Road, and southbound through movement from Standish Avenue.
- Place K-rail.
- Close shoulder on south side of Todd Road for approximately 450 feet west of Ghilotti Avenue.

Phase 4: Construction – Southeast Quadrant (Todd Road EB direction)

- Construct new pavement sections at south leg, Ghilotti Avenue.
- Construct new curbs at southeast corner of Todd Road/Standish Avenue/Ghilotti Avenue intersection.
- Construct new curb and gutter sections on the south side of Todd Road as needed.
- Install lighting and signal equipment needed at southeast corners of Todd Road/Standish Avenue/Ghilotti Avenue intersection.

Phase 4: Traffic Management

- Close Ghilotti Avenue. Reroute traffic through Ghilotti Construction Lots on Todd Road and Ghilotti Avenue. Prohibit northbound traffic from Ghilotti Avenue.
- Place K-rail.
- Close shoulder on south side of Todd Road for approximately 100 feet east of Ghilotti Avenue.
- Pavement markings and striping to be done on Ghilotti Avenue during off-peak hours with minimal traffic (i.e. night-time).
- Install additional signal pole equipment and necessary signage as needed at Todd Road/Standish Avenue intersection.

Phase 5: Pavement Overlay

- Remove K-rail.
- Remove and re-install metal beam guard rail system.
- Cold plane existing pavement. Overlay existing payment. Use temporary striping, channelizers to shift the traffic.
- Place final overlay.
- Adjust utility/manhole covers to grade.
- Signal phasing and restripe lane lines.

Based on the staging plans, no-turn lanes or through lanes are proposed to be closed during the construction of the project. Operational hours for construction phasing is shown in **Table 4.**

Phasing	Description	Operational Hours
Phase 1	Northwest Quadrant (Standish Avenue SB Direction & Todd Road WB Direction)	Work Hours: Wookdays: 7:00 am 7:00 am
Phase 2	Northeast Quadrant (Standish Avenue NB Direction & Todd Road EB Direction)	Evening Hours: (Fri-Sat): 9:00 pm – 5:00 pm K-rail to change work area, with flagging one lane only:
Phase 3	Southwest Quadrant (Todd Road EB Direction)	5.00 pm – 2.00 am
Phase 4	Southeast Quadrant (Todd Road EB Direction)	
Phase 5	Pavement Overlay	

Table 4: Construction Phasing and Operational Hours

TRAFFIC IMPACTS DURING CONSTRUCTION

Since no lane closures are proposed on Todd Road and Standish Avenue throughout the construction as per the proposed staging plans, no major impacts to the traffic operations is projected during construction. However, narrow lanes and lack of shoulders will reduce vehicle travel speed and short-term minor delays are inevitable. Therefore, some night work may provide an expediting of the construction work to reduce the duration of construction time and thus reduce the inconvenience of construction.

Construction would not result in impacts associated with the Sonoma-Marin Area Rail Transit (SMART) crossing of Todd Road and vehicle delays. The crossing is located about 600 east of the project area and the train service is infrequent with 26 weekday trains (13 southbound and 13 northbound) over an approximate 17 hour time frame generally between the hours of 5AM and 10PM. There is at least 30 minutes between trains and more frequently closer to 60 minutes. The trains are relatively short in length, and long queues of traffic that would extend into the construction area are not anticipated because of distance between the crossing and the construction area, the length of trains and associated delays, and the frequency of the trains.

Also, there is an existing bus stop (Stop ID: 7766700) located east side of Todd Road/ Standish Avenue-Ghilotti Avenue intersection and bus stop would need to be temporarily relocated during construction. This will have a minimal impact to passengers during construction period. It is recommended that a public information program be developed and implemented upon approval from the County.

Appendix A – Level of Service Analysis Worksheets

	≯	-	\rightarrow	1	-	•	٩.	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	î,		ሻ	ĥ			4			4	
Traffic Volume (veh/h)	95	294	2	12	241	270	2	2	10	156	1	45
Future Volume (Veh/h)	95	294	2	12	241	270	2	2	10	156	1	45
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	103	320	2	13	262	293	2	2	11	170	1	49
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		None			None							
Median storage veh)												
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	555			322			864	1108	321	972	962	408
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	555			322			864	1108	321	972	962	408
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)												
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	90			99			99	99	98	18	100	92
cM capacity (veh/h)	1015			1238			231	187	720	207	227	643
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	103	322	13	555	15	220						
Volume Left	103	0	13	0	2	170						
Volume Right	0	2	0	293	11	49						
cSH	1015	1700	1238	1700	433	244						
Volume to Capacity	0.10	0.19	0.01	0.33	0.03	0.90						
Queue Length 95th (ft)	8	0	1	0	3	193						
Control Delay (s)	8.9	0.0	7.9	0.0	13.6	78.1						
Lane LOS	А		А		В	F						
Approach Delay (s)	2.2		0.2		13.6	78.1						
Approach LOS					В	F						
Intersection Summary												
Average Delay			15.0									
Intersection Capacity Utiliz	ation		62.6%	IC	CU Level o	of Service			В			
Analysis Period (min)			15									

	≯	-	+	•	1	<	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	5	•	î,		¥.		
Traffic Volume (veh/h)	12	494	514	149	129	31	
Future Volume (Veh/h)	12	494	514	149	129	31	
Sian Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	13	537	559	162	140	34	
Pedestrians	10		007	102		01	
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		TWLTI	TWLTI				
Median storage veh)		2	2				
Linstream signal (ff)		2	224				
pX_platoon_unblocked	0.89		44 7		0.89	0.89	
vC. conflicting volume	721				1203	640	
vC1_stage 1 conf vol	721				640	010	
vC2_stage 2 conf vol					563		
	624				1166	533	
tC single (s)	<u> </u>				6.4	6.2	
$tC_2 stane(s)$	7.1				5.4	0.2	
tF (s)	2.2				3.4	33	
$n\Omega$ queue free %	08				66	03	
cM canacity (veh/h)	851				/13	/86	
	001				110	100	
Direction, Lane #	EB 1	EB 2	WB 1	SB 1			
Volume Total	13	537	721	174			
Volume Left	13	0	0	140			
Volume Right	0	0	162	34			
cSH	851	1700	1700	426			
Volume to Capacity	0.02	0.32	0.42	0.41			
Queue Length 95th (ft)	1	0	0	49			
Control Delay (s)	9.3	0.0	0.0	19.2			
Lane LOS	А			С			
Approach Delay (s)	0.2		0.0	19.2			
Approach LOS				С			
Intersection Summary							
Average Delav			2.4				
Intersection Capacity Utiliz	vation		51.8%	IC	U Level o	of Service	
Analysis Period (min)			15	10			

	→	\rightarrow	1	+	1	1		
Movement	FBT	FBR	WBI	WBT	NBI	NBR		
Lane Configurations	•	1	5	•	V	1		
Traffic Volume (vph)	265	309	197	274	510	98		
Future Volume (vph)	265	309	197	274	510	98		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	3.2	3.2	3.0	3.0	3.5	3.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	0.95		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	1863	1583	1770	1863	1771	1504		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	1863	1583	1770	1863	1771	1504		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	288	336	214	298	554	107		
RTOR Reduction (vph)	0	270	0	0	1	66		
Lane Group Flow (vph)	288	66	214	298	564	30		
Turn Type	NA	Perm	Split	NA	Prot	Perm		
Protected Phases	4		3	3	6			
Permitted Phases		4				6		
Actuated Green, G (s)	16.0	16.0	30.1	30.1	25.1	25.1		
Effective Green, g (s)	16.0	16.0	30.1	30.1	25.1	25.1		
Actuated g/C Ratio	0.20	0.20	0.37	0.37	0.31	0.31		
Clearance Time (s)	3.2	3.2	3.0	3.0	3.5	3.5		
Vehicle Extension (s)	2.0	2.0	2.0	2.0	3.5	3.5		
Lane Grp Cap (vph)	368	313	658	693	549	466		
v/s Ratio Prot	c0.15		0.12	c0.16	c0.32			
v/s Ratio Perm		0.04				0.02		
v/c Ratio	0.78	0.21	0.33	0.43	1.03	0.06		
Uniform Delay, d1	30.8	27.2	18.1	19.0	27.9	19.6		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	9.6	0.1	1.3	1.9	45.7	0.1		
Delay (s)	40.4	27.3	19.5	20.9	73.6	19.7		
Level of Service	D	С	В	С	E	В		
Approach Delay (s)	33.4			20.3	65.8			
Approach LOS	С			С	E			
Intersection Summary								
HCM 2000 Control Delay			41.6	H	CM 2000	Level of Servic	е	D
HCM 2000 Volume to Capacity	y ratio		0.72					
Actuated Cycle Length (s)			80.9	Si	um of lost	t time (s)		9.7
Intersection Capacity Utilizatio	n		65.1%	IC	U Level o	of Service		С
Analysis Period (min)			15					

	-	\rightarrow	1	-	1	1		
Movement	FBT	FBR	WBI	WBT	NBI	NBR		
Lane Configurations	**	1	5	**	5	11		
Traffic Volume (vph)	72	258	349	205	188	412		
Future Volume (vph)	72	258	349	205	188	412		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	3.5	3.5	3.5	3.5	3.5	3.5		
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	0.88		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3539	1583	1770	3539	1770	2787		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3539	1583	1770	3539	1770	2787		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	78	280	379	223	204	448		
RTOR Reduction (vph)	0	235	0	0	0	192		
Lane Group Flow (vph)	78	45	379	223	204	256		
Turn Type	NA	Perm	Split	NA	Prot	pm+ov		
Protected Phases	5		6	6	8	. 6		
Permitted Phases		5				8		
Actuated Green, G (s)	6.3	6.3	15.5	15.5	6.8	22.3		
Effective Green, g (s)	6.3	6.3	15.5	15.5	6.8	22.3		
Actuated g/C Ratio	0.16	0.16	0.40	0.40	0.17	0.57		
Clearance Time (s)	3.5	3.5	3.5	3.5	3.5	3.5		
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0	2.0		
Lane Grp Cap (vph)	570	255	701	1402	307	1838		
v/s Ratio Prot	0.02		c0.21	0.06	c0.12	0.06		
v/s Ratio Perm		c0.03				0.04		
v/c Ratio	0.14	0.18	0.54	0.16	0.66	0.14		
Uniform Delay, d1	14.1	14.2	9.1	7.6	15.1	3.9		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.0	0.1	3.0	0.2	4.2	0.0		
Delay (s)	14.1	14.3	12.0	7.8	19.2	3.9		
Level of Service	В	В	В	А	В	А		
Approach Delay (s)	14.2			10.5	8.7			
Approach LOS	В			В	А			
Intersection Summary								
HCM 2000 Control Delay			10.6	Н	CM 2000) Level of Serv	ice	В
HCM 2000 Volume to Capacit	y ratio		0.49					
Actuated Cycle Length (s)			39.1	S	um of los	st time (s)	1().5
Intersection Capacity Utilization	on		43.1%	IC	U Level	of Service		А
Analysis Period (min)			15					

	۶	→	$\mathbf{\hat{z}}$	4	+	•	٠	Ť	۲	5	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	ŧ	1	ľ	¢Î		1	<u></u>	1	1	<u></u>	1
Traffic Volume (vph)	264	60	242	17	41	8	291	436	25	16	259	236
Future Volume (vph)	264	60	242	17	41	8	291	436	25	16	259	236
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5		4.0	4.5	4.5	4.5	4.5	4.5
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00		1.00	0.95	1.00	1.00	0.95	1.00
Frt	1.00	1.00	0.85	1.00	0.97		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	0.97	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1681	1715	1583	1770	1816		1770	3539	1583	1770	3539	1583
Flt Permitted	0.95	0.97	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1681	1715	1583	1770	1816		1770	3539	1583	1770	3539	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	287	65	263	18	45	9	316	474	27	17	282	257
RTOR Reduction (vph)	0	0	216	0	8	0	0	0	15	0	0	199
Lane Group Flow (vph)	175	177	47	18	46	0	316	474	12	17	282	58
Turn Type	Split	NA	Perm	Split	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	2	2		6	6		3	8		7	4	
Permitted Phases			2						8			4
Actuated Green, G (s)	10.5	10.5	10.5	3.3	3.3		14.1	25.9	25.9	0.9	13.2	13.2
Effective Green, g (s)	10.5	10.5	10.5	3.3	3.3		14.1	25.9	25.9	0.9	13.2	13.2
Actuated g/C Ratio	0.18	0.18	0.18	0.06	0.06		0.24	0.44	0.44	0.02	0.23	0.23
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5		4.0	4.5	4.5	4.5	4.5	4.5
Vehicle Extension (s)	1.5	1.5	1.5	1.5	1.5		1.5	1.5	1.5	1.5	1.5	1.5
Lane Grp Cap (vph)	301	307	283	99	102		425	1564	699	27	797	356
v/s Ratio Prot	c0.10	0.10		0.01	c0.03		c0.18	c0.13		0.01	0.08	
v/s Ratio Perm			0.03						0.01			0.04
v/c Ratio	0.58	0.58	0.17	0.18	0.45		0.74	0.30	0.02	0.63	0.35	0.16
Uniform Delay, d1	22.0	22.0	20.3	26.4	26.8		20.6	10.5	9.2	28.7	19.1	18.3
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	1.8	1.6	0.1	0.3	1.1		6.1	0.0	0.0	28.6	0.1	0.1
Delay (s)	23.9	23.6	20.4	26.7	27.9		26.6	10.6	9.2	57.3	19.2	18.3
Level of Service	С	С	С	С	С		С	В	A	E	В	В
Approach Delay (s)		22.3			27.6			16.7			20.0	
Approach LOS		С			С			В			В	
Intersection Summary												
HCM 2000 Control Delay			19.7	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capac	ity ratio		0.56									
Actuated Cycle Length (s)			58.6	S	um of lost	time (s)			18.0			
Intersection Capacity Utilizati	ion		49.7%	IC	CU Level o	of Service			А			
Analysis Period (min)			15									

	≯	-	\rightarrow	4	-	*	1	1	1	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ţ,		ሻ	4Î			4			\$	
Traffic Volume (veh/h)	47	329	7	10	275	178	2	4	21	262	2	68
Future Volume (Veh/h)	47	329	7	10	275	178	2	4	21	262	2	68
Sign Control		Free			Free			Stop			Stop	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	51	358	8	11	299	193	2	4	23	285	2	74
Pedestrians												
Lane Width (ft)												
Walking Speed (ft/s)												
Percent Blockage												
Right turn flare (veh)												
Median type		TWLTL			TWLTL							
Median storage veh)		2			2							
Upstream signal (ft)												
pX, platoon unblocked												
vC, conflicting volume	492			366			860	978	362	902	886	396
vC1, stage 1 conf vol							464	464		418	418	
vC2, stage 2 conf vol							396	514		485	468	
vCu, unblocked vol	492			366			860	978	362	902	886	396
tC, single (s)	4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
tC, 2 stage (s)							6.1	5.5		6.1	5.5	
tF (s)	2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
p0 queue free %	95			99			100	99	97	34	100	89
cM capacity (veh/h)	1071			1193			416	405	683	431	445	654
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	SB 1						
Volume Total	51	366	11	492	29	361						
Volume Left	51	0	11	0	2	285						
Volume Right	0	8	0	193	23	74						
cSH	1071	1700	1193	1700	599	464						
Volume to Capacity	0.05	0.22	0.01	0.29	0.05	0.78						
Queue Length 95th (ft)	4	0	1	0	4	172						
Control Delay (s)	8.5	0.0	8.0	0.0	11.3	35.0						
Lane LOS	А		А		В	E						
Approach Delay (s)	1.0		0.2		11.3	35.0						
Approach LOS					В	E						
Intersection Summary												
Average Delay			10.3									
Intersection Capacity Utiliz	ation		64.1%	[(CU Level	of Service			С			
Analysis Period (min)			15									

	≯	-	←	•	1	∢	
Movement	EBL	EBT	WBT	WBR	SBL	SBR	
Lane Configurations	5	†	f,			1	
Traffic Volume (veh/h)	42	631	445	197	148	31	
Future Volume (Veh/h)	42	631	445	197	148	31	
Sign Control		Free	Free		Stop		
Grade		0%	0%		0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	46	686	484	214	161	34	
Pedestrians							
Lane Width (ft)							
Walking Speed (ft/s)							
Percent Blockage							
Right turn flare (veh)							
Median type		TWLTL	TWLTL				
Median storage veh)		2	2				
Upstream signal (ft)			224				
pX, platoon unblocked	0.95				0.95	0.95	
vC, conflicting volume	698				1369	591	
vC1, stage 1 conf vol					591		
vC2, stage 2 conf vol					778		
vCu, unblocked vol	654				1362	542	
tC, single (s)	4.1				6.4	6.2	
tC, 2 stage (s)					5.4		
tF (s)	2.2				3.5	3.3	
p0 queue free %	95				55	93	
cM capacity (veh/h)	885				358	513	
Direction, Lane #	EB 1	EB 2	WB 1	SB 1			
Volume Total	46	686	698	195			
Volume Left	46	0	0	161			
Volume Right	0	0	214	34			
cSH	885	1700	1700	378			
Volume to Capacity	0.05	0.40	0.41	0.52			
Queue Length 95th (ft)	4	0	0	71			
Control Delay (s)	9.3	0.0	0.0	24.3			
Lane LOS	А			С			
Approach Delay (s)	0.6		0.0	24.3			
Approach LOS				С			
Intersection Summary							
Average Delav			3.2				
Intersection Capacity Utiliz	ation		Err%	IC	U Level o	of Service	
Analysis Period (min)			15				

	→	\rightarrow	1	-	1	1		
Movement	FBT	FBR	WBI	WBT	NBI	NBR		
Lane Configurations	*	1	3	•	V	1		
Traffic Volume (vph)	280	477	336	137	489	103		
Future Volume (vph)	280	477	336	137	489	103		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	3.2	3.2	3.0	3.0	3.5	3.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	0.95		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	1863	1583	1770	1863	1770	1504		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	1863	1583	1770	1863	1770	1504		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	304	518	365	149	532	112		
RTOR Reduction (vph)	0	413	0	0	1	70		
Lane Group Flow (vph)	304	105	365	149	542	31		
Turn Type	NA	Perm	Split	NA	Prot	Perm		
Protected Phases	4		3	3	6			
Permitted Phases		4				6		
Actuated Green, G (s)	16.5	16.5	30.1	30.1	25.0	25.0		
Effective Green, g (s)	16.5	16.5	30.1	30.1	25.0	25.0		
Actuated g/C Ratio	0.20	0.20	0.37	0.37	0.31	0.31		
Clearance Time (s)	3.2	3.2	3.0	3.0	3.5	3.5		
Vehicle Extension (s)	2.0	2.0	2.0	2.0	3.5	3.5		
Lane Grp Cap (vph)	378	321	655	689	544	462		
v/s Ratio Prot	c0.16		c0.21	0.08	c0.31			
v/s Ratio Perm		0.07				0.02		
v/c Ratio	0.80	0.33	0.56	0.22	1.00	0.07		
Uniform Delay, d1	30.9	27.7	20.3	17.5	28.1	19.9		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	11.1	0.2	3.4	0.7	37.6	0.1		
Delay (s)	42.0	27.9	23.7	18.2	65.7	20.0		
Level of Service	D	С	С	В	E	В		
Approach Delay (s)	33.1			22.1	58.5			
Approach LOS	С			С	E			
Intersection Summary								
HCM 2000 Control Delay			38.5	H	CM 2000	Level of Servic	е	D
HCM 2000 Volume to Capacity	y ratio		0.77					
Actuated Cycle Length (s)			81.3	Si	um of lost	t time (s)		9.7
Intersection Capacity Utilizatio	n		72.5%	IC	CU Level of	of Service		С
Analysis Period (min)			15					

	-	\rightarrow	1	+	1	1		
Movement	FBT	FBR	WBI	WBT	NBI	NBR		
Lane Configurations	44	1	5	**	5	11		
Traffic Volume (vph)	108	181	380	308	183	640		
Future Volume (vph)	108	181	380	308	183	640		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	3.5	3.5	3.5	3.5	3.5	3.5		
Lane Util. Factor	0.95	1.00	1.00	0.95	1.00	0.88		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (prot)	3539	1583	1770	3539	1770	2787		
Flt Permitted	1.00	1.00	0.95	1.00	0.95	1.00		
Satd. Flow (perm)	3539	1583	1770	3539	1770	2787		
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92		
Adj. Flow (vph)	117	197	413	335	199	696		
RTOR Reduction (vph)	0	173	0	0	0	268		
Lane Group Flow (vph)	117	24	413	335	199	428		
Turn Type	NA	Perm	Split	NA	Prot	pm+ov		
Protected Phases	5		6	6	8	6		
Permitted Phases		5				8		
Actuated Green, G (s)	4.8	4.8	17.7	17.7	6.7	24.4		
Effective Green, g (s)	4.8	4.8	17.7	17.7	6.7	24.4		
Actuated g/C Ratio	0.12	0.12	0.45	0.45	0.17	0.61		
Clearance Time (s)	3.5	3.5	3.5	3.5	3.5	3.5		
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0	2.0		
Lane Grp Cap (vph)	427	191	789	1577	298	1958		
v/s Ratio Prot	c0.03		c0.23	0.09	c0.11	0.10		
v/s Ratio Perm		0.02				0.06		
v/c Ratio	0.27	0.12	0.52	0.21	0.67	0.22		
Uniform Delay, d1	15.9	15.6	8.0	6.7	15.5	3.4		
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	0.1	0.1	2.5	0.3	4.3	0.0		
Delay (s)	16.0	15.7	10.4	7.0	19.8	3.4		
Level of Service	В	В	В	А	В	А		
Approach Delay (s)	15.8			8.9	7.1			
Approach LOS	В			А	А			
Intersection Summary								
HCM 2000 Control Delay			9.2	Н	CM 2000) Level of Servi	се	А
HCM 2000 Volume to Capa	city ratio		0.52					
Actuated Cycle Length (s)	-		39.7	S	um of los	st time (s)		10.5
Intersection Capacity Utiliza	ition		44.5%	IC	CU Level	of Service		А
Analysis Period (min)			15					
a Critical Lana Craun								

	۶	-	$\mathbf{\hat{z}}$	4	+	*	1	t	۲	5	ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	र्स	1	۲	eî 🗧		٦	<u></u>	1	۲	† †	1
Traffic Volume (vph)	363	50	303	52	96	51	338	983	49	33	482	253
Future Volume (vph)	363	50	303	52	96	51	338	983	49	33	482	253
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	4.5	4.5	4.5	4.5	4.5		4.0	4.5	4.5	4.5	4.5	4.5
Lane Util. Factor	0.95	0.95	1.00	1.00	1.00		1.00	0.95	1.00	1.00	0.95	1.00
Frt	1.00	1.00	0.85	1.00	0.95		1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	0.96	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1681	1705	1583	1770	1766		1770	3539	1583	1770	3539	1583
Flt Permitted	0.95	0.96	1.00	0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1681	1705	1583	1770	1766		1770	3539	1583	1770	3539	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	395	54	329	57	104	55	367	1068	53	36	524	275
RTOR Reduction (vph)	0	0	268	0	24	0	0	0	32	0	0	215
Lane Group Flow (vph)	225	224	61	57	135	0	367	1068	21	36	524	60
Turn Type	Split	NA	Perm	Split	NA		Prot	NA	Perm	Prot	NA	Perm
Protected Phases	2	2		6	6		3	8		7	4	
Permitted Phases			2						8			4
Actuated Green, G (s)	13.4	13.4	13.4	8.3	8.3		17.1	28.8	28.8	3.6	15.8	15.8
Effective Green, g (s)	13.4	13.4	13.4	8.3	8.3		17.1	28.8	28.8	3.6	15.8	15.8
Actuated g/C Ratio	0.19	0.19	0.19	0.12	0.12		0.24	0.40	0.40	0.05	0.22	0.22
Clearance Time (s)	4.5	4.5	4.5	4.5	4.5		4.0	4.5	4.5	4.5	4.5	4.5
Vehicle Extension (s)	1.5	1.5	1.5	1.5	1.5		1.5	1.5	1.5	1.5	1.5	1.5
Lane Grp Cap (vph)	312	316	294	203	203		419	1413	632	88	775	346
v/s Ratio Prot	c0.13	0.13		0.03	c0.08		c0.21	c0.30		0.02	0.15	
v/s Ratio Perm			0.04						0.01			0.04
v/c Ratio	0.72	0.71	0.21	0.28	0.67		0.88	0.76	0.03	0.41	0.68	0.17
Uniform Delay, d1	27.6	27.5	24.9	29.2	30.6		26.5	18.6	13.2	33.2	25.8	22.9
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	6.8	5.8	0.1	0.3	6.2		17.6	2.1	0.0	1.1	1.8	0.1
Delay (s)	34.4	33.4	25.0	29.4	36.8		44.1	20.7	13.2	34.3	27.7	22.9
Level of Service	С	С	С	С	D		D	С	В	С	С	С
Approach Delay (s)		30.1			34.9			26.2			26.4	
Approach LOS		С			С			С			С	
Intersection Summary												
HCM 2000 Control Delay			27.7	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	ity ratio		0.81									
Actuated Cycle Length (s)			72.1	S	um of lost	time (s)			18.0			
Intersection Capacity Utilizat	ion		66.2%	IC	CU Level o	of Service			С			
Analysis Period (min)			15									